Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-20T17:28:21.350Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2014

Charles F. Dunkl
Affiliation:
University of Virginia
Yuan Xu
Affiliation:
University of Oregon
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. and Stegun, I. (1970). Handbook of Mathematical Functions, Dover, New York.
Agahanov, C. A. (1965). A method of constructing orthogonal polynomials of two variables for a certain class of weight functions (in Russian), Vestnik Leningrad Univ. 20, no. 19, 5–10.Google Scholar
Akhiezer, N. I. (1965). The Classical Moment Problem and Some Related Questions in Analysis, Hafner, New York.
Aktaş, R. and Xu, Y. (2013) Sobolev orthogonal polynomials on a simplex, Int. Math. Res. Not., 13, 3087–3131.Google Scholar
de Álvarez, M., Fernández, L., Pérez, T. E. and Piñar, M. A. (2009). A matrix Rodrigues formula for classical orthogonal polynomials in two variables, J. Approx. Theory 157, 32–52.CrossRefGoogle Scholar
Andrews, G. E., Askey, R. and Roy, R. (1999). Special Functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, Cambridge.
Aomoto, K. (1987). Jacobi polynomials associated with Selberg integrals, SIAM J. Math. Anal. 18, no. 2, 545–549.Google Scholar
Appell, P. and de Fériet, J. K. (1926). Fonctions hypergéométriques et hypersphériques, polynomes d'Hermite, Gauthier-Villars, Paris.
Area, I., Godoy, E., Ronveaux, A. and Zarzo, A. (2012). Bivariate second-order linear partial differential equations and orthogonal polynomial solutions. J. Math. Anal. Appl. 387, 1188–1208.CrossRefGoogle Scholar
Askey, R. (1975). Orthogonal Polynomials and Special Functions, Regional Conference Series in Applied Mathemathics 21, SIAM, Philadelphia.
Askey, R. (1980). Some basic hypergeometric extensions of integrals of Selberg and Andrews, SIAM J. Math. Anal. 11, 938–951.Google Scholar
Atkinson, K. and Han, W. (2012). Spherical Harmonics and Approximations on the Unit Sphere: An Introduction, Lecture Notes in Mathematics 2044, Springer, Heidelberg.
Atkinson, K. and Hansen, O. (2005). Solving the nonlinear Poisson equation on the unit disk, J. Integral Eq. Appl. 17, 223–241.CrossRefGoogle Scholar
Axler, S., Bourdon, P. and Ramey, W. (1992). Harmonic Function Theory, Springer, New York.
Bacry, H. (1984). Generalized Chebyshev polynomials and characters of GL(N, C) and SL(N, C), in Group Theoretical Methods in Physics, pp. 483–485, Lecture Notes in Physics, 201, Springer-Verlag, Berlin.
Badkov, V. (1974). Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval, Math. USSR-Sb. 24, 223–256.CrossRefGoogle Scholar
Bailey, W. N. (1935). Generalized Hypergeometric Series, Cambridge University Press, Cambridge.
Baker, T. H., Dunkl, C. F. and Forrester, P. J. (2000). Polynomial eigenfunctions of the Calogero–Sutherland–Moser models with exchange terms, in Calogero–Sutherland–Moser Models, pp. 37–51, CRM Series in Mathematical Physics, Springer, New York.
Baker, T. H. and Forrester, P. J. (1997a). The Calogero–Sutherland model and generalized classical polynomials, Comm. Math. Phys. 188, 175–216.Google Scholar
Baker, T. H. and Forrester, P. J. (1997b). The Calogero–Sutherland model and polynomials with prescribed symmetry, Nuclear Phys. B 492, 682–716.Google Scholar
Baker, T. H. and Forrester, P. J. (1998). Nonsymmetric Jack polynomials and integral kernels, Duke Math. J. 95, 1–50.Google Scholar
Barrio, R., Peña, J. M. and Sauer, T. (2010). Three term recurrence for the evaluation of multivariate orthogonal polynomials, J. Approx. Theory 162, 407–420.Google Scholar
Beerends, R. J. (1991). Chebyshev polynomials in several variables and the radial part of the Laplace–Beltrami operator, Trans. Amer. Math. Soc. 328, 779–814.CrossRefGoogle Scholar
Beerends, R. J. and Opdam, E. M. (1993). Certain hypergeometric series related to the root system BC, Trans. Amer. Math. Soc. 339, 581–609.Google Scholar
Berens, H., Schmid, H. and Xu, Y. (1995a). On two-dimensional definite orthogonal systems and on lower bound for the number of associated cubature formulas, SIAM J. Math. Anal. 26, 468–487.Google Scholar
Berens, H., Schmid, H. and Xu, Y. (1995b). Multivariate Gaussian cubature formula, Arch. Math. 64, 26–32.Google Scholar
Berens, H. and Xu, Y. (1996). Fejér means for multivariate Fourier series, Math. Z. 221, 449–465.Google Scholar
Berens, H. and Xu, Y. (1997). ℓ − 1 summability for multivariate Fourier integrals and positivity, Math. Proc. Cambridge Phil. Soc. 122, 149–172.CrossRefGoogle Scholar
Berg, C. (1987). The multidimensional moment problem and semigroups, in Moments in Mathematics, pp. 110–124, Proceedings of Symposia in Applied Mathematics 37, American Mathemathical Society, Providence, RI.CrossRef
Berg, C., Christensen, J. P. R. and Ressel, P. (1984). Harmonic Analysis on Semigroups, Theory of Positive Definite and Related Functions, Graduate Texts in Mathematics 100, Springer, New York–Berlin.
Berg, C. and Thill, M. (1991). Rotation invariant moment problems, Acta Math. 167, 207–227.Google Scholar
Bergeron, N. and Garsia, A. M. (1992). Zonal polynomials and domino tableaux, Discrete Math. 99, 3–15.Google Scholar
Bertran, M. (1975). Note on orthogonal polynomials in v-variables, SIAM. J. Math. Anal. 6, 250–257.Google Scholar
Bojanov, B. and Petrova, G. (1998). Numerical integration over a disc, a new Gaussian quadrature formula, Numer. Math. 80, 39–50.Google Scholar
Bos, L. (1994). Asymptotics for the Christoffel function for Jacobi like weights on a ball in ℝm, New Zealand J. Math. 23, 99–109.Google Scholar
Bos, L., Della Vecchia, B. and Mastroianni, G. (1998). On the asymptotics of Christoffel functions for centrally symmetric weights functions on the ball in ℝn, Rend. del Circolo Mat. di Palermo, 52, 277–290.Google Scholar
Bracciali, C. F., Delgado, A. M., Fernández, L., Pérez, T. E. and Piñar, M. A. (2010). New steps on Sobolev orthogonality in two variables, J. Comput. Appl. Math. 235, 916–926.CrossRefGoogle Scholar
Braaksma, B. L. J. and Meulenbeld, B. (1968) Jacobi polynomials as spherical harmonics, Indag. Math. 30, 384–389.Google Scholar
Buchstaber, V., Felder, G. and Veselov, A. (1994). Elliptic Dunkl operators, root systems, and functional equations, Duke Math. J. 76, 885–891.Google Scholar
Calogero, F. (1971). Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys. 12, 419–436.CrossRefGoogle Scholar
zu Castell, W., Filbir, F. and Xu, Y. (2009). Cesàro means of Jacobi expansions on the parabolic biangle, J. Approx. Theory 159, 167–179.CrossRefGoogle Scholar
Cheney, E. W. (1998). Introduction to Approximation Theory, reprint of the 2nd edn (1982), AMS Chelsea, Providence, RI.
Cherednik, I. (1991). A unification of Knizhnik–Zamolodchikov and Dunkl operators via affine Hecke algebras, Invent. Math. 106, 411–431.Google Scholar
Chevalley, C. (1955). Invariants of finite groups generated by reflections, Amer. J. Math. 77, 777–782.Google Scholar
Chihara, T. S. (1978). An Introduction to Orthogonal Polynomials, Mathematics and its Applications 13, Gordon and Breach, New York.
Cichoń, D., Stochel, J. and Szafraniec, F. H. (2005). Three term recurrence relation modulo ideal and orthogonality of polynomials of several variables, J. Approx. Theory 134, 11–64.CrossRefGoogle Scholar
Connett, W. C. and Schwartz, A. L. (1995). Continuous 2-variable polynomial hypergroups, in Applications of Hypergroups and Related Measure Algebras (Seattle, WA, 1993), pp. 89–109, Contemporary Mathematics 183, American Mathematical Society, Providence, RI.
van der Corput, J. G. and Schaake, G. (1935). Ungleichungen für Polynome und trigonometrische Polynome, Compositio Math. 2, 321–361.Google Scholar
Coxeter, H. S. M. (1935). The complete enumeration of finite groups of the form R2i = (RiRj)kij = 1, J. London Math. Soc. 10, 21–25.CrossRefGoogle Scholar
Coxeter, H. S. M. (1973). Regular Polytopes, 3rd edn, Dover, New York.
Coxeter, H. S. M. and Moser, W. O. J. (1965). Generators and Relations for Discrete groups, 2nd edn, Springer, Berlin–New York.
Dai, F. and Wang, H. (2010). A transference theorem for the Dunkl transform and its applications, J. Funct. Anal. 258, 4052–4074.CrossRefGoogle Scholar
Dai, F. and Xu, Y. (2009a). Cesàro means of orthogonal expansions in several variables, Const. Approx. 29, 129–155.Google Scholar
Dai, F. and Xu, Y. (2009b). Boundedness of projection operators and Cesàro means in weighted Lp space on the unit sphere, Trans. Amer. Math. Soc. 361, 3189–3221.Google Scholar
Dai, F. and Xu, Y. (2013). Approximation Theory and Harmonic Analysis on Spheres and Balls, Springer, Berlin–NewYork.
Debiard, A. and Gaveau, B. (1987). Analysis on root systems, Canad. J. Math. 39, 1281–1404.Google Scholar
Delgado, A. M., Fernández, L, Pérez, T. E., Piñar, M. A. and Xu, Y. (2010). Orthogonal polynomials in several variables for measures with mass points, Numer. Algorithm 55, 245–264.Google Scholar
Delgado, A., Geronimo, J. S., Iliev, P. and Marcellán, F. (2006). Two variable orthogonal polynomials and structured matrices, SIAM J. Matrix Anal. Appl. 28, 118–147.CrossRefGoogle Scholar
Delgado, A. M., Geronimo, J. S., Iliev, P. and Xu, Y. (2009). On a two variable class of Bernstein–Szego measures, Constr. Approx. 30, 71–91.CrossRefGoogle Scholar
DeVore, R. A. and Lorentz, G. G. (1993). Constructive approximation, Grundlehren der Mathematischen Wissenschaften 303, Springer, Berlin.
van Diejen, J. F. (1999). Properties of some families of hypergeometric orthogonal polynomials in several variables, Trans. Amer. Math. Soc. 351, no. 1, 233–270.Google Scholar
van Diejen, J. F. and Vinet, L. (2000). Calogero–Sutherland–Moser models, CRM Series in Mathematical Physics, Springer, New York.
Dieudonné, J. (1980). Special Functions and Linear Representations of Lie Groups, CBMS Regional Conference Series in Mathematics 42, American Mathematical Society, Providence, RI.
Dijksma, A. and Koornwinder, T. H. (1971). Spherical harmonics and the product of two Jacobi polynomials, Indag. Math. 33, 191–196.Google Scholar
Dubiner, M. (1991). Spectral methods on triangles and other domains, J. Sci. Comput. 6, 345–390.CrossRefGoogle Scholar
Dunkl, C. F. (1981). Cube group invariant spherical harmonics and Krawtchouk polynomials, Math. Z. 92, 57–71.Google Scholar
Dunkl, C. F. (1982). An additional theorem for Heisenberg harmonics, in Proc. Conf. on Harmonic Analysis in Honor of Antoni Zygmund, pp. 688–705, Wadsworth International, Belmont, CA.
Dunkl, C. F. (1984a). The Poisson kernel for Heisenberg polynomials on the disk, Math. Z. 187, 527–547.Google Scholar
Dunkl, C. F. (1984b). Orthogonal polynomials with symmetry of order three, Canad. J. Math. 36, 685–717.Google Scholar
Dunkl, C. F. (1984c). Orthogonal polynomials on the sphere with octahedral symmetry, Trans. Amer. Math. Soc. 282, 555–575.Google Scholar
Dunkl, C. F. (1985). Orthogonal polynomials and a Dirichlet problem related to the Hilbert transform, Indag. Math. 47, 147–171.Google Scholar
Dunkl, C. F. (1986). Boundary value problems for harmonic functions on the Heisenberg group, Canad. J. Math. 38, 478–512.Google Scholar
Dunkl, C. F. (1987). Orthogonal polynomials on the hexagon, SIAM J. Appl. Math. 47, 343–351.Google Scholar
Dunkl, C. F. (1988). Reflection groups and orthogonal polynomials on the sphere, Math. Z. 197, 33–60.Google Scholar
Dunkl, C. F. (1989a). Differential–difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311, 167–183.Google Scholar
Dunkl, C. F. (1989b). Poisson and Cauchy kernels for orthogonal polynomials with dihedral symmetry, J. Math. Anal. Appl. 143, 459–470.Google Scholar
Dunkl, C. F. (1990). Operators commuting with Coxeter group actions on polynomials, in Invariant Theory and Tableaux (Minneapolis, MN, 1988), pp. 107–117, IMA Mathematics and Applications 19, Springer, New York.
Dunkl, C. F. (1991). Integral kernels with reflection group invariance, Canad. J. Math. 43, 1213–1227.Google Scholar
Dunkl, C. F. (1992). Hankel transforms associated to finite reflection groups, in Hyper-geometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), pp. 123–138, Contemporary Mathematics 138, American Mathematical Society, Providence, RI.
Dunkl, C. F. (1995). Intertwining operators associated to the group S3, Trans. Amer. Math. Soc. 347, 3347–3374.Google Scholar
Dunkl, C. F. (1998a). Orthogonal polynomials of types A and B and related Calogero models, Comm. Math. Phys. 197, 451–487.Google Scholar
Dunkl, C. F. (1998b). Intertwining operators and polynomials associated with the symmetric group, Monatsh. Math. 126, 181–209.Google Scholar
Dunkl, C. F. (1999a). Computing with differential–difference operators, J. Symbolic Comput. 28, 819–826.Google Scholar
Dunkl, C. F. (1999b). Planar harmonic polynomials of type B, J. Phys. A: Math. Gen. 32, 8095–8110.Google Scholar
Dunkl, C. F. (1999c). Intertwining operators of type BN, in Algebraic Methods and q-Special Functions (Montréal, QC, 1996), pp. 119–134, CRM Proceedings Lecture Notes 22, American Mathematical Society, Providence, RI.
Dunkl, C. F. (2007). An intertwining operator for the group B2, Glasgow Math. J. 49, 291–319.Google Scholar
Dunkl, C. F., de Jeu, M. F. E. and Opdam, E. M. (1994). Singular polynomials for finite reflection groups, Trans. Amer. Math. Soc. 346, 237–256.CrossRefGoogle Scholar
Dunkl, C. F. and Hanlon, P. (1998). Integrals of polynomials associated with tableaux and the Garsia–Haiman conjecture. Math. Z. 228, 537–567.Google Scholar
Dunkl, C. F. and Luque, J.-G. (2011). Vector-valued Jack polynomials from scratch, SIGMA 7, 026, 48pp.Google Scholar
Dunkl, C. F. and Opdam, E. M. (2003). Dunkl operators for complex reflection groups, Proc. London Math. Soc. 86, 70–108.CrossRefGoogle Scholar
Dunkl, C. F. and Ramirez, D. E. (1971). Topics in Harmonic Analysis, Appleton-Century Mathematics Series, Appleton-Century-Crofts (Meredith Corporation), New York.
Dunn, K. B. and Lidl, R. (1982). Generalizations of the classical Chebyshev polynomials to polynomials in two variables, Czechoslovak Math. J. 32, 516–528.Google Scholar
Eier, R. and Lidl, R. (1974). Tschebyscheffpolynome in einer und zwei Variablen, Abh. Math. Sem. Univ. Hamburg 41, 17–27.CrossRefGoogle Scholar
Eier, R. and Lidl, R. (1982). A class of orthogonal polynomials in k variables, Math. Ann. 260, 93–99.Google Scholar
Eier, R., Lidl, R. and Dunn, K. B. (1981). Differential equations for generalized Chebyshev polynomials, Rend. Mat. 1, no. 7, 633–646.Google Scholar
Engelis, G. K. (1974). Certain two-dimensional analogues of the classical orthogonal polynomials (in Russian), Latvian Mathematical Yearbook 15, 169–202, 235, Izdat. Zinatne, Riga.Google Scholar
Engels, H. (1980). Numerical Quadrature and Cubature, Academic Press, New York.
Erdélyi, A. (1965). Axially symmetric potentials and fractional integration, SIAM J. 13, 216–228.Google Scholar
Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1953). Higher Transcendental Functions, McGraw-Hill, New York.
Etingof, E. (2010). A uniform proof of the Macdonald–Mehta–Opdam identity for finite Coxeter groups, Math. Res. Lett. 17, 277–284.Google Scholar
Exton, H. (1976). Multiple Hypergeometric Functions and Applications, Halsted, New York.
Fackerell, E. D. and Littler, R. A. (1974). Polynomials biorthogonal to Appell's polynomials, Bull. Austral. Math. Soc. 11, 181–195.CrossRefGoogle Scholar
Farouki, R. T., Goodman, T. N. T. and Sauer, T. (2003). Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains, Comput. Aided Geom. Design 20, 209–230.Google Scholar
Fernández, L., Pérez, T. E. and Piñar, M. A. (2005). Classical orthogonal polynomials in two variables: a matrix approach, Numer. Algorithms 39, 131–142.CrossRefGoogle Scholar
Fernández, L., Perez, T.E. and Piñar, M. A. (2011). Orthogonal polynomials in two variables as solutions of higher order partial differential equations, J. Approx. Theory 163, 84–97.Google Scholar
Folland, G. B. (1975). Spherical harmonic expansion of the Poisson–Szegő kernel for the ball, Proc. Amer. Math. Soc. 47, 401–408.Google Scholar
Forrester, P. J. and Warnaar, S. O. (2008). The importance of the Selberg integral Bull. Amer. Math. Soc. 45, 489–534.CrossRefGoogle Scholar
Freud, G. (1966). Orthogonal Polynomials, Pergamon, New York.
Fuglede, B. (1983). The multidimensional moment problem, Expos. Math. 1, 47–65.Google Scholar
Gasper, G. (1972). Banach algebras for Jacobi series and positivity of a kernel, Ann. Math. 95, 261–280.Google Scholar
Gasper, G. (1977). Positive sums of the classical orthogonal polynomials, SIAM J. Math. Anal. 8, 423–447.Google Scholar
Gasper, G. (1981). Orthogonality of certain functions with respect to complex valued weights, Canad. J. Math. 33, 1261–1270.Google Scholar
Gasper, G. and Rahman, M. (1990). Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications 35, Cambridge University Press, Cambridge.
Gekhtman, M. I. and Kalyuzhny, A. A. (1994). On the orthogonal polynomials in several variables, Integr. Eq. Oper. Theory 19, 404–418.CrossRefGoogle Scholar
Genest, V., Ismail, M., Vinet, L. and Zhedanov, A. (2013). The Dunkl oscillator in the plane I: superintegrability, separated wavefunctions and overlap coefficients, J. Phys. A: Math. Theor. 46, 145 201.Google Scholar
Genest, V., Vinet, L. and Zhedanov, A. (2013). The singular and the 2:1 anisotropic Dunkl oscillators in the plane, J. Phys. A: Math. Theor. 46, 325 201.Google Scholar
Ghanmi, A. (2008). A class of generalized complex Hermite polynomials, J. Math. Anal. Appl. 340, 1395–1406.CrossRefGoogle Scholar
Ghanmi, A. (2013). Operational formulae for the complex Hermite polynomials Hp,q(z, z), Integral Transf. Special Func. 24, 884–895.Google Scholar
Görlich, E. and Markett, C. (1982). A convolution structure for Laguerre series, Indag. Math. 14, 161–171.Google Scholar
Griffiths, R. (1979). A transition density expansion for a multi-allele diffusion model. Adv. Appl. Prob. 11, 310–325.CrossRefGoogle Scholar
Griffiths, R. and Spanò, D. (2011). Multivariate Jacobi and Laguerre polynomials, infinite-dimensional extensions, and their probabilistic connections with multivariate Hahn and Meixner polynomials, Bernoulli 17, 1095–1125.Google Scholar
Griffiths, R. and Spanò, D. (2013). Orthogonal polynomial kernels and canonical correlations for Dirichlet measures, Bernoulli 19, 548–598.Google Scholar
Groemer, H. (1996). Geometric Applications of Fourier Series and Spherical Harmonics, Cambridge University Press, New York.
Grove, L. C. (1974). The characters of the hecatonicosahedroidal group, J. Reine Angew. Math. 265, 160–169.Google Scholar
Grove, L. C. and Benson, C. T. (1985). Finite Reflection Groups, 2nd edn, Graduate Texts in Mathematics 99, Springer, Berlin-New York
Grundmann, A. and Möller, H. M. (1978). Invariant integration formulas for the n-simplex by combinatorial methods, SIAM. J. Numer. Anal. 15, 282–290.Google Scholar
Haviland, E. K. (1935). On the momentum problem for distributions in more than one dimension, I, II, Amer. J. Math. 57, 562–568; 58, 164–168.CrossRefGoogle Scholar
Heckman, G. J. (1987). Root systems and hypergeometric functions II, Compositio Math. 64, 353–373.Google Scholar
Heckman, G. J. (1991a). A remark on the Dunkl differential–difference operators, in Harmonic Analysis on Reductive Groups (Brunswick, ME, 1989), pp. 181–191, Progress in Mathematics 101, Birkhauser, Boston, MA.
Heckman, G. J. (1991b). An elementary approach to the hypergeometric shift operators of Opdam, Invent. Math. 103, 341–350.Google Scholar
Heckman, G. J. and Opdam, E. M. (1987). Root systems and hypergeometric functions, I, Compositio Math. 64, 329–352.Google Scholar
Helgason, S. (1984). Groups and Geometric Analysis, Academic Press, New York.
Higgins, J. R. (1977). Completeness and Basis Properties of Sets of Special Functions, Cambridge University Press, Cambridge.
Hoffman, M. E. and Withers, W. D. (1988). Generalized Chebyshev polynomials associated with affine Weyl groups, Trans. Amer. Math. Soc. 308, 91–104.CrossRefGoogle Scholar
Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis, Cambridge University Press, Cambridge.
Hua, L. K. (1963). Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Translations of Mathematical Monographs 6, American Mathematical Society, Providence, RI.
Humphreys, J. E. (1990). Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge.
Ignatenko, V. F. (1984). On invariants of finite groups generated by reflections, Math. USSRSb. 48, 551–563.Google Scholar
Ikeda, M. (1967). On spherical functions for the unitary group, I, II, III, Mem. Fac. Engrg Hiroshima Univ. 3, 17–75.Google Scholar
Iliev, P. (2011). Krall–Jacobi commutative algebras of partial differential operators, J. Math. Pures Appl. 96, no. 9, 446–461.Google Scholar
Intissar, A. and Intissar, A. (2006). Spectral properties of the Cauchy transform on L2(ℂ;e|z|2dλ), J. Math. Anal. Appl. 313, 400–418.CrossRefGoogle Scholar
Ismail, M. (2005). Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, Cambridge.
Ismail, M. (2013). Analytic properties of complex Hermite polynomials. Trans. Amer. Math. Soc., to appear.
Ismail, M. and P., Simeonov (2013). Complex Hermite polynomials: their combinatorics and integral operators. Proc. Amer. Math. Soc., to appear.
Itô, K. (1952). Complex multiple Wiener integral, Japan J. Math. 22, 63–86.Google Scholar
Ivanov, K., Petrushev, P. and Xu, Y. (2010). Sub-exponentially localized kernels and frames induced by orthogonal expansions. Math. Z. 264, 361–397.Google Scholar
Ivanov, K., Petrushev, P. and Xu, Y. (2012). Decomposition of spaces of distributions induced by tensor product bases, J. Funct. Anal. 263, 1147–1197.CrossRefGoogle Scholar
Jack, H. (1970/71). A class of symmetric polynomials with a parameter, Proc. Roy. Soc. Edinburgh Sect. A. 69, 1–18.Google Scholar
Jackson, D. (1936). Formal properties of orthogonal polynomials in two variables, Duke Math. J. 2, 423–434.Google Scholar
James, A. T. and Constantine, A. G. (1974). Generalized Jacobi polynomials as spherical functions of the Grassmann manifold, Proc. London Math. Soc. 29, 174–192.CrossRefGoogle Scholar
de Jeu, M. F. E. (1993). The Dunkl transform, Invent. Math. 113, 147–162.Google Scholar
Kakei, S. (1998). Intertwining operators for a degenerate double affine Hecke algebra and multivariable orthogonal polynomials, J. Math. Phys. 39, 4993–5006.Google Scholar
Kalnins, E. G., Miller, W., Jr and Tratnik, M. V. (1991). Families of orthogonal and biorthogonal polynomials on the n-sphere, SIAM J. Math. Anal. 22, 272–294.Google Scholar
Kanjin, Y. (1985). Banach algebra related to disk polynomials, Tôhoku Math. J. 37, 395–404.Google Scholar
Karlin, S. and McGregor, J. (1962). Determinants of orthogonal polynomials, Bull. Amer. Math. Soc. 68, 204–209.CrossRefGoogle Scholar
Karlin, S. and McGregor, J. (1975). Some properties of determinants of orthogonal polynomials, in Theory and Application of Special Functions, ed. R. A., Askey, pp. 521–550, Academic Press, New York.
Kato, Y. and Yamamoto, T. (1998). Jack polynomials with prescribed symmetry and hole propagator of spin Calogero–Sutherland model, J. Phys. A, 31, 9171–9184.CrossRefGoogle Scholar
Kerkyacharian, G., Petrushev, P., Picard, D. and Xu, Y. (2009). Decomposition of Triebel–Lizorkin and Besov spaces in the context of Laguerre expansions, J. Funct. Anal. 256, 1137–1188.Google Scholar
Kim, Y. J., Kwon, K. H. and Lee, J. K. (1998). Partial differential equations having orthogonal polynomial solutions, J. Comput. Appl. Math. 99, 239–253.Google Scholar
Knop, F. and Sahi, S (1997). A recursion and a combinatorial formula for Jack polynomials. Invent. Math. 128, 9–22.Google Scholar
Koelink, E. (1996). Eight lectures on quantum groups and q-special functions, Rev. Colombiana Mat. 30, 93–180.Google Scholar
Kogbetliantz, E. (1924). Recherches sur la sommabilité des séries ultrasphériques par la méthode des moyennes arithmétiques, J. Math. Pures Appl. 3, no. 9, 107–187.Google Scholar
Koornwinder, T. H. (1974a). Orthogonal polynomials in two variables which are eigen-functions of two algebraically independent partial differential operators, I, II, Proc. Kon. Akad. v. Wet., Amsterdam 36, 48–66.Google Scholar
Koornwinder, T. H. (1974b). Orthogonal polynomials in two variables which are eigen-functions of two algebraically independent partial differential operators, III, IV, Proc. Kon. Akad. v. Wet., Amsterdam 36, 357–381.Google Scholar
Koornwinder, T. H. (1975). Two-variable analogues of the classical orthogonal polynomials, in Theory and Applications of Special Functions, ed. R. A., Askey pp. 435–495, Academic Press, New York.
Koornwinder, T. H. (1977). Yet another proof of the addition formula for Jacobi polynomials, J. Math. Anal. Appl. 61, 136–141.CrossRefGoogle Scholar
Koornwinder, T. H. (1992). Askey-Wilson polynomials for root systems of type BC, in Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications, pp. 189–204, Contemporary Mathematics 138, American Mathematical Society, Providence, RI.
Koornwinder, T. H. and Schwartz, A. L. (1997). Product formulas and associated hypergroups for orthogonal polynomials on the simplex and on a parabolic biangle, Constr. Approx. 13, 537–567.CrossRefGoogle Scholar
Koornwinder, T. H. and Sprinkhuizen-Kuyper, I. (1978). Generalized power series expansions for a class of orthogonal polynomials in two variables, SIAM J. Math. Anal. 9, 457–483.Google Scholar
Kowalski, M. A. (1982a). The recursion formulas for orthogonal polynomials in n variables, SIAM J. Math. Anal. 13, 309–315.Google Scholar
Kowalski, M. A. (1982b). Orthogonality and recursion formulas for polynomials in n variables, SIAM J. Math. Anal. 13, 316–323.Google Scholar
Krall, H. L. and Sheffer, I. M. (1967). Orthogonal polynomials in two variables, Ann. Mat. Pura Appl. 76, no. 4, 325–376.CrossRefGoogle Scholar
Kroó, A. and Lubinsky, D. (2013a). Christoffel functions and universality on the boundary of the ball, Acta Math. Hungarica 140, 117–133.Google Scholar
Kroó, A. and Lubinsky, D. (2013b). Christoffel functions and universality in the bulk for multivariate orthogonal polynomials, Can. J. Math. 65, 600–620.Google Scholar
Kwon, K. H., Lee, J. K. and Littlejohn, L. L. (2001). Orthogonal polynomial eigenfunctions of second-order partial differential equations, Trans. Amer. Math. Soc. 353, 3629–3647.CrossRefGoogle Scholar
Lapointe, L. and Vinet, L. (1996). Exact operator solution of the Calogero-Sutherland model, Comm. Math. Phys. 178, 425–452.CrossRefGoogle Scholar
Laporte, O. (1948). Polyhedral harmonics, Z. Naturforschung 3a, 447–456.Google Scholar
Larcher, H. (1959). Notes on orthogonal polynomials in two variables. Proc. Amer. Math. Soc. 10, 417–423.CrossRefGoogle Scholar
Lassalle, M. (1991a). Polynômes de Hermite généralisé (in French)C. R. Acad. Sci. Paris Sér. I Math. 313, 579–582.Google Scholar
Lassalle, M. (1991b). Polynômes de Jacobi généralisé (in French)C. R. Acad. Sci. Paris Sér. I Math. 312, 425–428.Google Scholar
Lassalle, M. (1991c). Polynômes de Laguerre généralisé (in French)C. R. Acad. Sci. Paris Sér. I Math. 312, 725–728.Google Scholar
Lasserre, J. (2012). The existence of Gaussian cubature formulas, J. Approx. Theory, 164, 572–585.CrossRefGoogle Scholar
Lebedev, N. N. (1972). Special Functions and Their Applications, revised edn, Dover, New York.
Lee J. K.Littlejohn, L. L. (2006). Sobolev orthogonal polynomials in two variables and second order partial differential equations, J. Math. Anal. Appl. 322, 1001–1017.CrossRefGoogle Scholar
Li, H., Sun, J. and Xu, Y. (2008). Discrete Fourier analysis, cubature and interpolation on a hexagon and a triangle, SIAM J. Numer. Anal. 46, 1653–1681.CrossRefGoogle Scholar
Li, H. and Xu, Y. (2010). Discrete Fourier analysis on fundamental domain and simplex of Ad lattice in d-variables, J. Fourier Anal. Appl. 16, 383–433.CrossRefGoogle Scholar
Li, Zh.-K. and Xu, Y. (2000). Summability of product Jacobi expansions, J. Approx. Theory 104, 287–301.Google Scholar
Li, Zh.-K. and Xu, Y. (2003). Summability of orthogonal expansions, J. Approx. Theory, 122, 267–333.Google Scholar
Lidl, R. (1975). Tschebyscheff polynome in mehreren variabelen, J. Reine Angew. Math. 273, 178–198.Google Scholar
Littlejohn, L. L. (1988). Orthogonal polynomial solutions to ordinary and partial differential equations, in Orthogonal Polynomials and Their Applications (Segovia, 1986), Lecture Notes in Mathematics 1329, 98–124, Springer, Berlin.
Logan, B. and Shepp, I. (1975). Optimal reconstruction of a function from its projections, Duke Math. J. 42, 649–659.Google Scholar
Lorentz, G. G. (1986). Approximation of Functions, 2nd edn, Chelsea, New York.
Lyskova, A. S. (1991). Orthogonal polynomials in several variables, Dokl. Akad. Nauk SSSR 316, 1301–1306; translation in Soviet Math. Dokl. 43 (1991), 264–268.Google Scholar
Macdonald, I. G. (1982). Some conjectures for root systems, SIAM, J. Math. Anal. 13, 988–1007.Google Scholar
Macdonald, I. G. (1995). Symmetric Functions and Hall Polynomials, 2nd edn, Oxford University Press, New York.
Macdonald, I. G. (1998). Symmetric Functions and Orthogonal Polynomials, University Lecture Series 12, American Mathematical Society, Providence, RI.
Maiorov, V. E. (1999). On best approximation by ridge functions, J. Approx. Theory 99, 68–94.CrossRefGoogle Scholar
Markett, C. (1982). Mean Cesàro summability of Laguerre expansions and norm estimates with shift parameter, Anal. Math. 8, 19–37.Google Scholar
Marr, R. (1974). On the reconstruction of a function on a circular domain from a sampling of its line integrals, J. Math. Anal. Appl., 45, 357–374.CrossRefGoogle Scholar
Máté, A., Nevai, P. and Totik, V. (1991). Szegő's extremum problem on the unit circle, Ann. Math. 134, 433–453.Google Scholar
Mehta, M. L. (1991). Random Matrices, 2nd edn, Academic Press, Boston, MA.
Möller, H. M. (1973). Polynomideale und Kubaturformeln, Thesis, University of Dort-mund.
Möller, H. M. (1976). Kubaturformeln mit minimaler Knotenzahl, Numer. Math. 25, 185–200.Google Scholar
Moody, R. and Patera, J. (2011). Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups, Adv. Appl. Math. 47, 509–535.Google Scholar
Morrow, C. R. and Patterson, T. N. L. (1978). Construction of algebraic cubature rules using polynomial ideal theory, SIAM J. Numer. Anal. 15, 953–976.CrossRefGoogle Scholar
Müller, C. (1997). Analysis of Spherical Symmetries in Euclidean Spaces, Springer, New York.
Mysovskikh, I. P. (1970). A multidimensional analog of quadrature formula of Gaussian type and the generalized problem of Radon (in Russian), Vopr. Vychisl. i Prikl. Mat., Tashkent 38, 55–69.Google Scholar
Mysovskikh, I. P. (1976). Numerical characteristics of orthogonal polynomials in two variables, Vestnik Leningrad Univ. Math. 3, 323–332.Google Scholar
Mysovskikh, I. P. (1981). Interpolatory Cubature Formulas, Nauka, Moscow.
Narcowich, F. J., Petrushev, P, and Ward, J. D. (2006) Localized tight frames on spheres, SIAM J. Math. Anal. 38, 574–594.Google Scholar
Nelson, E. (1959). Analytic vectors, Ann. Math. 70, no. 2, 572–615.Google Scholar
Nevai, P. (1979). Orthogonal polynomials, Mem. Amer. Math. Soc. 18, no. 213.Google Scholar
Nevai, P. (1986). Géza Freud, orthogonal polynomials and Christoffel functions. A case study, J. Approx. Theory 48, 3–167.CrossRefGoogle Scholar
Nesterenko, M., Patera, J., Szajewska, M. and Tereszkiewicz, A. (2010). Orthogonal polynomials of compact simple Lie groups: branching rules for polynomials, J. Phys. A 43, no. 49, 495 207, 27 pp.Google Scholar
Nishino, A., Ujino, H. and Wadati, M. (1999). Rodrigues formula for the nonsymmetric multivariable Laguerre polynomial, J. Phys. Soc. Japan 68, 797–802.CrossRefGoogle Scholar
Noumi, M. (1996). Macdonald's symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces, Adv. Math. 123, 16–77.Google Scholar
Nussbaum, A. E. (1966). Quasi-analytic vectors, Ark. Mat. 6, 179–191.Google Scholar
Okounkov, A. and Olshanski, G. (1998). Asymptotics of Jack polynomials as the number of variables goes to infinity, Int. Math. Res. Not. 13, 641–682.CrossRefGoogle Scholar
Opdam, E. M. (1988). Root systems and hypergeometric functions, III, IV, Compositio Math. 67, 21–49, 191–209.Google Scholar
Opdam, E. M. (1991). Some applications of hypergeometric shift operators, Invent. Math. 98, 1–18.Google Scholar
Opdam, E. M. (1995). Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175, 75–121.Google Scholar
Pérez, T.E., Piñar, M. A. and Xu, Y. (2013). Weighted Sobolev orthogonal polynomials on the unit ball, J. Approx. Theory, 171, 84–104.CrossRefGoogle Scholar
Petrushev, P. (1999). Approximation by ridge functions and neural networks, SIAM J. Math. Anal. 30, 155–189.Google Scholar
Petrushev, P. and Xu, Y. (2008a). Localized polynomial frames on the ball, Constr. Approx. 27, 121–148.Google Scholar
Petrushev, P. and Xu, Y. (2008b). Decomposition of spaces of distributions induced by Hermite expansions, J. Fourier Anal. Appl. 14, 372–414.Google Scholar
Piñar, M. and Xu, Y. (2009). Orthogonal polynomials and partial differential equations on the unit ball, Proc. Amer. Math. Soc. 137, 2979–2987.CrossRefGoogle Scholar
Podkorytov, A. M. (1981). Summation of multiple Fourier series over polyhedra, Vestnik Leningrad Univ. Math. 13, 69–77.Google Scholar
Proriol, J. (1957). Sur une famille de polynomes à deux variables orthogonaux dans un triangle, C. R. Acad. Sci. Paris 245, 2459–2461.Google Scholar
Putinar, M. (1997). A dilation theory approach to cubature formulas, Expos. Math. 15, 183–192.Google Scholar
Putinar, M. (2000). A dilation theory approach to cubature formulas II, Math. Nach. 211, 159–175.3.0.CO;2-R>CrossRefGoogle Scholar
Putinar, M. and Vasilescu, F. (1999). Solving moment problems by dimensional extension, Ann. Math. 149, 1087–1107.Google Scholar
Radon, J. (1948). Zur mechanischen Kubatur, Monatsh. Math. 52, 286–300.Google Scholar
Reznick, B. (2000). Some concrete aspects of Hilbert's 17th problem, in Real Algebraic Geometry and Ordered Structures, pp. 251–272, Contemporary Mathematics 253, American Mathematical Society, Providence, RI.
Ricci, P. E. (1978). Chebyshev polynomials in several variables (in Italian), Rend. Mat. 11, no. 6, 295–327.Google Scholar
Riesz, F. and Sz., Nagy, B. (1955). Functional Analysis, Ungar, NewYork.
Rosengren, H. (1998). Multilinear Hankel forms of higher order and orthogonal polynomials, Math. Scand. 82, 53–88.CrossRefGoogle Scholar
Rosengren, H. (1999). Multivariable orthogonal polynomials and coupling coefficients for discrete series representations, SIAM J. Math. Anal. 30, 232–272.Google Scholar
Rosier, M. (1995). Biorthogonal decompositions of the Radon transform, Numer. Math. 72, 263–283.Google Scholar
Rösler, M. (1998). Generalized Hermite polynomials and the heat equation for Dunkl operators, Comm. Math. Phys. 192, 519–542.Google Scholar
Rösler, M. (1999). Positivity of Dunkl's intertwining operator, Duke Math. J., 98, 445–463.Google Scholar
Rösler, M. and Voit, M. (1998). Markov processes related with Dunkl operators. Adv. Appl. Math. 21, 575–643.CrossRefGoogle Scholar
Rozenblyum, A. V. and Rozenblyum, L. V. (1982). A class of orthogonal polynomials of several variables, Differential Eq. 18, 1288–1293.Google Scholar
Rozenblyum, A. V. and Rozenblyum, L. V. (1986). Orthogonal polynomials of several variables, which are connected with representations of groups of Euclidean motions, Differential Eq. 22, 1366–1375.Google Scholar
Rudin, W. (1991). Functional Analysis, 2nd edn., International Series in Pure and Applied Mathematics, McGraw-Hill, New York.
Sahi, S. (1996). A new scalar product for nonsymmetric Jack polynomials, Int. Math. Res. Not. 20, 997–1004.Google Scholar
Schmid, H. J. (1978). On cubature formulae with a minimum number of knots, Numer. Math. 31, 281–297.Google Scholar
Schmid, H. J. (1995). Two-dimensional minimal cubature formulas and matrix equations, SIAM J. Matrix Anal. Appl. 16, 898–921.Google Scholar
Schmid, H. J. and Xu, Y. (1994). On bivariate Gaussian cubature formula, Proc. Amer. Math. Soc. 122, 833–842.CrossRefGoogle Scholar
Schmüdgen, K. (1990). Unbounded Operator Algebras and Representation Theory, Birkhäuser, Boston, MA.
Selberg, A. (1944). Remarks on a multiple integral (in Norwegian), Norsk Mat. Tidsskr.26, 71–78.Google Scholar
Shephard, G. C. and Todd, J. A. (1954). Finite unitary reflection groups, Canad. J. Math. 6, 274–304.Google Scholar
Shishkin, A. D. (1997). Some properties of special classes of orthogonal polynomials in two variables, Integr. Transform. Spec. Funct. 5, 261–272.CrossRefGoogle Scholar
Shohat, J. and Tamarkin, J. (1943). The Problem of Moments, Mathematics Surveys 1, American Mathematical Society, Providence, RI.
Sprinkhuizen-Kuyper, I. (1976). Orthogonal polynomials in two variables. A further analysis of the polynomials orthogonal over a region bounded by two lines and a parabola, SIAM J. Math. Anal. 7, 501–518.CrossRefGoogle Scholar
Stanley, R. P. (1989). Some combinatorial properties of Jack symmetric functions, Adv. Math. 77, 76–115.Google Scholar
Stein, E. M. (1970). Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ.
Stein, E. M. and Weiss, G. (1971). Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, NJ.
Stokman, J. V. (1997). Multivariable big and little q-Jacobi polynomials, SIAM J. Math. Anal. 28, 452–480.Google Scholar
Stokman, J. V. and Koornwinder, T. H. (1997). Limit transitions for BC type multivariable orthogonal polynomials, Canad. J. Math. 49, 373–404.Google Scholar
Stroud, A. (1971). Approximate Calculation of Multiple Integrals, Prentice-Hall, Englewood Cliffs, NJ.
Suetin, P. K. (1999). Orthogonal Polynomials in Two Variables, translated from the 1988 Russian original by E. V. Pankratiev, Gordon and Breach, Amsterdam.
Sutherland, B. (1971). Exact results for a quantum many-body problem in one dimension, Phys. Rev. A 4, 2019–2021.Google Scholar
Sutherland, B. (1972). Exact results for a quantum many-body problem in one dimension, II, Phys. Rev. A 5, 1372–1376.CrossRefGoogle Scholar
Szegő, G. (1975). Orthogonal Polynomials, 4th edn, American Mathematical Society Colloquium Publication 23, American Mathematical Society, Providence, RI.Google Scholar
Thangavelu, S. (1992). Transplantaion, summability and multipliers for multiple Laguerre expansions, Tôhoku Math. J. 44, 279–298.Google Scholar
Thangavelu, S. (1993). Lectures on Hermite and Laguerre Expansions, Princeton University Press, Princeton, NJ.
Thangavelu, S. and Xu, Y. (2005). Convolution operator and maximal function for the Dunkl transform, J. Anal. Math. 97, 25–55.CrossRefGoogle Scholar
Tratnik, M.V. (1991a). Some multivariable orthogonal polynomials of the Askey tableau – continuous families, J. Math. Phys. 32, 2065–2073.Google Scholar
Tratnik, M.V. (1991b). Some multivariable orthogonal polynomials of the Askey tableau – discrete families, J. Math. Phys. 32, 2337–2342.Google Scholar
Uglov, D. (2000). Yangian Gelfand–Zetlin bases, glN-Jack polynomials, and computation of dynamical correlation functions in the spin Calogero–Sutherland model, in Calogero–Sutherland–Moser Models, pp. 485–495, CRM Series in Mathematical Physics, Springer, New York.
Ujino, H. and Wadati, M. (1995). Orthogonal symmetric polynomials associated with the quantum Calogero model, J. Phys. Soc. Japan 64, 2703–2706.CrossRefGoogle Scholar
Ujino, H. and Wadati, M. (1997). Orthogonality of the Hi-Jack polynomials associated with the Calogero model, J. Phys. Soc. Japan 66, 345–350.CrossRefGoogle Scholar
Ujino, H. and Wadati, M. (1999). Rodrigues formula for the nonsymmetric multivariable Hermite polynomial, J. Phys. Soc. Japan 68, 391–395.CrossRefGoogle Scholar
Verlinden, P. and Cools, R. (1992). On cubature formulae of degree 4k + 1 attaining Möller's lower bound for integrals with circular symmetry, Numer. Math. 61, 395–407.Google Scholar
Vilenkin, N. J. (1968). Special Functions and the Theory of Group Representations, American Mathematical Society Translation of Mathematics Monographs 22, American Mathematical Society, Providence, RI.
Vilenkin, N. J. and Klimyk, A. U. (1991a). Representation of Lie Groups and Special Functions. Vol. 1. Simplest Lie Groups, Special Functions and Integral Transforms, Mathematics and its Applications (Soviet Series) 72, Kluwer, Dordrecht.
Vilenkin, N. J. and Klimyk, A. U. (1991b). Representation of Lie Groups and Special Functions. Vol. 2. Class I Representations, Special Functions, and Integral Transforms, Mathematics and its Applications (Soviet Series) 72, Kluwer, Dordrecht, Netherlands.
Vilenkin, N. J. and Klimyk, A. U. (1991c). Representation of Lie Groups and Special Functions. Vol. 3. Classical and Quantum Groups and Special Functions, Mathematics and its Applications (Soviet Series) 72, Kluwer, Dordrecht, Netherlands.
Vilenkin, N. J. and Klimyk, A. U. (1995). Representation of Lie Groups and Special Functions. Recent Advances, Mathematics and its Applications 316, Kluwer, Dordrecht, Netherlands.CrossRef
Volkmer, H. (1999). Expansions in products of Heine–Stieltjes polynomials, Constr. Approx. 15, 467–480.CrossRefGoogle Scholar
Vretare, L. (1984). Formulas for elementary spherical functions and generalized Jacobi polynomials, SIAM. J. Math. Anal. 15, 805–833.Google Scholar
Wade, J. (2010). A discretized Fourier orthogonal expansion in orthogonal polynomials on a cylinder, J. Approx. Theory 162, 1545–1576.Google Scholar
Wade, J. (2011). Cesàro summability of Fourier orthogonal expansions on the cylinder, J. Math. Anal. Appl. 402 (2013), 446–452.Google Scholar
Waldron, S. (2006). On the Bernstein–Bézier form of Jacobi polynomials on a simplex, J. Approx. Theory 140, 86–99.CrossRefGoogle Scholar
Waldron, S. (2008). Orthogonal polynomials on the disc, J. Approx. Theory 150, 117–131.CrossRefGoogle Scholar
Waldron, S. (2009). Continuous and discrete tight frames of orthogonal polynomials for a radially symmetric weight. Constr. Approx. 30, 3352.Google Scholar
Wünsche, A. (2005). Generalized Zernike or disc polynomials, J. Comp. Appl. Math. 174, 135–163.CrossRefGoogle Scholar
Xu, Y. (1992). Gaussian cubature and bivariable polynomial interpolation, Math. Comput. 59, 547–555.Google Scholar
Xu, Y. (1993a). On multivariate orthogonal polynomials, SIAM J. Math. Anal. 24, 783–794.Google Scholar
Xu, Y. (1993b). Unbounded commuting operators and multivariate orthogonal polynomials, Proc. Amer. Math. Soc. 119, 1223–1231.Google Scholar
Xu, Y. (1994a). Multivariate orthogonal polynomials and operator theory, Trans. Amer. Math. Soc. 343, 193–202.Google Scholar
Xu, Y. (1994b). Block Jacobi matrices and zeros of multivariate orthogonal polynomials, Trans. Amer. Math. Soc. 342, 855–866.Google Scholar
Xu, Y. (1994c). Recurrence formulas for multivariate orthogonal polynomials, Math. Comput. 62, 687–702.Google Scholar
Xu, Y. (1994d). On zeros of multivariate quasi-orthogonal polynomials and Gaussian cubature formulae, SIAM J. Math. Anal. 25, 991–1001.Google Scholar
Xu, Y. (1994e). Solutions of three-term relations in several variables, Proc. Amer. Math. Soc. 122, 151–155.Google Scholar
Xu, Y. (1994f). Common Zeros of Polynomials in Several Variables and Higher Dimensional Quadrature, Pitman Research Notes in Mathematics Series 312, Longman, Harlow.
Xu, Y. (1995). Christoffel functions and Fourier series for multivariate orthogonal polynomials, J. Approx. Theory 82, 205–239.Google Scholar
Xu, Y. (1996a). Asymptotics for orthogonal polynomials and Christoffel functions on a ball, Meth. Anal. Appl. 3, 257–272.Google Scholar
Xu, Y. (1996b). Lagrange interpolation on Chebyshev points of two variables, J. Approx. Theory 87, 220–238.Google Scholar
Xu, Y. (1997a). On orthogonal polynomials in several variables, in Special Functions, q-Series and Related Topics, pp. 247–270, The Fields Institute for Research in Mathematical Sciences, Communications Series 14, American Mathematical Society, Providence, RI.
Xu, Y. (1997b). Orthogonal polynomials for a family of product weight functions on the spheres, Canad. J. Math. 49, 175–192.Google Scholar
Xu, Y. (1997c). Integration of the intertwining operator for h-harmonic polynomials associated to reflection groups, Proc. Amer. Math. Soc. 125, 2963–2973.Google Scholar
Xu, Y. (1998a). Intertwining operator and h-harmonics associated with reflection groups, Canad. J. Math. 50, 193–209.Google Scholar
Xu, Y. (1998b). Orthogonal polynomials and cubature formulae on spheres and on balls, SIAM J. Math. Anal. 29, 779–793.Google Scholar
Xu, Y. (1998c). Orthogonal polynomials and cubature formulae on spheres and on simplices, Meth. Anal. Appl. 5, 169–184.Google Scholar
Xu, Y. (1998d). Summability of Fourier orthogonal series for Jacobi weight functions on the simplex in ℝd, Proc. Amer. Math. Soc. 126, 3027–3036.Google Scholar
Xu, Y. (1999a). Summability of Fourier orthogonal series for Jacobi weight on a ball in ℝd, Trans. Amer. Math. Soc. 351, 2439–2458.Google Scholar
Xu, Y. (1999b). Aymptotics of the Christoffel functions on a simplex in ℝd, J. Approx. Theory 99, 122–133.Google Scholar
Xu, Y. (1999c). Cubature formulae and polynomial ideals, Adv. Appl. Math. 23, 211–233.Google Scholar
Xu, Y. (2000a). Harmonic polynomials associated with reflection groups, Canad. Math. Bull. 43, 496–507.Google Scholar
Xu, Y. (2000b). Funk-Hecke formula for orthogonal polynomials on spheres and on balls, Bull. London Math. Soc. 32, 447–457.Google Scholar
Xu, Y. (2000c). Constructing cubature formulae by the method of reproducing kernel, Numer. Math. 85, 155–173.Google Scholar
Xu, Y. (2000d). A note on summability of Laguerre expansions, Proc. Amer. Math. Soc. 128, 3571–3578.Google Scholar
Xu, Y. (2000e). A product formula for Jacobi polynomials, in Special Functions (Hong Kong, 1999), pp. 423–430, World Science, River Edge, NJ.
Xu, Y. (2001a). Orthogonal polynomials and summability in Fourier orthogonal series on spheres and on balls, Math. Proc. Cambridge Phil. Soc. 31 (2001), 139–155.Google Scholar
Xu, Y. (2001b). Orthogonal polynomials on the ball and the simplex for weight functions with reflection symmetries, Constr. Approx. 17, 383–412.Google Scholar
Xu, Y. (2004). On discrete orthogonal polynomials of several variables, Adv. Appl. Math. 33, 615–632.Google Scholar
Xu, Y. (2005a). Weighted approximation of functions on the unit sphere, Constr. Approx. 21, 1–28.Google Scholar
Xu, Y. (2005b). Second order difference equations and discrete orthogonal polynomials of two variables, Int. Math. Res. Not. 8, 449–475.Google Scholar
Xu, Y. (2005c). Monomial orthogonal polynomials of several variables, J. Approx. Theory, 133, 1–37.Google Scholar
Xu, Y. (2005d). Rodrigues type formula for orthogonal polynomials on the unit ball, Proc. Amer. Math. Soc. 133, 1965–1976.Google Scholar
Xu, Y. (2006a). A direct approach to the reconstruction of images from Radon projections, Adv. Applied Math. 36, 388–420.Google Scholar
Xu, Y. (2006b). A family of Sobolev orthogonal polynomials on the unit ball, J. Approx. Theory 138, 232–241.Google Scholar
Xu, Y. (2006c). Analysis on the unit ball and on the simplex, Electron. Trans. Numer. Anal., 25, 284–301.Google Scholar
Xu, Y. (2007). Reconstruction from Radon projections and orthogonal expansion on a ball, J. Phys. A: Math. Theor. 40, 7239–7253.CrossRefGoogle Scholar
Xu, Y. (2008). Sobolev orthogonal polynomials defined via gradient on the unit ball, J. Approx. Theory 152, 52–65.Google Scholar
Xu, Y. (2010). Fourier series and approximation on hexagonal and triangular domains, Const. Approx. 31, 115–138.Google Scholar
Xu, Y. (2012). Orthogonal polynomials and expansions for a family of weight functions in two variables. Constr. Approx. 36, 161–190.CrossRefGoogle Scholar
Xu, Y. (2013). Complex vs. real orthogonal polynomials of two variables. Integral Transforms Spec. Funct., to appear. arXiv:1307.819.
Yamamoto, T. (1995). Multicomponent Calogero model of BN-type confined in a harmonic potential, Phys. Lett. A 208, 293–302.CrossRefGoogle Scholar
Yan, Z. M. (1992). Generalized hypergeometric functions and Laguerre polynomials in two variables, in Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications, pp. 239–259, Contemporary Mathematics 138, American Mathematical Society, Providence, RI.
Zernike, F. and Brinkman, H. C. (1935). Hypersphärishe Funktionen und die in sphärischen Bereichen orthogonalen Polynome, Proc. Kon. Akad. v. Wet., Amsterdam 38, 161–170.Google Scholar
Zygmund, A. (1959). Trigonometric Series, Cambridge University Press, Cambridge.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon
  • Book: Orthogonal Polynomials of Several Variables
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107786134.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon
  • Book: Orthogonal Polynomials of Several Variables
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107786134.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon
  • Book: Orthogonal Polynomials of Several Variables
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107786134.014
Available formats
×