Published online by Cambridge University Press: 04 May 2010
Introduction
The theme of this book is driven by an attempt to exploit system-level complexity that can exist in small devices and quantum systems. The approach adopted involves development of realistic physical models with enough richness in the solutions to allow for discovery of nonintuitive designs. The methodology utilizes a systematic numerical search of solution space to find unexpected behavior. This might include exponential sensitivity, super linearity, polynomial response, or some other desired objective. Obviously, possible future directions of this strategy could be very broad in scope. To narrow the options and help identify a productive path forward it serves to consider some examples that help illustrate the concepts. One way this can be done is by addressing the question of device scaling. That is, what happens when a device is reduced in size.
When electronic and photonic systems are made very small they behave differently. Because we now have access to vast amounts of inexpensive computing power it is possible to find out how these small, but fundamentally complex, systems work, explore differences compared to larger scale systems, and possibly identify opportunities for innovation in the way small systems are designed.
Future directions for research can be guided in part by understanding how small devices and small physical systems differ in their behavior compared to larger systems. One theme that emerges is the increased role fluctuations play in determining the behavior of small complex systems comprising multiple interacting elements. The example of complexity in a small laser diode is discussed in Section 8.2. Another theme is the increased sensitivity scaled devices have to defects and small changes in configuration.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.