Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-20T22:12:37.854Z Has data issue: false hasContentIssue false

8 - Reconstructing australopithecine growth and development: What do we think we know?

Published online by Cambridge University Press:  12 August 2009

K. L. Kuykendall
Affiliation:
University of the Witwatersrand
J. L. Thompson
Affiliation:
University of Nevada, Las Vegas
G. E. Krovitz
Affiliation:
Pennsylvania State University
A. J. Nelson
Affiliation:
University of Western Ontario
Get access

Summary

… distinctive patterns of dental development characterize A. africanus and A. robustus … This is not to imply that we necessarily know the cause of these pattern differences – only that they are apparently real and need some biological explanation.

(Conroy & Kuykendall, 1995: 128)

It is perhaps time we characterize early hominids more for what they are than what they are like, insofar as this is possible. We should be cognizant of the fact that early hominids were not apes as we know them today. They were unique creatures varying in morphology, behaviour and ecology, their ontogenetic strategies reflecting life history variation through evolutionary time.

(Bromage, 1987: 271)

Introduction

Paleoanthropologists have always taken note of the maturational status of fossil hominid specimens as an important comparative feature. In Dart's (1925) original description of the Taung child, he inferred an age at death of approximately 6 years based on comparisons with the emergence status of the M1 in modern human children. Over time, the notion that australopithecines followed a prolonged human-like schedule of growth and development took firm hold in the paleoanthropological literature (Kyauka, 1994; Mann, 1975). Prolonged “human-like” growth and development was considered to be essential to the evolution of notably “human” traits such as intelligence, language, tool production and use, social behavior, and culture itself (Dobzhansky, 1962; Isaac, 1972; Lancaster, 1975; Lovejoy, 1981; Mann, 1975). Retrospectively, the focus of many of these models was to document the evolutionary origin of modern human adaptive traits – i.e., on “human” rather than “hominid” evolution (Macho, 2001).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, R. R., & Krovitz, G. E. (2002). Common patterns of facial ontogeny in the hominid lineage. Anatomical Record, 269, 142–147CrossRefGoogle ScholarPubMed
Aeillo, L. C., Montgomery, C., & Dean, M. C. (1991). The natural history of tooth attrition in hominoids. Journal of Human Evolution, 21, 397–412CrossRefGoogle Scholar
Anemone, R. L. (1995). Dental development in chimpanzees of known chronological age: Implications for understanding the age at death of Plio-Pleistocene hom-inids. In Aspects of Dental Biology: Palaeontology, Anthropology and Evolution, ed. J. Moggi-Cecchi, pp. 201–215. Florence: International Institute for the Study of Man
Anemone, R. L. (2002). Dental development and life history in hominid evolution. In Human Evolution through Developmental Change, eds. N. Minugh-Purvis & K. J. McNamara, pp. 249–280. Baltimore: Johns Hopkins University Press
Anemone, R. L., Watts, E. S., & Swindler, D. S. (1991). Dental development of known-age chimpanzees, Pan troglodytes (Primates, Pongidae). American Journal of Physical Anthropology, 86, 229–241CrossRefGoogle Scholar
Anemone, R. L., Mooney, M. P., & Siegel, M. I. (1996). Longitudinal study of dental development in chimpanzees of known chronological age: Implications for understanding the age at death of Plio-Pleistocene hominids. American Journal of Physical Anthropology, 99, 119–1333.0.CO;2-W>CrossRefGoogle ScholarPubMed
Berge, C. (1998). Heterochronic processes in human evolution: An ontogenetic analysis of the hominid pelvis. American Journal of Physical Anthropology, 105, 441–4593.0.CO;2-R>CrossRefGoogle ScholarPubMed
Berge, C. (2002). Peramorphic processes in the evolution of the hominid pelvis and femur. In Human Evolution through Developmental Change, eds. N. Minugh-Purvis & K. J. McNamara, pp. 381–404. Baltimore: Johns Hopkins University Press
Beynon, A. D., & Dean, M. C. (1987). Crown-formation time of a fossil hominid premolar tooth. Archives of Oral Biology, 32, 773–780CrossRefGoogle ScholarPubMed
Beynon, A. D., & Dean, M. C. (1988). Distinct dental development patterns in early fossil hominids. Nature, 335, 509–514CrossRefGoogle ScholarPubMed
Beynon, A. D., & Wood, B. A. (1987). Patterns and rates of enamel growth in the molar teeth of early hominids. Nature, 326, 493–496CrossRefGoogle ScholarPubMed
Beynon, A. D., Dean, M. C., & Reid, D. J. (1991). Histological study on the chronology of the developing dentition in gorilla and orang-utan. American Journal of Physical Anthropology, 86, 189–203CrossRefGoogle Scholar
Beynon, A. D., Clayton, C. B., Ramirez Rozzi, F. V., & Reid, D. J. (1998). Radiographic and histological methodologies in estimating the chronology of crown development in modern humans and great apes: A review, with some applications for studies on juvenile hominids. Journal of Human Evolution, 35, 351–370CrossRefGoogle ScholarPubMed
Bogin, B. (1988). Patterns of Human Growth. Cambridge: Cambridge University Press
Bogin, B. (1997). Evolutionary hypotheses for human childhood. Yearbook of Physical Anthropology, 40, 63–893.0.CO;2-8>CrossRefGoogle Scholar
Bogin, B., & Smith, B. H. (1996). Evolution of the human life cycle. American Journal of Human Biology, 8, 703–7163.0.CO;2-U>CrossRefGoogle ScholarPubMed
Braga, J. (1998). Chimpanzee variation facilitates the interpretation of the incisive suture closure in South African Plio-Pleistocene hominids. American Journal of Physical Anthropology, 105, 121–1353.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Bromage, T. G. (1985). Taung facial remodeling: A growth and development study. In Hominid Evolution: Past, Present, and Future, ed. P. V. Tobias, pp. 239–245. New York: Academic Press
Bromage, T. G. (1987). The biological and chronological maturation of early hominids. Journal of Human Evolution, 16, 257–272CrossRefGoogle Scholar
Bromage, T. G. (1989). Ontogeny of the early hominid face. Journal of Human Evolution, 18, 751–773CrossRefGoogle Scholar
Bromage, T. G. (1992). The ontogeny of Pan troglodytes craniofacial architectural relationships and implications for early hominids. Journal of Human Evolution, 23, 235–251CrossRefGoogle Scholar
Bromage, T. G., & Dean, M. C. (1985). Re-evaluation of the age at death of immature fossil hominids. Nature, 317, 525–527CrossRefGoogle ScholarPubMed
Conroy, G. C. (1988). Alleged synapomorphy of the M1/I1 eruption pattern in robust australopithecines and Homo: Evidence from high-resolution computed tomography. American Journal of Physical Anthropology, 75, 487–492CrossRefGoogle ScholarPubMed
Conroy, G. C. (1990). Primate Evolution. New York: W. W. Norton
Conroy, G. C., & Kuykendall, K. L. (1995). Paleopediatrics: Or when did human infants really become human? American Journal of Physical Anthropology, 98, 121–131CrossRefGoogle ScholarPubMed
Conroy, G. C., & Mahoney, C. J. (1991). Mixed longitudinal study of dental emergence in the chimpanzee, Pan troglodytes (Primates, Pongidae). American Journal of Physical Anthropology, 86, 243–254CrossRefGoogle Scholar
Conroy, G. C., & Vannier, M. W. (1987). Dental development of the Taung skull from computerized tomography. Nature, 329, 625–627CrossRefGoogle ScholarPubMed
Conroy, G. C., & Vannier, M. W. (1988). The nature of Taung dental maturation continued. Nature, 333, 808CrossRefGoogle ScholarPubMed
Conroy, G. C., & Vannier, M. W. (1991a). Dental development in South African Australopithecines. I: Problems of pattern and chronology. American Journal of Physical Anthropology, 86, 121–136CrossRefGoogle Scholar
Conroy, G. C., & Vannier, M. W. (1991b). Dental development in South African Australopithecines. II: Dental Stage Assessment. American Journal of Physical Anthropology, 86, 121–156CrossRefGoogle Scholar
Dart, R. A. (1925). Australopithecus africanus: The man–ape of South Africa. Nature, 115, 195–199CrossRefGoogle Scholar
Dean, M. C. (1985). The eruption pattern of the permanent incisors and first permanent molars in Australopithecus (Paranthropus) robustus. American Journal of Physical Anthropology, 67, 251–257CrossRefGoogle ScholarPubMed
Dean, M. C. (1986). Homo and Paranthropus: Similarities in the cranial base and developing dentition. In Major Topics in Primate and Human Evolution, eds. B. Wood, L. Martin, & P. Andrews, pp. 249–265. Cambridge: Cambridge University Press
Dean, M. C. (1987a). The dental developmental status of six East African juvenile fossil hominids. Journal of Human Evolution, 16, 197–213CrossRefGoogle Scholar
Dean, M. C. (1987b). Growth layers and incremental markings in hard tissues: A review of the literature and some preliminary observations about enamel structure in Paranthropus boisei. Journal of Human Evolution, 16, 157–172CrossRefGoogle Scholar
Dean, M. C. (1988a). Growth of teeth and development of the dentition in Paranthropus. In Evolutionary History of the “Robust” Australopithecines, ed. F. E. Grine, pp. 43–54. New York: Aldine de Gruyter
Dean, M. C. (1988b). Growth processes in the cranial base of hominoids and their bearing on morphological similarities that exist in the cranial base of Homo and Paranthropus. In Evolutionary History of the “Robust” Australopithecines, ed. F. E. Grine, pp. 107–112. New York: Aldine de Gruyter
Dean, M. C. (1989). The developing dentition and tooth structure in hominoids. Folia Primatologica, 53, 160–176CrossRefGoogle ScholarPubMed
Dean, M. C. (2000). Progress in understanding hominoid dental development. Journal of Anatomy, 197, 77–101CrossRefGoogle ScholarPubMed
Dean, M. C., & Reid, D. J. (2001). Perikymata spacing and distribution on hominid anterior teeth. American Journal of Physical Anthropology, 116, 209–215CrossRefGoogle ScholarPubMed
Dean, M. C., & Wood, B. A. (1981). Developing pongid dentition and its use for ageing individual crania in comparative cross-sectional growth studies. Folia Primatologica, 36, 111–127CrossRefGoogle ScholarPubMed
Dean, M. C., & Wood, B. A. (1982). Basicranial anatomy of Plio-Pleistocene hominids from East and South Africa. American Journal of Physical Anthropology, 59, 157–174CrossRefGoogle Scholar
Dean, M. C., & Wood, B. A. (1984). Phylogeny, neoteny and growth of the cranial base in hominoids. Folia Primatologica, 43, 157–180CrossRefGoogle ScholarPubMed
Dean, M. C., Leakey, M. G., Reid, D., Schrenk, F., Schwartz, G. T., Stringer, C., & Walker, A. (2001). Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature, 414, 628–631CrossRefGoogle ScholarPubMed
Demirjian, A. (1986). Dentition. In Human Growth: A Comprehensive Treatise, eds. F. Falkner & J. M. Tanner, pp. 269–295. New York: Plenum PressCrossRef
Demirjian, A., Goldstein, H., & Tanner, J. M. (1973). A new system of dental age assessment. Human Biology, 45, 211–227Google ScholarPubMed
Dobzhansky, T. (1962). Mankind Evolving. New Haven: Yale University Press
Dutterloo, H. S., & Enlow, D. H. (1970). A comparative study of cranial growth in Homo and Macaca. American Journal of Anatomy, 127, 357–367CrossRefGoogle Scholar
Enlow, D. (1966). A comparative study of facial growth in Homo and Macaca. American Journal of Physical Anthropology, 24, 293–307CrossRefGoogle ScholarPubMed
Enlow, D. (1975). Handbook of Facial Growth. Toronto: W. B. Saunders
Eveleth, P. B., & Tanner, J. M. (1990). Worldwide Variation in Human Growth, 2nd edn. Cambridge: Cambridge University Press
Garn, S. M., Koski, K., & Lewis, A. B. (1957). Problems in determining the tooth eruption sequence in fossil and modern man. American Journal of Physical Anthropology, 15, 313–331CrossRefGoogle ScholarPubMed
Godfrey, L. R., Samonds, K. E., Jungers, W. L., & Sutherland, M. R. (2001). Teeth, brains, and primate life histories. American Journal of Physical Anthropology, 114, 192–2143.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Gould, S. J. (1977). Ontogeny and Phylogeny. Cambridge: Harvard University Press
Grine, F. E. (1981). A new composite juvenile specimen of Australopithecus africanus (Mammalia, Primates) from Member 4 Sterkfontein Formation, Transvaal. Annals of the South African Museums, 84, 169–201Google Scholar
Grine, F. E. (1987). On the eruption pattern of the permanent incisors and first permanent molars in Paranthropus. American Journal of Physical Anthropology, 72, 353–359CrossRefGoogle ScholarPubMed
Grine, F. E. (1988). Evolutionary history of the “robust” australopithecines: A summary and historical perspective. In Evolutionary History of the “Robust” Australo-pithecines, ed. F. E. Grine, pp. 509–520. New York: Aldine de Gruyter
Hall, B. K. (2002). Evolutionary developmental biology: Where embryos and fossils meet. In Human Evolution through Developmental Change, eds. N. Minugh-Purvis & K. J. McNamara, pp. 7–27. Baltimore: Johns Hopkins University Press
Harvey, P. H., & Clutton-Brock, T. H. (1985). Life-history variation in primates. Evolution, 39, 559–581CrossRefGoogle ScholarPubMed
Harvey, P. H., Martin, R. D., & Clutton-Brock, T. H. (1987). Life histories in comparative perspective. In Primate Societies, eds. B. B. Smuts, D. L. Cheney, R. M. Seyfarth, R. W. Wrangham, & T. T. Struhsaker, pp. 181–196. Chicago: University of Chicago Press
Harvey, P. H., Read, A. F., & Promislow, D. E. L. (1989). Life history variation in placental mammals: Unifying the data with the theory. Oxford Surveys of Evolutionary Biology, 6, 13–31Google Scholar
Isaac, G. L. (1972). Chronology and the tempo of cultural change during the Pleistocene. In Calibration of Hominid Evolution, eds. W. Bishop & J. Miller, pp. 381–430. Edinburgh: Scottish Academic Press
Kelley, J. (2002). Life-history evolution in Miocene and extant apes. In Human Evolution through Developmental Change, eds. N. Minugh-Purvis & K. J. McNamara, pp. 223–248. Baltimore: Johns Hopkins University Press
Koppe, T., & Ohkawa, Y. (1999). Pneumatization of the facial skeleton in Catarrhine primates. In The Paranasal Sinuses of Higher Primates: Development, Function, and Evolution, eds. T. Koppe, H. Nagai, & K. W. Alt, pp. 77–119. Chicago: Quintessence Publishing Co
Koski, K., & Garn, S. M. (1957). Tooth eruption sequences in fossil and modern man. American Journal of Physical Anthropology, 15, 469–488CrossRefGoogle Scholar
Kuykendall, K. L. (1996). Dental development in chimpanzees (Pan troglodytes): The timing of tooth calcification stages. American Journal of Physical Anthropology, 99, 135–1573.0.CO;2-#>CrossRefGoogle ScholarPubMed
Kuykendall, K. L. (2002). An assessment of radiographic and histological standards of dental development in chimpanzees. In Human Evolution through Developmental Change, eds. N. Minugh-Purvis & K. J. McNamara, pp. 281–304. Baltimore: Johns Hopkins University Press
Kuykendall, K. L., & Conroy, G. C. (1996). Permanent tooth calcification in chimpanzees (Pan troglodytes): Patterns and polymorphisms. American Journal of Physical Anthropology, 99, 159–1743.0.CO;2-W>CrossRefGoogle ScholarPubMed
Kuykendall, K. L., Mahoney, C. J., & Conroy, G. C. (1992). Probit and survival analysis of tooth emergence ages in a mixed-longitudinal sample of chimpanzees (Pan troglodytes). American Journal of Physical Anthropology, 89, 379–399CrossRefGoogle Scholar
Kuykendall, K. L., Bozic, J., & Conroy, G. C. (2002). A comparative analysis of tooth mineralization and paranasal sinus development of the Taung child. American Journal of Physical Anthropology, 34 (Suppl.), 98–99Google Scholar
Kyauka, P. S. (1994). Developmental patterns of the earliest hominids: A morphological perspective. In Integrative Paths to the Past: Palaeoanthropological Advances in Honor of F. Clark Howell, eds. R. S. Corrucini & R. L. Ciochon, pp. 229–250. New York: Prentice Hall
Lancaster, J. B. (1975). Primate Behavior and the Emergence of Human Culture. New York: Holt, Rinehart, & Winston
Lavelle, C. L. B., Shellis, R. P., & Poole, D. F. G. (1977). Evolutionary Changes to the Primate Skull and Dentition. Springfield: Charles C Thomas
Lovejoy, C. O. (1981). The origin of man. Science, 211, 341–350CrossRefGoogle Scholar
Macho, G. A. (2001). Primate molar crown formation times and life history evolution revisited. American Journal of Primatology, 55, 189–201CrossRefGoogle ScholarPubMed
Macho, G. A., & Williamson, D. K. (2002). The effects of ecology on life history strategies and metabolic disturbances during development: An example from the African bovids. Biological Journal of the Linnean Society, 75, 271–279CrossRefGoogle Scholar
Macho, G. A., & Wood, B. A. (1995). The role of time and timing in hominid dental evolution. Evolutionary Anthropology, 4, 17–31CrossRefGoogle Scholar
Mann, A. E. (1975). Some Paleodemographic Aspects of the South African Australo-pithecines. Philadelphia: University of Pennsylvania
Mann, A. E. (1988). The nature of Taung dental maturation. Nature, 333, 123CrossRefGoogle ScholarPubMed
Mann, A. E., Lampl, M., & Monge, J. M. (1987). Maturational patterns in early hominids. Nature, 328, 673–674CrossRefGoogle ScholarPubMed
Mann, A. E., Lampl, M., & Monge, J. M. (1990a). Patterns of ontogeny in human evolution: Evidence from dental development. Yearbook of Physical Anthropology, 33, 111–150CrossRefGoogle Scholar
Mann, A. E., Monge, J. M., & Lampl, M. (1990b). Dental caution. Nature, 348, 202CrossRefGoogle Scholar
Mann, A. E., Monge, J. M., & Lampl, M. (1991). Investigation into the relationship between perikymata counts and crown formation times. American Journal of Physical Anthropology, 86, 175–188CrossRefGoogle Scholar
Martin, R. D. (1981). Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature, 293, 57–60CrossRefGoogle ScholarPubMed
Martin, R. D. (1983). Human Brain Evolution in an Ecological Context, 52nd James Arthur Lecture on the Evolution of the Human Brain. New York: American Museum of Natural History
Maureille, B., & Braga, J. (2002). Between the incisive bone and premaxilla: From African apes to Homo sapiens. In Human Evolution through Developmental Change, eds. N. Minugh-Purvis & K. J. McNamara, pp. 464–478. Baltimore: Johns Hopkins University Press
McHenry, H. (1988). New estimates of body weight in early hominids and their significance to encephalization and megadontia in “robust” australopithecines. In Evolutionary History of the “Robust” Australopithecines, ed. F. E. Grine, pp. 133–148. New Yok: Aldine de Gruyter
McHenry, H. (1992). How big were early hominids? Evolutionary Anthropology, 1, 15–20CrossRefGoogle Scholar
McNamara, K. J. (2002). What is heterochrony? In Human Evolution through Developmental Change, eds. N. Minugh-Purvis & K. J. McNamara, pp. 1–4. Baltimore: Johns Hopkins University Press
Miles, A. E. W. (1963). The dentition in the assessment of individual age in skeletal material. In Dental Anthropology, ed. D. R. Brothwell, pp. 191–209. New York: Pergamon PressCrossRef
Miles, A. E. W. (1978). Teeth as an indicator of age in man. In Development, Function, and Evolution of Teeth, eds. P. M. Butler & K. A. Joysey, pp. 455–464. New York: Academic Press
Moggi-Cecchi, J. (2001a). Questions of growth. Nature, 414, 595–597CrossRefGoogle Scholar
Moggi-Cecchi, J. (2001b). Patterns of dental development of Australopithecus africanus, with some inferences on their evolution with the origin of the genus Homo. In Humanity from African Naissance to Coming Millennia, eds. P. V. Tobias, M. A. Raath, J. Moggi-Cecchi, & G. A. Doyle, pp. 125–133. Firenze: Firenze University Press, and Johannesburg: Witwatersrand University Press
Moggi-Cecchi, J., Tobias, P. V., & Beynon, A. D. (1998). The mixed dentition and associated skull fragments of a juvenile fossil hominid from Sterkfontein, South Africa. American Journal of Physical Anthropology, 106, 425–4653.0.CO;2-I>CrossRefGoogle ScholarPubMed
Moorrees, C. F. A., Fanning, E. A., & Hunt, E. E. J (1963). Age variation of formation stages for ten permanent teeth. Journal of Dental Research, 42, 1490–1502CrossRefGoogle ScholarPubMed
Nissen, H. W., & Riesen, A. H. (1964). The eruption of the permanent dentition in the chimpanzee. American Journal of Physical Anthropology, 22, 285–294CrossRefGoogle ScholarPubMed
Promislow, D. E. L., & Harvey, P. H. (1990). Living fast and dying young: A comparative analysis of life-history variation among mammals. Journal of Zoology, 220, 417–437CrossRefGoogle Scholar
Ramirez-Rozzi, F. V. (1993). Tooth development in East AfricanParanthropus. Journal of Human Evolution, 24, 429–454CrossRefGoogle Scholar
Ramirez-Rozzi, F. V. (1995). Time of crown formation in Plio-Pleistocene hominid teeth. In Aspects of Dental Biology: Palaeontology, Anthropology and Evolution, ed. J. Moggi-Cecchi, pp. 217–238. Florence: International Institute for the Study of Man
Read, A. F., & Harvey, P. H. (1989). Life history differences among eutherian radiations. Journal of Zoology, 219, 329–353CrossRefGoogle Scholar
Reid, D. J., Schwartz, G. T., Dean, C., & Chandrasekera, M. S. (1998). A histological reconstruction of dental development in the common chimpanzee, Pan troglodytes. Journal of Human Evolution, 35, 427–448CrossRefGoogle ScholarPubMed
Sacher, G. A., & Staffeldt, E. F. (1974). Relation of gestation time to brain weight for placental mammals: Implications for the theory of vertebrate growth. American Naturalist, 108, 593–615CrossRefGoogle Scholar
Schultz, A. H. (1948). The relation in size between premaxilla, diastema and canine. American Journal of Physical Anthropology, 6, 163–180CrossRefGoogle ScholarPubMed
Schwartz, G. T., & Dean, M. C. (2000). Interpreting the hominid dentition: Ontogenetic and phylogenetic aspects. In Development, Growth and Evolution: Implications for the Study of the Hominid Skeleton, eds. P. O'Higgins, & M. Cohen, pp. 207–233. London: Academic Press
Schwartz, G. T., & Kuykendall, K. L. (1996). Enamel structure and development. Evolutionary Anthropology, 5, 150–1513.0.CO;2-J>CrossRefGoogle Scholar
Shea, B. T. (1983). Size and diet in the evolution of African ape craniodental form. Folia Primatologica, 40, 32–68CrossRefGoogle ScholarPubMed
Shea, B. T. (1990). Dynamic morphology: Growth, life history, and ecology in primate evolution. In Primate Life History and Evolution, Monographs in Primatology, vol. 14, ed. C. J. De Rousseau, pp. 325–352. New York: Wiley-Liss
Simpson, S. W., Lovejoy, C. O., & Meindl, R. S. (1990). Hominoid dental maturation. Journal of Human Evolution, 19, 285–297CrossRefGoogle Scholar
Simpson, S. W., Lovejoy, C. O., & Meindl, R. S. (1991). Relative dental development in hominoids and its failure to predict somatic growth velocity. American Journal of Physical Anthropology, 86, 113–120CrossRefGoogle Scholar
Simpson, S. W., Lovejoy, C. O., & Meindl, R. S. (1992). Further evidence on relative dental maturation and somatic developmental rate in hominoids. American Journal of Physical Anthropology, 87, 29–38CrossRefGoogle ScholarPubMed
Smith, B. H. (1986). Dental development in Australopithecus and early Homo. Nature, 323, 327–330CrossRefGoogle Scholar
Smith, B. H. (1989a). Dental development as a measure of life history in primates. Evolution, 43, 683–688CrossRefGoogle Scholar
Smith, B. H. (1989b). Growth and development and its significance for early hominid behaviour. OSSA, 14, 63–96Google Scholar
Smith, B. H. (1991). Dental development and the evolution of life history in Hominidae. American Journal of Physical Anthropology, 86, 157–174CrossRefGoogle Scholar
Smith, B. H. (1992). Life history and the evolution of human maturation. Evolutionary Anthropology, 1, 134–142CrossRefGoogle Scholar
Smith, B. H. (1994). Sequence of emergence of the permanent teeth in Macaca, Pan, Homo, and Australopithecus: Its evolutionary significance. American Journal of Human Biology, 6, 61–76CrossRefGoogle ScholarPubMed
Smith, B. H., & Tompkins, R. L. (1995). Toward a life history of the hominidae. Annual Review of Anthropology, 24, 257–279CrossRefGoogle Scholar
Smith, R. J., Gannon, P. J., & Smith, B. H. (1995). Ontogeny of australopithecines and early Homo: Evidence from cranial capacity and dental eruption. Journal of Human Evolution, 29, 155–168CrossRefGoogle Scholar
Tardieu, C. (1998). Short adolescence in early hominids: Infantile and adolescent growth of the human femur. American Journal of Physical Anthropology, 107, 163–1783.0.CO;2-W>CrossRefGoogle ScholarPubMed
Tardieu, C. (1999). Ontogeny and phylogeny of femoro-tibial characters in humans and hominid fossils: Functional influence and genetic determinism. American Journal of Physical Anthropology, 110, 365–3773.0.CO;2-T>CrossRefGoogle ScholarPubMed
Wolpoff, M., Monge, J., & Lampl, M. (1988). Was Taung human or an ape? Nature, 335, 501CrossRefGoogle Scholar
Wood, B. A. (1996). Hominid palaeobiology: Have studies of comparative development come of age? American Journal of Physical Anthropology, 99, 9–153.0.CO;2-X>CrossRefGoogle ScholarPubMed
Wood, B. A. (2000). Investigating human evolutionary history. Journal of Anatomy, 197, 3–17CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×