Skip to main content
×
×
Home
  • Print publication year: 2017
  • Online publication date: May 2017

2 - Constructive Artificial Neural-Network Models for Cognitive Development

from Part I - Cognitive Development
Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

New Perspectives on Human Development
  • Online ISBN: 9781316282755
  • Book DOI: https://doi.org/10.1017/CBO9781316282755
Please enter your name
Please enter a valid email address
Who would you like to send this to *
×
Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum.
Baetu, I., & Shultz, T. R. (2010). Development of prototype abstraction and exemplar memorization. In Ohlsson, S. & Catrambone, R. (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 814819). Austin, TX: Cognitive Science Society.
Baluja, S., & Fahlman, S. E. (1994). Reducing network depth in the cascade-correlation learning architecture. Pittsburgh, PA: School of Computer Science, Carnegie Mellon University.
Berthiaume, V. G., Shultz, T. R., & Onishi, K. H. (2013). A constructivist connectionist model of developmental transitions on false-belief tasks. Cognition, 126(3), 441458.
Buckingham, D., & Shultz, T. R. (1996). Computational power and realistic cognitive development Proceedings of the 18th Annual Conference of the Cognitive Science Society (pp. 507511). Mahwah, NJ: Erlbaum.
Buckingham, D., & Shultz, T. R. (2000). The developmental course of distance, time, and velocity concepts: A generative connectionist model. Journal of Cognition and Development, 1, 305345.
Dandurand, F., & Shultz, T. R. (2014). A comprehensive model of development on the balance-scale task. Cognitive Systems Research, 31 –32, 125. doi: http://dx.doi.org/10.1016/j.cogsys.2013.10.001
Egri, L., & Shultz, T. R. (2006). A compositional neural-network solution to prime-number testing. In Sun, R. & Miyake, N. (Eds.), Proceedings of the 28th Annual Conference of the Cognitive Science Society (pp. 12631268). Mahwah, NJ: Lawrence Erlbaum.
Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. In Touretzky, D. S. (Ed.), Advances in neural information processing systems 2 (pp. 524532). Los Altos, CA: Morgan Kaufmann.
Fodor, J. (1980). On the impossibility of learning “more powerful” structures. In Piattelli-Palmarini, M. (Ed.), The debate between Jean Piaget and Noam Chomsky (pp. 142152). London: Routledge & Kegan Paul.
Gerken, L. A., Balcomb, F. K., & Minton, J. L. (2011). Infants avoid “labouring in vain” by attending more to learnable than unlearnable linguistic patterns. Developmental Science, 14(5), 972979.
Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of cognition. In Sun, R. (Ed.), The Cambridge handbook of computational psychology (pp. 59100). Cambridge, UK: Cambridge University Press.
Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 15271554.
Jamrozik, A., & Shultz, T. R. (2007). Learning the structure of a mathematical group. In McNamara, D. & Trafton, G. (Eds.), Proceedings of the 29th Annual Conference of the Cognitive Science Society (pp. 11151120). Mahwah, NJ: Lawrence Erlbaum.
Kidd, C., Piantadosi, S. T., & Aslin, R. N. (2010). The Goldilocks Effect: Infants’ preference for stimuli that are neither too predictable nor too surprising. In Ohlsson, S. & Catrambone, R. (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 24762481). Austin, TX: Cognitive Science Society.
Kidd, C., Piantadosi, S. T., & Aslin, R. N. (2012). The Goldilocks Effect: Human infants allocate attention to visual sequences that are neither too simple nor too complex. PLoS ONE, 7(5), e36399. doi: 10.1371/journal.pone.0036399
Lany, J., Gómez, R. L., & Gerken, L. (2007). The role of prior experience in language acquisition. Cognitive Science, 31, 481507.
Mareschal, D., & Shultz, T. R. (1999). Development of children’s seriation: A connectionist approach. Connection Science, 11, 149186.
Piaget, J., Inhelder, B., & Szeminska, A. (1999). The child’s conception of geometry. Abingdon, UK: Routledge.
Quartz, S. R. (2003). Learning and brain development: A neural constructivist perspective. In Quinlan, P. T. (Ed.), Connectionist models of development: developmental processes in real and artificial neural networks (pp. 279309). New York: Psychology Press.
Schlimm, D., & Shultz, T. R. (2009). Learning the structure of abstract groups. In Taatgen, N. A. & Rijn, H. v. (Eds.), Proceedings of the 31st annual conference of the Cognitive Science Society (pp. 29502955). Austin, TX: Cognitive Science Society.
Shultz, T. R. (1998). A computational analysis of conservation. Developmental Science, 1, 103126.
Shultz, T. R. (2001). Assessing generalization in connectionist and rule-based models under the learning constraint. Proceedings of the 23rd annual conference of the Cognitive Science Society (pp. 922927). Mahwah, NJ: Erlbaum.
Shultz, T. R. (2003). Computational developmental psychology. Cambridge, MA: MIT Press.
Shultz, T. R. (2006). Constructive learning in the modeling of psychological development. In Munakata, Y. & Johnson, M. H. (Eds.), Processes of change in brain and cognitive development: Attention and performance XXI. (pp. 6186). Oxford, UK: Oxford University Press.
Shultz, T. R. (2011). Computational modeling of infant concept learning: The developmental shift from features to correlations. In Oakes, L. M., Cashon, C. H., Casasola, M., & Rakison, D. H. (Eds.), Infant perception and cognition: Recent advances, emerging theories, and future directions (pp. 125152). New York: Oxford University Press.
Shultz, T. R., & Bale, A. C. (2001). Neural network simulation of infant familiarization to artificial sentences: Rule-like behavior without explicit rules and variables. Infancy, 2, 501536.
Shultz, T. R., & Bale, A. C. (2006). Neural networks discover a near-identity relation to distinguish simple syntactic forms. Minds and Machines, 16, 107139.
Shultz, T. R., Berthiaume, V. G., & Dandurand, F. (2010). Bootstrapping syntax from morpho-phonology Proceedings of the Ninth IEEE International Conference on Development and Learning (pp. 5257). Ann Arbor, MI: IEEE.
Shultz, T. R., Buckingham, D., & Oshima-Takane, Y. (1994). A connectionist model of the learning of personal pronouns in English. In Hanson, S. J., Petsche, T., Kearns, M., & Rivest, R. L. (Eds.), Computational learning theory and natural learning systems, Vol. 2: Intersection between theory and experiment (pp. 347362). Cambridge, MA: MIT Press.
Shultz, T. R., & Cohen, L. B. (2004). Modeling age differences in infant category learning. Infancy, 5, 153171.
Shultz, T. R., & Doty, E. (2014). Knowing when to quit on unlearnable problems: another step towards autonomous learning. Computational Models of Cognitive Processes (pp. 211221). London: World Scientific.
Shultz, T. R., Doty, E., & Dandurand, F. (2012). Knowing when to abandon unproductive learning. In Miyake, N., Peebles, D., & Cooper, R. P. (Eds.), Proceedings of the 34th Annual Conference of the Cognitive Science Society (pp. 23272332). Austin, TX: Cognitive Science Society.
Shultz, T. R., & Fahlman, S. E. (2010). Cascade-correlation. In Sammut, C. & Webb, G. I. (Eds.), Encyclopedia of Machine Learning, Part 4/C (pp. 139147). Heidelberg, Germany: Springer-Verlag.
Shultz, T. R., & Gerken, L. A. (2005). A model of infant learning of word stress. Proceedings of the 27th Annual Conference of the Cognitive Science Society (pp. 20152020). Mahwah, NJ: Erlbaum.
Shultz, T. R., Mysore, S. P., & Quartz, S. R. (2007). Why let networks grow? In Mareschal, D., Sirois, S., Westermann, G., & Johnson, M. H. (Eds.), Neuroconstructivism: Perspectives and prospects (Vol. 2, pp. 6598). Oxford, UK: Oxford University Press.
Shultz, T. R. & Rivest, F. (2001). Knowledge-based cascade-correlation: Using knowledge to speed learning. Connection Science, 13, 130.
Shultz, T. R., Rivest, F., Egri, L., Thivierge, J.-P., & Dandurand, F. (2007). Could knowledge-based neural learning be useful in developmental robotics? The case of KBCC. International Journal of Humanoid Robotics, 4, 245279.
Shultz, T. R., Thivierge, J. P., & Laurin, K. (2008). Acquisition of concepts with characteristic and defining features. In Love, B. C., McRae, K., & Sloutsky, V. M. (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp. 531536). Austin, TX: Cognitive Science Society.
Shultz, T. R., & Vogel, A. (2004). A connectionist model of the development of transitivity. Proceedings of the 26th Annual Conference of the Cognitive Science Society (pp. 12431248). Mahwah, NJ: Erlbaum.
Sirois, S., & Shultz, T. R. (1998). Neural network modeling of developmental effects in discrimination shifts. Journal of Experimental Child Psychology, 71, 235274.
Sirois, S., & Shultz, T. R. (2006). Preschoolers out of adults: Discriminative learning with a cognitive load. Quarterly Journal of Experimental Psychology, 59, 13571377.
Spencer, J. P., Austin, A., & Schutte, A. R. (2012). Contributions of dynamic systems theory to cognitive development. Cognitive Development, 27, 401418.
Wilkening, F. (1981). Integrating velocity, time, and distance information: a developmental study. Cognitive Psychology, 13, 231247.