Published online by Cambridge University Press: 04 May 2010
Introduction
In this chapter we explore systems whose description lies at the boundary between classical and quantum theory. There are of course many ways to approach this problem. Here, we choose to study the interaction of classical light with small metal particles of arbitrary shape. Specifically, we consider a physical model that is capable of observing the transition from bulk material properties to nanoscale structures, for which quantum effects dominate. We then explore the landscape of possible physical responses of such systems, using optimal design techniques to train our intuition.
The prevalent classical model describing the interaction of visible and infrared electromagnetic radiation with nanoscale metallic clusters is based on Mie theory [1]. This local continuum field model which uses empirical values of a bulk material's linear optical response has been used to describe plasmon resonances in nanoparticles [2–4]. However, such a semi-empirical continuum description necessarily breaks down beyond a certain level of coarseness introduced by atomic length scales. Thus, it cannot be used to describe the interface between quantum and classical macroscopic regimes. Moreover, extensions of Mie theory to inhomogeneous cluster shapes are commonly restricted to low-order harmonic expansions (e.g. elliptical distortions) and so do not exhaust the full realm of possible geometric configurations. In addition, near-field applications, such as surface enhanced Raman scattering [5], are most naturally described using a real-space theory that includes the non-local electronic response of inhomogeneous structures, again beyond the scope of Mie theory.
In the following section we describe a microscopic approach that demonstrates the breakdown of this concept at atomic scales, whereas for large cluster sizes the classical predictions for the plasmon resonances are reproduced.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.