Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-20T06:25:25.861Z Has data issue: false hasContentIssue false

Bringing the Universe into the Laboratory – Project CLEA: contemporary laboratory exercises in astronomy

from 2 - Distance Learning and Electronic Media in Teaching Astronomy

Published online by Cambridge University Press:  01 June 2011

L.A. Marschall
Affiliation:
Department of Physics, Gettysburg College, Gettysburg, PA 17325
L. Gouguenheim
Affiliation:
Observatoire de Paris, Meudon
D. McNally
Affiliation:
University College London
J. R. Percy
Affiliation:
University of Toronto
Get access

Summary

The Dilemma of the Introductory Astronomy Laboratory

Were we meeting a century ago to discuss the state of astronomy education, we might have noted that remarkable changes were taking place in our field. The discipline, then regarded as a branch of geometry or mechanics, concerned itself primarily with the determination of positions in the heavens and the mapping of places on the earth. But with the advent of spectroscopy and the construction of large telescopes, astronomy was beginning to probe the how and the why of the heavens as well as the where and when. It was, in short, transforming itself into astrophysics, the study of the physical nature of the universe.

A century ago, we would have called for a change in the things we teach; and in fact there was such a change. When we look at the astronomy of the succeeding century, the material we now offer to introductory astronomy students at most universities and colleges, we see only a vestige of the earlier preoccupation with place and time. Judging by most textbooks, and by the course syllabi I have seen, most of us devote only a small fraction of our courses to astronomical coordinate systems, timekeeping, geodesy, and celestial mechanics. When we teach the solar system, we teach comparative planetology. When we teach the stars, we teach about main sequence and giant branch, about hydrostatic equilibrium and neutron degeneracy, about pulsars and supernovae. When we discuss the universe at large, we teach about the physics of the early universe, the dynamics of galaxies, and the fundamentals of general relativistic cosmology.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×