Published online by Cambridge University Press: 05 June 2012
Kinematic non-linearity is a recognized part of continuum mechanics often termed ‘large’ or ‘finite’ displacement theory. The non-linearity arises because equilibrium is considered in the current, and initially unknown, state of the body. In order to describe finite deformation of a continuous body it is necessary to have a non-linear measure of strain and a stress definition that can be used in the deformed state. It turns out that the Green strain, introduced for axial strain in Chapter 2, can be generalized to multi-component form describing the deformation of a continuous body. This is the subject of Section 6.1.
For any continuum mechanics theory it is very desirable to use stresses and strains that satisfy some form of virtual work principle. It was demonstrated in Chapter 2 that the use of the Green strain, which was a convenient quadratic strain measure with exact invariance with respect to arbitrary rigid body motion, led to a slightly modified interpretation of the normal force N appearing in the principle of virtual work. In a similar way the use of the Green strain for a continuous body leads to a special stress definition, the second Piola–Kirchhoff stress. For small strains this stress definition has a simple physical interpretation, precisely as N in the case of a bar element. This stress is introduced in Section 6.2, and it is demonstrated how it serves as a convenient reference for other stress measures of practical importance.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.