Published online by Cambridge University Press: 04 May 2010
Introduction
Optimization has a distinguished history in engineering and industrial design. Most approaches, however, assume that the input parameters are precisely known and that the implementation does not suffer any errors. Information used to model a problem is often noisy, incomplete or even erroneous. In science and engineering, measurement errors are inevitable. In business applications, the cost and selling price as well as the demand for a product are, at best, expert opinions. Moreover, even if uncertainties in the model data can be ignored, solutions cannot be implemented to infinite precision, as assumed in continuous optimization. Therefore, an “optimal” solution can easily be sub-optimal or, even worse, infeasible.
There has been evidence illustrating that if errors (in implementation or estimation of parameters) are not taken into account during the design process, the actual phenomenon can completely disappear. A prime example is optimizing the truss design for suspension bridges. The Tacoma Narrows bridge was the first of its kind that was optimized to divert the wind above and below the roadbed [1]. Only a few months after its opening in 1940, it collapsed due to moderate winds which caused twisting vibrational modes. In another example, Ben-Tal and Nemirovski demonstrated that only 5% errors can entirely destroy the radiation characteristics of an otherwise optimized phased locked and impedance matched array of antennas [2]. Therefore, taking errors into account during the optimization process is a first-order effect.
Traditionally, sensitivity analysis was performed to study the impact of perturbations on specific designs and to find solutions that are least sensitive among a larger set of optima.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.