Published online by Cambridge University Press: 04 May 2010
Introduction
Today, nanoscience promises to provide an overwhelmingly large number of experimentally accessible ways to configure the spatial position of atoms, molecules, and other nanoscale components to form devices. The central challenge of nano-technology is to find the best, most practical, configuration that yields a useful device function. In the presence of what will typically be an enormous non-convex search space, it is reasonable to assume that traditional ad hoc design methods will miss many possible solutions. One approach to solving this difficult problem is to employ machine-based searches of configuration space that discover user-defined objective functions. Such an optimal design methodology aims to identify the best broken-symmetry spatial configuration of metal, semiconductor, and dielectric that produces a desired response. Hence, by harnessing a combination of modern computer power, adaptive algorithms, and realistic physical models, it should be possible to seek robust, manufacturable designs that meet previously unobtainable system specifications. Ultimately one can envision a design process that simultaneously is capable of basic scientific discovery and engineering for technological applications.
This is the frontier of device engineering we wish to explore.
The past success of ad hoc design
For many years an ad hoc approach to device design has successfully contributed to the development of technology. For example, after identifying the cause of poor device performance one typically tries to create a solution by modifying a process or fabrication step. The result is usually a series of innovations heavily weighted towards incremental, and hence small, changes in previous practice.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.