Published online by Cambridge University Press: 05 November 2012
Abstract The notion of quasi boundary triples and their Weyl functions is reviewed and applied to self-adjointness and spectral problems for a class of elliptic, formally symmetric, second order partial differential expressions with variable coefficients on bounded domains.
Introduction
Boundary triples and associated Weyl functions are a powerful and ef- fficient tool to parameterize the self-adjoint extensions of a symmetric operator and to describe their spectral properties. There are numerous papers applying boundary triple techniques to spectral problems for various types of ordinary differential operators in Hilbert spaces; see, e.g. [Behrndt and Langer, 2010; Behrndt, Malamud and Neidhardt, 2008; Behrndt and Trunk, 2007; Brasche, Malamud and Neidhardt, 2002; Brüning, Geyler and Pankrashkin, 2008; Derkach, Hassi and de Snoo, 2003; Gorbachuk and Gorbachuk, 1991; Derkach and Malamud, 1995; Karabash, Kostenko and Malamud, 2009; Kostenko and Malamud, 2010; Posilicano, 2008] and the references therein.
The abstract notion of boundary triples and Weyl functions is strongly inspired by Sturm-Liouville operators on a half-line and their Titchmarsh -Weyl coefficients. To make this more precise, let us consider the ordinary differential expression l = −D2 + q on the positive half-line ℝ+ = (0, ∞), where D denotes the derivative, and suppose that q is a real-valued L∞-function. The maximal operator associated with l in L2(ℝ+) is defined on the Sobolev space H2(ℝ+) and turns out to be the adjoint of the minimal operator S f = l(f), dom S =, where is the subspace of H2(ℝ+) consisting of functions f that satisfy the boundary conditions f(0) = f′(0) = 0.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.