Skip to main content Accessibility help
×
  • Cited by 5
    • Show more authors
    • You may already have access via personal or institutional login
    • Select format
    • Publisher:
      Cambridge University Press
      Publication date:
      November 2012
      October 2012
      ISBN:
      9781139135061
      9781107606111
      Dimensions:
      Weight & Pages:
      Dimensions:
      (228 x 152 mm)
      Weight & Pages:
      0.45kg, 309 Pages
    You may already have access via personal or institutional login
  • Selected: Digital
    Add to cart View cart Buy from Cambridge.org

    Book description

    Presented in this volume are a number of new results concerning the extension theory and spectral theory of unbounded operators using the recent notions of boundary triplets and boundary relations. This approach relies on linear single-valued and multi-valued maps, isometric in a Krein space sense, and offers a basic framework for recent developments in system theory. Central to the theory are analytic tools such as Weyl functions, including Titchmarsh-Weyl m-functions and Dirichlet-to-Neumann maps. A wide range of topics is considered in this context from the abstract to the applied, including boundary value problems for ordinary and partial differential equations; infinite-dimensional perturbations; local point-interactions; boundary and passive control state/signal systems; extension theory of accretive, sectorial and symmetric operators; and Calkin's abstract boundary conditions. This accessible treatment of recent developments, written by leading researchers, will appeal to a broad range of researchers, students and professionals.

    Refine List

    Actions for selected content:

    Select all | Deselect all
    • View selected items
    • Export citations
    • Download PDF (zip)
    • Save to Kindle
    • Save to Dropbox
    • Save to Google Drive

    Save Search

    You can save your searches here and later view and run them again in "My saved searches".

    Please provide a title, maximum of 40 characters.
    ×

    Contents

    Metrics

    Altmetric attention score

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Book summary page views

    Total views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.

    Accessibility standard: Unknown

    Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.