Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-22T08:12:10.703Z Has data issue: false hasContentIssue false

9 - Growth and life history in Homo erectus

Published online by Cambridge University Press:  12 August 2009

S. C. Antón
Affiliation:
Rutgers University
S. R. Leigh
Affiliation:
University of Illinois
J. L. Thompson
Affiliation:
University of Nevada, Las Vegas
G. E. Krovitz
Affiliation:
Pennsylvania State University
A. J. Nelson
Affiliation:
University of Western Ontario
Get access

Summary

Introduction

Evolution modifies the developmental pattern and thus understanding the evolution of development is critical to identifying how and when the presumed descendant morphological patterns, such as our own, originated. Likewise, understanding how and when these patterns changed ultimately assists in answering why they changed; that is, what evolutionary problems and solutions they reflect. Here we address two aspects of ontogeny in Homo erectus in order to define developmental shifts that have characterized later human evolution. First, we undertake a preliminary heterochronic comparative analysis of cranial ontogeny in H. erectus and H. sapiens. This investigation focuses on alterations in the relations between size, shape, and age at maturation between ancestral and descendant species. Heterochronic transformations can thus be taken to refer, rather narrowly, to shifts in allometric or relative growth trajectories between an ancestor and a descendant species. Using this approach requires both juvenile and adult fossils, although it does not require knowledge of the specific developmental age of each juvenile fossil (Shea, 2000). Second we explore differences in how these taxa grew to reach adult size, with special emphasis on whether or not a growth spurt characterized H. erectus. This component of the research investigates the possibility that growth in H. erectus, like that in H. sapiens, was subdivided into relatively discrete time periods, including a period prior to an adolescent growth spurt and a period after the initiation of the growth spurt.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiello, L., & Wheeler, P. (1995). The expensive tissue hypothesis: The brain and digestive system in human and primate evolution. Current Anthropology, 36, 199–221CrossRefGoogle Scholar
Antón, S. C. (1997). Developmental age and taxonomic affinity of the Mojokerto child, Java, Indonesia. American Journal of Physical Anthropology, 102, 497–5143.0.CO;2-P>CrossRefGoogle Scholar
Antón, S. C. (1999). Cranial growth in Homo erectus: How credible are the Ngandong juveniles? American Journal of Physical Anthropology, 108, 223–2363.0.CO;2-8>CrossRefGoogle ScholarPubMed
Antón, S. C. (2002). Cranial growth in Homo erectus. In Human Evolution through Developmental Change, eds. N. Minugh-Purvis & K. McNamara, pp. 349–380. Baltimore: Johns Hopkins University Press
Antón, S. C., & Franzen, J. L. (1997). The occipital torus and developmental age of Sangiran-3. Journal of Human Evolution, 33, 599–610CrossRefGoogle ScholarPubMed
Antón, S. C., & Leigh, S. R. (1998). Paedomorphosis and neoteny in human evolution. Journal of Human Evolution, 34, A2Google Scholar
Boas, F. (1892). The growth of children. Science, 19, 281–282CrossRefGoogle ScholarPubMed
Bogin, B. (1994a). Patterns of Human Growth. Cambridge: Cambridge University Press
Bogin, B. (1994b). Adolescence in evolutionary perspective. Acta Paediatrica Suppl., 406, 29–35
Bogin, B. (1999). Patterns of Human Growth, 2nd edn. Cambridge: Cambridge University Press
Bogin, B., & Smith, B. H. (1996). Evolution of the human life cycle. American Journal of Human Biology, 8, 703–7163.0.CO;2-U>CrossRefGoogle ScholarPubMed
Buikstra, J. E., & Ubelaker, D. H. (1994). Standards for Data Collection from Human Skeletal Remains, Arkansas Archeological Survey Research Series no. 44. Fayetteville: Arkansas Archeological Survey
Buschang, P. H., Baume, R. M., & Nass, G. G. (1983). Craniofacial growth maturity gradient for males and females between 4 and 16 years of age. American Journal of Physical Anthropology, 61, 373–381CrossRefGoogle ScholarPubMed
Clegg, M., & Aiello, L. C. (1999). A comparison of the Nariokotome Homo erectus with juveniles from a modern human population. American Journal of Physical Anthropology, 110, 81–943.0.CO;2-T>CrossRefGoogle ScholarPubMed
Coelho, A. M. (1985). Baboon dimorphism: Growth in weight, length, and adiposity from birth to 8 years of age. In Nonhuman Primate Models for Human Growth and Development, ed. E. S. Watts, pp. 125–159. New York: Alan R. Liss
Dean, C., Leakey, M. G., Reid, D., Schrenk, F., Schwartz, G. T., Stringer, C., & Walker, A. (2001). Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature, 414, 628–631CrossRefGoogle ScholarPubMed
de Beer, G. (1971). Embryos and Ancestors. Oxford: Clarendon Press
Godfrey, L. R., King, S. J., & Sutherland, M. R. (1998). Heterochronic approaches to the study of locomotion. In Primate Locomotion: Recent Advances, eds. E. Strasser, J. Fleagle, A. Rosenberger, & H. McHenry, pp. 177–207. New York: Plenum PressCrossRef
Goldstein, M. S. (1936). Changes in dimensions and form of the face and head with age. American Journal of Physical Anthropology, 22, 37–89CrossRefGoogle Scholar
Gould, S. J. (1977). Ontogeny and Phylogeny. Cambridge: Harvard University Press
Hamill, P. V. V., Johnston, F. E., & Lemeshow, S. (1973). Body Weight, Stature and Sitting Height: White and Negro Youths 12–17 Years, Vital and Health Statistics, Series 11, Data from the National Health Survey no. 126. Rockville: National Center for Health Statistics
Hill, K. R., & Hurtado, A. M. (1996). Ache Life History. New York: Aldine de Gruyter
Howell, N. (1979). Demography of the Dobe!Kung. New York: Academic Press
Howells, W. W. (1973). Cranial Variation in Man. Cambridge: Peabody Museum of Archeology and Ethnology
Jungers, W. L., Falsetti, A. B., & Wall, C. E. (1995). Shape, relative size, and size-adjustments in morphometrics. Yearbook of Physical Anthropology, 38, 137–162CrossRefGoogle Scholar
Kuykendall, K. L., & Conroy, G. C. (1996). Permanent tooth calcification in chimpanzees (Pan troglodytes): Patterns and polymorphisms. American Journal of Physical Anthropology, 99, 159–1743.0.CO;2-W>CrossRefGoogle ScholarPubMed
Leigh, S. R. (1996). Evolution of human growth spurts. American Journal of Physical Anthropology, 101, 455–4743.0.CO;2-V>CrossRefGoogle ScholarPubMed
Leigh, S. R. (2001). Evolution of human growth. Evolutionary Anthropology, 10, 223–236CrossRefGoogle Scholar
Leigh, S. R. (2002). Book review: Human Evolution through Developmental Change. Journal of Human Evolution, 43, 768–770CrossRefGoogle Scholar
Leigh, S. R., & Shea, B. T. (1996). Ontogeny of body size variation in African apes. American Journal of Physical Anthropology, 99, 43–663.0.CO;2-0>CrossRefGoogle ScholarPubMed
Leigh, S. R., Shah, N., & Buchanan, L. S. (2003). Ontogeny and phylogeny in papionin primates. Journal of Human Evolution (in press)
Leonard, W. R., & Robertson, M. L. (1994). Evolutionary perspectives on human nutrition: The influence of brain and body size on diet and metabolism. American Journal of Human Biology, 6, 77–88CrossRefGoogle ScholarPubMed
Leonard, W. R., & Robertson, M. L. (1997). Comparative primate energetics and hominid evolution. American Journal of Physical Anthropology, 102, 265–2813.0.CO;2-X>CrossRefGoogle ScholarPubMed
Marshall, W. A., & Tanner, J. M. (1986). Puberty. In Human Growth: A Comprehensive Treatise, vol. 2, eds. F. Falkner & J. M. Tanner, pp. 171–209. New York: Plenum PressCrossRef
Martin, R. D. (1990). Primate Origins and Evolution. Princeton: Princeton University Press
McKinney, M. L. (2002). Brain evolution by stretching the global mitotic clock of development. In Human Evolution through Developmental Change, eds. N. Minugh-Purvis & K. J. McNamara, pp. 173–188. Baltimore: Johns Hopkins University Press
McKinney, M. L., & McNamara, K. J. (1991). Heterochrony: The Evolution of Ontogeny. New York: Plenum Press
Minugh-Purvis, N., & McNamara, K. J. (eds.) (2002). Human Evolution through Developmental Change. Baltimore: Johns Hopkins University Press
Nehm, R. H. (2001). The developmental basis of morphological disarmament in Prunum (Neogastropoda: Marginellidae). In Beyond Heterochrony: The Evolution of Development, ed. M. Zelditch, pp. 1–26. New York: John Wiley & Sons
Pennington, R. (2001). Hunter–gatherer demography. In Hunter–Gatherers: An Interdisciplinary Perspective, eds. C. Panter-Brick, R. H. Layton, & P. Rowley-Conwy, pp. 170–204. Cambridge: Cambridge University Press
Potts, R. (1996). Humanity's Descent: The Consequences of Ecological Instability. New York: William Morrow
Rauschecker, J. P. (1995). Developmental plasticity and memory. Behavior and Brain Research, 66, 7–12CrossRefGoogle ScholarPubMed
Rice, S. H. (2002). The role of heterochrony in primate brain evolution. In Human Evolution through Developmental Change, eds. N. Minugh-Purvis & K. J. McNamara, pp. 154–172. Baltimore: Johns Hopkins University Press
Shea, B. T. (1983). Allometry and heterochrony in the African apes. American Journal of Physical Anthropology, 62, 275–290CrossRefGoogle ScholarPubMed
Shea, B. T. (1989). Heterochrony in human evolution: The case for neoteny reconsidered. Yearbook of Physical Anthropology, 32, 690–702CrossRefGoogle Scholar
Shea, B. T. (2000). Current issues in the investigation of evolution by heterochrony, with emphasis on the debate over human neoteny. In Biology, Brains and Behavior: The Evolution of Human Development, eds. S. Taylor Parker, J. Langer, & M. L. McKinney, pp. 181–214. Santa Fe: School of American Research Press
Shea, B. T. (2002). Are some heterochronic transformations likelier than others? In Human Evolution through Developmental Change, eds. N. Minugh-Purvis & K. McNamara, pp. 79–101. Baltimore: Johns Hopkins University Press
Smith, B. H. (1993). The physiological age of KNM-WT 15000. In The Nariokotome Homo erectus Skeleton, eds. A. Walker & R. Leakey, pp. 195–220. Cambridge: Harvard University PressCrossRef
Smith, R. J., Gannon, P. J., & Smith, B. H. (1995). Ontogeny of australopithecines and early Homo: evidence from cranial capacity and dental eruption. Journal of Human Evolution, 29, 155–168CrossRefGoogle Scholar
Tardieu, C. (1998). Short adolescence in early hominids: Infantile and adolescent growth of the human femur. American Journal of Physical Anthropology, 107, 163–1783.0.CO;2-W>CrossRefGoogle ScholarPubMed
Ubelaker, D. H. (1984). Human Skeletal Remains: Excavation, Analysis, Interpretation, revised edn. Washington, DC: Taraxacum Press
Vining, E. P., Freeman, J. M., Pillas, D. J., Uematsu, S., Carson, B. S., Brandt, J., Boatman, D., Pulsifer, M. B., & Zuckerberg, A. (1997). Why would you remove half a brain? The outcome of 58 children after hemispherectomy: The Johns Hopkins experience 1968 to 1996. Pediatrics, 100, 163–171CrossRefGoogle Scholar
Watts, D. P., & Pusey, A. E. (1993). Behavior of juvenile and adolescent great apes. In Juvenile Primates, eds. M. E. Pereira & L. A. Fairbanks, pp. 148–167. New York: Oxford University Press
Weidenreich, F. (1941). The brain and its role in the phylogenetic transformation of the human skull. Transactions of the American Philosophical Society, 31, 321–442CrossRefGoogle Scholar
Weidenreich, F. (1943). The skull of Sinanthropus pekinensis: A comparative study on a primitive hominid skull. Paleontologia Sinica, New Series D, 10, 1–298Google Scholar
Zelditch, M. L. (ed.) (2001). Beyond Heterochrony: The Evolution of Development. New York: John Wiley & Sons

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×