Skip to main content Accessibility help
×
Hostname: page-component-6b989bf9dc-zrclq Total loading time: 0 Render date: 2024-04-14T22:32:35.529Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  07 August 2009

Michela Massimi
Affiliation:
University of Cambridge
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Pauli's Exclusion Principle
The Origin and Validation of a Scientific Principle
, pp. 189 - 203
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, S. L. (1969) ‘Axial-vector vertex in spinor electrodynamics’, Physical Review 177, 2426–38.CrossRefGoogle Scholar
Adler, S. L.(2004) ‘Anomalies to all orders’, arXiv: hep-th/0405040.
Adler, S. L.(2005) ‘Remarks on the history of quantum chromodynamics’, submitted to Physics Today. In arXiv: hep-ph/0412297.
d'Alembert, J. Le Rond (1751) ‘Discours préliminaire des editeurs’, in Encyclopédie, ou Dictionnaire raisonné des sciences, des artes et des métiers, par une société de gens de lettres (Paris: Briasson, Le Breton, Durand). English translation (1995) Preliminary Discourse on the Encyclopaedia of Diderot, translated by R. Schwab (Chicago: University of Chicago Press).Google Scholar
Allison, H. E. (1994) ‘Causality and causal laws in Kant: a critique of Michael Friedman’, in Parrini, P., (ed.) Kant and Contemporary Epistemology (Dordrecht: Kluwer Academic Publishers), 291–307.CrossRefGoogle Scholar
Anderson, C. D. (1933) ‘The positive electron’, Physical Review 43, 491–4.CrossRefGoogle Scholar
Appelquist, T. and Politzer, H. D. (1975) ‘Heavy quarks and e+e− annihilation’, Physical Review Letters 34, 43–5.CrossRefGoogle Scholar
Aubert, J. J., Ting, S.et al. (1974) ‘Experimental observation of a heavy particle J’, Physical Review Letters 33, 1404–6.CrossRefGoogle Scholar
Augustin, J. E., Richter, B.et al. (1974) ‘Discovery of a narrow resonance in e+e− annihilation’, Physical Review Letters 33, 1406–8.CrossRefGoogle Scholar
Bacry, H.et al. (1964) ‘Basic SU3 triplets with integral charge and unit baryon number’, Physics Letters 9, 279–80.CrossRefGoogle Scholar
Bardeen, W. A., Fritzsch, H., and Gell-Mann, M. (1973) ‘Light-cone current algebra, π0 decay, and e+e− annihilation’, in Gatto, R. (ed.) Scale and Conformal Symmetry in Hadron Physics (New York: Wiley). Reissued in arXiv: hep-ph/0212183.Google Scholar
Barnes, V. E., et al. (1964) ‘Observation of a hyperon with strangeness minus three’, Physical Review Letters12, 204–6. Reprinted in M. Gell-Mann and Y. Ne'eman (eds.) (1964) The Eightfold Way (New York: W. A. Benjamin), 88–90.CrossRef
Belinfante, F. J. (1939) ‘The undor equation of the meson field’, Physica 6, 870–86.CrossRefGoogle Scholar
Bell, J. S. and Jackiw, R. (1969) ‘A PCAC puzzle: π0→ γγ in the σ-model’, Il Nuovo Cimento A60, 47–61.CrossRefGoogle Scholar
Bjorken, J. D. and Glashow, S. L. (1964) ‘Elementary particles and SU(4)’, Physics Letters 11, 255–7.CrossRefGoogle Scholar
Bjorken, J. D. and Paschos, E. A. (1969) ‘Inelastic electron-proton and γ-proton scattering and the structure of nucleon’, Physical Review 185, 1975–82.CrossRefGoogle Scholar
Blackett, P. M. S. and Occhialini, G. P. S. (1933) ‘Some photographs of the tracks of penetrating radiation’, Proceedings of the Royal Society A139, 699–726.CrossRefGoogle Scholar
Bohr, N. (1913) ‘On the constitution of atoms and molecules’, Philosophical Magazine 26, 1–25; 476–502; 857–75.Google Scholar
Bohr, N.(1914) ‘Om Brintspektret’, Fysisk Tidsskrift 12, 97–114.Google Scholar
Bohr, N.(1923) ‘Linienspektren und Atombau’, Annalen der Physik 71, 228–88.CrossRefGoogle Scholar
Bohr, N.(1976) Niels Bohr Collected Works, Vol. 2, edited by Rosenfeld, L., Nielsen, J. Rudet al. (Amsterdam: North-Holland Publishing Company).Google Scholar
Bohr, N.(1977) Niels Bohr Collected Works, Vol. 3–4, edited by Rosenfeld, L., Nielsen, J. Rudet al. (Amsterdam: North-Holland Publishing Company).Google Scholar
Bohr, N. and Coster, D. (1923) ‘Röntegenspektren und periodisches System der Elemente’, Zeitschrift für Physik 12, 342–74.CrossRefGoogle Scholar
Bohr, N., Kramers, H. A., and Slater, J. C. (1924) ‘The quantum theory of radiation’, Philosophical Magazine 47, 785–802.Google Scholar
Born, M. and Jordan, P. (1925) ‘Zur QuantenmechanikZeitschrift für Physik 34, 858–88.CrossRefGoogle Scholar
Born, M., Heisenberg, W., and Jordan, P. (1926) ‘Zur Quantenmechanik IIZeitschrift für Physik 35, 557–615.CrossRefGoogle Scholar
Bose, S. N. (1924) ‘Plancks Gesetz und Lichtquantenhypothese’, Zeitschrift für Physik 26, 178–81.CrossRefGoogle Scholar
Brading, K. and Castellani, E. (eds.) (2003) Symmetries in Physics (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Buchdahl, G. (1969a) Metaphysics and the Philosophy of Science (Cambridge, Mass.: MIT Press).Google Scholar
Buchdahl, G.(1969b) ‘The Kantian “Dynamic of Reason”, with special reference to the place of causality in Kant's system’, in Beck, L. W. (ed.) Kant Studies Today (La Salle, Ill.: Open Court), 341–74.Google Scholar
Buchdahl, G.(1974) ‘The conception of lawlikeness in Kant's philosophy of science’, in Beck, L. W. (ed.) Kant's Theory of Knowledge (Dordrecht: Reidel), 128–50.CrossRefGoogle Scholar
Buchdahl, G.(1986) ‘Metaphysical and Internal Realism: the relations between ontology and methodology in Kant's philosophy of science’, in Marcus, R. Barcanet al. (eds.) Logic, Methodology, and Philosophy of Science VII: Proceedings of the Seventh International Congress of Logic, Methodology and Philosophy of Science, Salzburg, 1983 (Amsterdam: North–Holland), 623–41.Google Scholar
Butts, R. E. (1991) ‘Comments on Michael Friedman: “Regulative and Constitutive”’, The Southern Journal of Philosophy 30, Suppl., 103–8.CrossRefGoogle Scholar
Cabibbo, N. (1963) ‘Unitary symmetry and leptonic decay’, Physical Review Letters 10, 531–3.CrossRefGoogle Scholar
Cao, T. (2003a) ‘Structural realism and the interpretation of quantum field theory’, Synthese 136, 3–24.CrossRefGoogle Scholar
Cao, T.(2003b) ‘Can we dissolve physical entities into mathematical structures?’, Synthese 136, 57–71.CrossRefGoogle Scholar
Cassidy, D. C. (1979) ‘Heisenberg's first core model of the atom: the formation of a professional style’, Historical Studies in Physical Sciences 10, 187–224.CrossRefGoogle Scholar
Cassirer, E. (1910) Substanzbegriff und Funktionsbegriff. Untersuchungen zu den Grundfragen der Erkenntniskritik (Berlin: Bruno Cassirer). English translation (1953) Substance and Function and Einstein's Theory of Relativity, by W. C. Swabey (New York: Dover Publications).Google Scholar
Cassirer, E.(1932) Die Philosophie der Aufklärung (Tübingen: J. C. B. Mohr). English translation, fifth edition (1962) The Philosophy of the Enlightenment, by F. Koelln and J. Pettegrove (Boston: Beacon Press).Google Scholar
Cassirer, E.(1936) Determinismus und Indeterminismus in der modernen Physik (Göteborg: Högskolas Arsskrift 42). English translation (1956) Determinism and Indeterminism in Modern Physics, by O. T. Benfey (New Haven: Yale University Press).Google Scholar
Close, F. E. (1997) ‘Glueballs and hybrids: new states of matter’, Contemporary Physics 38, 1–12.CrossRefGoogle Scholar
Cowan, C. L., Reines, F.et al. (1956) ‘Detection of the free neutrino: a confirmation’, Science 124, 103–4.CrossRefGoogle ScholarPubMed
Darwin, C. G. (1927a) ‘The electron as a vector wave’, Nature 119, 282–4.CrossRefGoogle Scholar
Darwin, C. G.(1927b) ‘The electron as a vector wave’, Proceedings of the Royal Society A116, 227–53.CrossRefGoogle Scholar
Darwin, C. G.(1928) ‘The wave equation of the electron’, Proceedings of the Royal Society A118, 654–80.CrossRefGoogle Scholar
Broglie, L. (1925) ‘Recherche sur la théorie des quanta’, Annales de Physique 3, 22–128.CrossRefGoogle Scholar
Broglie, L. and Dauvillier, A. (1922) ‘Sur les analogies de structure entre les séries optiques et les séries de Röntgen’, Comptes Rendus de l'Académie des Sciences, Paris 175, 755–6.Google Scholar
Groot, J. G. H.et al. (1979) ‘Inclusive interactions of high-energy neutrinos and antineutrinos in iron’, Zeitschrift für Physik C1, 143–62.Google Scholar
Deilamian, K., Gillaspy, J. D., and Kelleher, D. E. (1995) ‘Search for small violations of the symmetrization postulate in an excited state of helium’, Physical Review Letters 74, 4787–90.CrossRefGoogle Scholar
Dirac, P. A. M. (1925) ‘The fundamental equations of quantum mechanicsProceedings of the Royal Society A109, 642–53.CrossRefGoogle Scholar
Dirac, P. A. M.(1926a) ‘Quantum mechanics and a preliminary investigation of the hydrogen atomProceedings of the Royal Society A110, 561–69.CrossRefGoogle Scholar
Dirac, P. A. M.(1926b) ‘On the theory of quantum mechanics’, Proceedings of the Royal Society A112, 661–77.CrossRefGoogle Scholar
Dirac, P. A. M.(1927) ‘The quantum theory of the emission and absorption of radiation’, Proceedings of the Royal Society A114, 243–65.CrossRefGoogle Scholar
Dirac, P. A. M.(1928a) ‘The quantum theory of the electron’, Proceedings of the Royal Society A117, 610–24.CrossRefGoogle Scholar
Dirac, P. A. M.(1928b) ‘The quantum theory of the electron. Part II’, Proceedings of the Royal Society A118, 351–61.CrossRefGoogle Scholar
Dirac, P. A. M.(1930a) ‘A theory of electrons and protons’, Proceedings of the Royal Society A126, 360–5.CrossRefGoogle Scholar
Dirac, P. A. M.(1930b) ‘On the annihilation of electrons and protons’, Proceedings of the Cambridge Philosophical Society 26, 361–75.CrossRefGoogle Scholar
Dirac, P. A. M.(1931) ‘Quantised singularities in the electromagnetic field’, Proceedings of the Royal Society A133, 60–72.CrossRefGoogle Scholar
Dirac, P. A. M.(1934a) ‘Theory of the positron’, in Structure et Propriétés des Noyaux Atomiques. Rapports et discussions du septième conseil de physique tenue à Bruxelles du 22 au 29 Octobre 1933 sous les auspices de l'Institut International de Physique Solvay (Paris: Gauthier-Villars), 203–30.Google Scholar
Dirac, P. A. M.(1934b) ‘Discussion of the infinite distribution of electrons in the theory of the positron’, Proceedings of the Cambridge Philosophical Society 30, 150–63.CrossRefGoogle Scholar
Dorling, J. (1973) ‘Demonstrative induction: its significant role in the history of physics’, Philosophy of Science 49, 360–72.CrossRefGoogle Scholar
Dorling, J.(1974) ‘Henry Cavendish's deduction of the electrostatic inverse square law from the result of a single experiment’, Studies in the History and Philosophy of Science 4, 327–48.CrossRefGoogle Scholar
Dorling, J.(1991) ‘Reasoning from phenomena: lessons from Newton’, PSA 1990, vol. 2, 197–208.Google Scholar
Drake, G. W. F. (1989) ‘Predicted energy shift for paronic helium’, Physical Review A39, 897–9.CrossRefGoogle Scholar
Duck, I. and Sudarshan, E. C. G. (1997) Pauli and the Spin-Statistics Theorem (Singapore: World Scientific).Google Scholar
Duhem, P. (1906) La Theorie Physique: Son Object, Sa Structure (Paris: Marcel Riviere & Cie.). English translation (1991) The Aim and Structure of Physical Theory (Princeton: Princeton University Press).Google Scholar
Dyson, F. J. (1967) ‘Ground-state energy of a finite system of charged particles’, Journal of Mathematical Physics 8, 1538–45.CrossRefGoogle Scholar
Dyson, F. J.(1996) Selected Papers of Freeman Dyson with commentary (Cambridge, Mass.: International Press).Google Scholar
Dyson, F. J. and Lenard, A. (1967) ‘Stability of matter I’, Journal of Mathematical Physics 8, 423–34.CrossRefGoogle Scholar
Dyson, F. J. and Lenard, A.(1968) ‘Stability of matter II’, Journal of Mathematical Physics 9, 698–711.Google Scholar
Eco, U. (1984) Semiotics and the Philosophy of Language (Bloomington: Indiana University Press).CrossRefGoogle Scholar
Ehrenfest, P., (1913) ‘Een mechanische theorema van Boltzmann en zijne betrekking tot de quanta theorie’, Verslag van de Gewoge Vergaderingen der Wis-en Natuurkundinge Afdeeling, Amsterdam, 586–93. English translation (1914) ‘A mechanical theorem of Boltzmann and its relation to theory of energy quanta’, Proceedings of the Amsterdam Academy16, 591–7.
Ehrenfest, P.(1927) ‘Besteht ein allgemeiner Zusammenhang zwischen der wechselseitigen Undurchdringlichkeit materieller Teilchen und dem “Pauli-Verbot”?Naturwissenschaften 15, 161–2.CrossRefGoogle Scholar
Einstein, A. (1924) ‘Quantentheorie des einatomigen idealen Gases’, Sitzungsberichte Preussische Akademie der Wissenschaften, Physikalisch–Mathematische Klasse, 261–67.Google Scholar
Einstein, A.(1925a) ‘Quantentheorie des einatomigen idealen Gases. 2. Abhandlung’, Sitzungsberichte Preussische Akademie der Wissenschaften, Physikalisch–Mathematische Klasse, 3–14.Google Scholar
Einstein, A.(1925b) ‘Quantentheorie des idealen Gases’, Sitzungsberichte Preussische Akademie der Wissenschaften, Phyisikalisch–Mathematische Klasse, 18–25.Google Scholar
Enz, C. P. (2002) No Time to be Brief. A Scientific Biography of Wolfgang Pauli (Oxford: Oxford University Press).CrossRefGoogle Scholar
Fermi, E. (1926) ‘Sulla quantizzazione del gas perfetto monoatomico’, Rendiconti della Reale Accademia dei Lincei 3, 145–9.Google Scholar
Fermi, E.(1934) ‘Versuch einer Theorie der β–Strahlen’, Zeitschrift für Physik 88, 161–71.CrossRefGoogle Scholar
Fermi, E.(1962) Collected Papers, Vol. I (Chicago: University of Chicago Press).Google Scholar
Feynman, R. P. (1972), Photon-Hadron Interactions (New York: Benjamin).Google Scholar
Feynman, R. P. and Gell-Mann, M. (1958) ‘Theory of the Fermi interaction’, Physical Review 109, 193–98.CrossRefGoogle Scholar
Fierz, M. (1939) ‘Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin’, Helvetica Physica Acta 12, 3–37.Google Scholar
Fierz, M. and Pauli, W. (1939) ‘Über relativistische Feldgleichungen von Teilchen mit beliebigem Spin im elektromagnetischen Feld’, Helvetica Physica Acta 12, 297–300. Reprinted with the English translation (1939) in Proceedings of the Royal Society A173, 211–32.Google Scholar
Forman, P. (1968) ‘The doublet riddle and atomic physics circa 1924’, Isis 59, 156–74.CrossRefGoogle Scholar
Forman, P.(1970) ‘Alfred Landé and the anomalous Zeeman effect, 1919–1921’, Historical Studies in the Physical Sciences 2, 153–261.CrossRefGoogle Scholar
French, S., (1984) ‘Identity and individuality in classical and quantum physics’, Ph.D. thesis, University of London.
French, S.(1995) ‘The esperable uberty of quantum chromodynamics’, Studies in History and Philosophy of Modern Physics 26, 87–105.CrossRefGoogle Scholar
French, S. and Ladyman, J. (2003a) ‘Remodelling structural realism: quantum physics and the metaphysics of structure’, Synthese 136, 31–56.CrossRefGoogle Scholar
French, S. and Ladyman, J.(2003b) ‘The dissolution of objects: between Platonism and Phenomenalism’, Synthese 136, 73–7.CrossRefGoogle Scholar
French, S. and Redhead, M. (1988) ‘Quantum physics and the identity of indiscernibles’, British Journal for the Philosophy of Science 39, 233–46.CrossRefGoogle Scholar
French, S. and Rickles, D. (2003) ‘Understanding permutation symmetry’, in Brading, K. and Castellani, E. (eds.) Symmetries in Physics (Cambridge: Cambridge University Press), 212–38.CrossRef
Frenkel, J. (1926) ‘Die Elektrodynamik des rotierenden Elektrons’, Zeitschrift für Physik 37, 243–62.CrossRefGoogle Scholar
Friedman, M. (1989) ‘Kant on space, the understanding, and the law of gravitation: Prolegomena 38’, Monist 79, 236–84.CrossRefGoogle Scholar
Friedman, M.(1991) ‘Regulative and constitutive’, The Southern Journal of Philosophy 30, Suppl., 73–102.CrossRefGoogle Scholar
Friedman, M.(1992a) Kant and the Exact Sciences (Cambridge, Mass.: Harvard University Press).Google Scholar
Friedman, M.(1992b) ‘Causal laws and the foundations of natural science’, in Guyer, P. (ed.) The Cambridge Companion to Kant (Cambridge: Cambridge University Press), 161–99.CrossRefGoogle Scholar
Friedman, M.(1994) ‘Kant and the twentieth century’, in Parrini, P. (ed.) Kant and Contemporary Epistemology (Dordrecht: Kluwer Academic Publishers), 27–46.CrossRefGoogle Scholar
Friedman, M.(1999) Reconsidering Logical Positivism (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Friedman, M.(2000a) ‘Transcendental philosophy and a priori knowledge: a neo-Kantian perspective’, in Boghossian, P. and Peacocke, C. (eds.) New Essays on the A Priori (Oxford: Clarendon Press).CrossRefGoogle Scholar
Friedman, M.(2000b) A Parting of the Ways. Carnap, Cassirer, Heidegger (La Salle, Ill.: Open Court).Google Scholar
Friedman, M.(2001) The Dynamics of Reason. Stanford Kant Lectures (Stanford: CSLI Publications).Google Scholar
Fritzsch, H. and Gell-Mann, M. (1972) ‘Light cone current algebra’, hep-ph/0301127.
Galison, P. (1997) Image and Logic (Chicago: University of Chicago Press).Google Scholar
Gell-Mann, M. (1961) ‘The Eightfold Way: A Theory of Strong Interaction Symmetry’, California Institute of Technology Synchrotron Laboratory Report CTSL-20. Reprinted in Gell-Mann, M. and Ne'eman, Y. (eds.) (1964) The Eightfold Way (New York: W. A. Benjamin), 11–57.Google Scholar
Gell-Mann, M.(1962a) ‘Strange particle physics. Strong interactions’, Proceedings of the International Conference on High Enery Physics (CERN, 1962). Reprinted in Gell-Mann, M. and Ne'eman, Y. (eds.) (1964) The Eightfold Way (New York: W. A. Benjamin), 87.Google Scholar
Gell-Mann, M.(1962b) ‘Symmetries of baryons and mesons’, Physical Review 125, 1067–84.CrossRefGoogle Scholar
Gell-Mann, M.(1964) ‘A schematic model of baryons and mesons’, Physics Letters8, 214–5. Reprinted in Gell-Mann, M. and Ne'eman, Y. (eds.) (1964) The Eightfold Way (New York: W. A. Benjamin), 168–9.Google Scholar
Gell-Mann, M. and Lévy, M. (1960) ‘The axial vector current in beta decay’, Il Nuovo Cimento 16, 705–25.CrossRefGoogle Scholar
Gentile, G. (1940) ‘Osservazioni sopra le statistiche intermedie’, Il Nuovo Cimento 17, 493–7.CrossRefGoogle Scholar
Glashow, S. L. (1961) ‘Partial symmetries of weak interactions’, Nuclear Physics 22, 579–88.CrossRefGoogle Scholar
Glashow, S. L., Iliopoulos, J., and Maiani, L. (1970) ‘Weak interactions with lepton-hadron symmetry’, Physical Review D2, 1285–92.Google Scholar
Goldhaber, M. and Scharff-Goldhaber, G. (1948) ‘Identification of beta-rays with atomic electrons’, Physical Review 73, 1472–3.CrossRefGoogle Scholar
Gordon, W. (1926) ‘Der Compton Effekt nach der Schrödingerschen Theorie’, Zeitschrift für Physik 40, 117–33.CrossRefGoogle Scholar
Gordon, W.(1928) ‘Die Energieniveaus des Wasserstoffatoms nach der Diracschen Quantentheorie des Elektrons’, Zeitschrift für Physik 48, 11–4.CrossRefGoogle Scholar
Green, H. S. (1953) ‘A generalised method of field quantization’, Physical Review 90, 270–3.CrossRefGoogle Scholar
Greenberg, O. W. (1964) ‘Spin and unitary-spin independence in a paraquark model of baryons and mesonsPhysical Review Letters 13, 598–602.CrossRefGoogle Scholar
Greenberg, O. W.(1991) ‘Particles with small violations of Fermi or Bose statistics’, Physical Review D43, 4111–20.Google Scholar
Greenberg, O. W.(1993) ‘Color: from baryon spectroscopy to QCD’, in Gai, Moshe (ed.) International Conference on the Structure of Baryons and Related Mesons, June 1–4, 1992, Yale University (Singapore; River Edge, NJ: World Scientific).Google Scholar
Greenberg, O. W.(1999) ‘Quon statistics for composite systems and a limit on the violation of the Pauli principle for nucleons and quarks’, Physical Review Letters 83, 4460–63.CrossRefGoogle Scholar
Greenberg, O. W. and Macrae, K. I. (1983) ‘Locally gauge-invariant formulation of parastatistics’, Nuclear Physics B219, 358–66.CrossRefGoogle Scholar
Greenberg, O. W. and Mohapatra, R. N. (1989) ‘Phenomenology of small violations of Fermi and Bose statistics’, Physical Review D39, 2032–8.Google Scholar
Greenberg, O. W. and Nelson, C. A. (1977) ‘Color models of hadrons’, Physics Reports 32, 69–121.CrossRefGoogle Scholar
Gross, D. J. and Wilczek, F. (1973) ‘Asymptotically free gauge theories: I’, Physical Review D8, 3633–52.Google Scholar
Guyer, P. (1990) ‘Reason and reflective judgement: Kant on the significance of systematicity’, Noûs 24, 17–43.CrossRefGoogle Scholar
Guyer, P.(2003) ‘Kant's principles of reflecting judgment’, in Guyer, P. (ed.) Kant's Critique of the Power of Judgment. Critical Essays (Lanham: Rowman & Littlefield Publishers), 1–61.Google Scholar
Haar, D. (1952) ‘Gentile's intermediate statistics’, Physica 18, 199–200.CrossRefGoogle Scholar
Hacking, I. (1983) Representing and Intervening (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Hacking, I.(1993) ‘Working in a new world: the taxonomic solution’, in Horwich, P. (ed.) World Changes. Thomas Kuhn and the Nature of Science (Cambridge, Mass.: MIT Press), 275–310.Google Scholar
Han, M. Y. and Nambu, Y. (1965) ‘Three-triplet model with double SU(3) symmetry’, Physical Review 139, B1006–10.CrossRefGoogle Scholar
Harper, W. (1990) ‘Newton's classic deductions from phenomena’, PSA 1990: Proceedings of the 1990 Biennial Meeting of the Philosophy of Science Association, vol. 2 (East Lansing, Mich.: Philosophy of Science Association).Google Scholar
Harper, W. and Smith, G. E. (1995) ‘Newton's new way of inquiry’, in Leplin, J. (ed.) The Creation of Ideas in Physics (Dordrecht: Kluwer), 113–66.CrossRefGoogle Scholar
Heilbron, J. L. (1966) ‘The work of H. G. J. Moseley’, Isis 57, 336–64.CrossRefGoogle Scholar
Heilbron, J. L.(1967) ‘The Kossel-Sommerfeld theory and the ring atom’, Isis 58, 451–85.CrossRefGoogle Scholar
Heilbron, J. L.(1982) ‘The origins of the exclusion principle’, Historical Studies in the Physical Sciences 13, 261–310.CrossRefGoogle Scholar
Heisenberg, W.(1922) ‘Zur Quantentheorie der Linienstruktur und der anomalen Zeemaneffekte’, Zeitschrift für Physik 8, 273–97.CrossRefGoogle Scholar
Heisenberg, W.(1924) ‘Über eine Abänderung der formalen Regeln der Quantentheorie beim Problem der anomalen Zeemaneffekte’, Zeitschrift für Physik 26, 291–307.CrossRefGoogle Scholar
Heisenberg, W.(1925a) ‘Zur Quantentheorie der Multiplettstruktur und der anomalen Zeemaneffekte’, Zeitschrift für Physik 32, 841–60.CrossRefGoogle Scholar
Heisenberg, W.(1925b) ‘Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen’, Zeitschrift für Physik 33, 879–93.CrossRefGoogle Scholar
Heisenberg, W.(1926) ‘Über die Spektra von Atomsystemen mit zwei Elektronen’, Zeitschrift für Physik 39, 499–518.CrossRefGoogle Scholar
Heisenberg, W.(1934) ‘Bemerkungen zur Diracschen Theorie des Positrons’, Zeitschrift für Physik 90, 209–31.CrossRefGoogle Scholar
Heisenberg, W. and Jordan, P. (1926) ‘Anwendung der Quantenmechanik auf das Problem der anomalen Zeemaneffekte’, Zeitschrift für Physik 37, 263–77.CrossRefGoogle Scholar
Heisenberg, W. and Pauli, W. (1929) ‘Zur Quantenelektodynamik der Wellenfelder’, Zeitschrift für Physik 56, 1–61.CrossRefGoogle Scholar
Heisenberg, W. and Pauli, W.(1930) ‘Zur Quantentheorie der Wellenfelder II’, Zeitschrift für Physik 59, 168–90.CrossRefGoogle Scholar
Hesse, M. (1983) ‘Comment on Kuhn's “Commensurability, Comparability, Communicability” ’, in Asquith, P. D. and Nickles, T. (eds.) PSA 1982: Proceedings of the 1982 Biennial Meeting of the Philosophy of Science Association, vol. 2 (East Lansing, Mich.: Philosophy of Science Association), 707–11.Google Scholar
Higgs, P. W. (1964a) ‘Broken symmetries, massless particles, and gauge fields’, Physics Letters 12, 132–3.CrossRefGoogle Scholar
Higgs, P. W.(1964b) ‘Broken symmetries and the masses of gauge bosons’, Physical Review Letters 13, 508–9.CrossRefGoogle Scholar
Hilborn, R. C. and Tino, G. M. (eds) (2000) Spin-Statistics Connection and Commutation Relations: Experimental Tests and Theoretical Implications (Melville, NY: American Institute of Physics).Google Scholar
Hofmann, W. (1981) Jets of Hadrons (Berlin: Springer Verlag).CrossRefGoogle Scholar
Jackiw, R. (1999) ‘The unreasonable effectiveness of quantum field theory’, in Cao, T. Y. (ed.) Conceptual Foundations of Quantum Field Theory (Cambridge: Cambridge University Press), 148–59.CrossRefGoogle Scholar
Jammer, M. (1966) The Conceptual Development of Quantum Mechanics (New York: McGraw Hill); second edition (1989) (American Institute of Physics: Tomash Publishers).Google Scholar
Jordan, P. (1925) ‘Bemerkungen zur Theorie der Atomstruktur’, Zeitschrift für Physik 33, 563–70.CrossRefGoogle Scholar
Jordan, P.(1927) ‘Zur Quantenmechanik der Gasentartung’, Zeitschrift für Physik 44, 473–80.CrossRefGoogle Scholar
Jordan, P. and Pauli, W. (1928) ‘Zur Quantenelektrodynamik ladungsfreier Felder’, Zeitschrift für Physik 47, 151–73.CrossRefGoogle Scholar
Jordan, P. and Wigner, E. (1928) ‘Über das Paulische Äquivalenzverbot’, Zeitschrift für Physik 47, 631–51.CrossRefGoogle Scholar
Kant, I. (1781) Critik der reinen Vernunft (Riga: Johann Hartknoch). English translation (1997) Guyer, P. and Wood, A. W. (eds.) Critique of Pure Reason (Cambridge: Cambridge University Press).Google Scholar
Kant, I.(1790) Kritik der Urteilskraft (Berlin: Lagarde). English translation (2000) Guyer, P. and Matthews, E. (eds.) Critique of the Power of Judgment (Cambridge: Cambridge University Press).Google Scholar
Kitcher, P. (1983) ‘Implications of incommensurability’, in Asquith, P. D. and Nickles, T. (eds.) PSA 1982: Proceedings of the 1982 Biennial Meeting of the Philosophy of Science Association, vol. 2 (East Lansing, Mich.: Philosophy of Science Association), 692–3.Google Scholar
Kitcher, P.(1986) ‘Projecting the order of nature’, in Butts, R. E. (ed.) Kant's Philosophy of Physical Science (Dordrecht: Reidel), 201–35.CrossRefGoogle Scholar
Klein, O. (1927) ‘Elektrodynamik und Wellenmechanik von Standpunkt des Korrespondenzprinzips’, Zeitschrift für Physik 41, 407–42.CrossRefGoogle Scholar
Klein, O. and Nishina, Y. (1929) ‘Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac’, Zeitschrift für Physik 52, 853–68.CrossRefGoogle Scholar
Kragh, H. (1979) ‘Niels Bohr's second atomic theory’, Historical Studies in the Physical Sciences 10, 123–86.CrossRefGoogle Scholar
Kripke, S. (1972) ‘Naming and necessity’, in Harman, G. and Davidson, D. (eds.) The Semantics of Natural Language (Dordrecht: Reidel).Google Scholar
Kronig, R. (1960) ‘The turning point’, in Fierz, M. and Weisskopf, V. F. (eds.) Theoretical Physics in the Twentieth Century: A Memorial Volume to Wolfgang Pauli (New York: Interscience Publishers).Google Scholar
Kuhn, T. S. (1957) The Copernican Revolution: Planetary Astronomy in the Development of Western Thought (Cambridge, Mass.: Harvard University Press).Google Scholar
Kuhn, T. S.(1962) The Structure of Scientific Revolutions, International Encyclopaedia of Unified Science: Foundations of the Unity of Science, vol. 2, no. 2 (Chicago: University of Chicago Press).Google Scholar
Kuhn, T. S.(1970) ‘Reflections on my critics’, in Lakatos, I. and Musgrave, A. (eds.) Criticism and the Growth of Knowledge: Proceedings of the International Colloquium in the Philosophy of Science, London 1965, vol. IV (Cambridge: Cambridge University Press), 231–78. Reprinted in Kuhn (2000), 123–75.CrossRefGoogle Scholar
Kuhn, T. S.(1977) The Essential Tension: Selected Studies in Scientific Tradition and Change (Chicago: University of Chicago Press).Google Scholar
Kuhn, T. S.(1978) Black-Body Theory and the Quantum Discontinuity 1894–1912 (Oxford: Oxford University Press).Google Scholar
Kuhn, T. S.(1983) ‘Commensurability, comparability, communicability’, in Asquith, P. D. and Nickles, T. (eds.) PSA 1982: Proceedings of the 1982 Biennial Meeting of the Philosophy of Science Association, vol. 2 (East Lansing, Mich.: Philosophy of Science Association), 669–88. Reprinted in Kuhn (2000), 33–58.Google Scholar
Kuhn, T. S.(1989) ‘Possible worlds in history of science’, in Allén, Sture (ed.) Possible Worlds in Humanities, Arts and Sciences: Proceedings of Nobel Symposium 65 (Berlin: Walter de Gruyter). Reprinted in Kuhn (2000), 58–90.Google Scholar
Kuhn, T. S.(1990) ‘Dubbing and redubbing: the vulnerability of rigid designation’, in Savage, C. Wade (ed.) Scientific Theories, Minnesota Studies in the Philosophy of Science 14 (Minneapolis: University of Minnesota Press), 298–318.Google Scholar
Kuhn, T. S.(1991) ‘The road since structure’, in Fine, A., Forbes, M., and Wessels, L. (eds.) PSA 1990: Proceedings of the 1990 Biennial Meeting of the Philosophy of Science Association, vol. 2 (East Lansing, Mich.: Philosophy of Science Association), 3–13. Reprinted in Kuhn (2000), 90–105.Google Scholar
Kuhn, T. S.(1993) ‘Afterwards’, in Horwich, P. (ed.) World Changes. Thomas Kuhn and the Nature of Science (Cambridge, Mass.: MIT Press), 311–39. Reprinted in Kuhn (2000), 224–53.Google Scholar
Kuhn, T. S.(2000) The Road Since Structure. Philosophical Essays, 1970–1993, with an Autobiographical Interview (Chicago: University of Chicago Press).Google Scholar
Lakatos, I. (1978) Philosophical Papers, Vol. I: The Methodology of Scientific Research Programmes (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Landé, A. (1921a) ‘Über den anomalen Zeemaneffekt (Teil I)’, Zeitschrift für Physik 5, 231–41.CrossRefGoogle Scholar
Landé, A.(1921b) ‘Über den anomalen Zeemaneffekt (Teil II)’, Zeitschrift für Physik 7, 398–405.CrossRefGoogle Scholar
Landé, A.(1923a) ‘Termstruktur und Zeemaneffekt der Multipletts’, Zeitschrift für Physik 15, 189–205; ‘Termstruktur und Zeemaneffekt der Multipletts. Zweite Mitteilung’, Zeitschrift für Physik 19, 112–23.CrossRefGoogle Scholar
Landé, A.(1923b) ‘Zur Theorie der Röntgenspektren’, Zeitschrift für Physik 16, 391–96.CrossRefGoogle Scholar
Landé, A.(1923c) ‘Zur Struktur des Neonspektrums’, Zeitschrift für Physik 17, 292–4.CrossRefGoogle Scholar
Landé, A.(1923d) ‘Feinstruktur und Zeemaneffekt der Multipletts’, Zeitschrift für Physik 19, 112–23.CrossRefGoogle Scholar
Landé, A. and Heisenberg, W. (1924) ‘Termstruktur der Multipletts höherer Stufe’, Zeitschrift für Physik 25, 279–86.CrossRefGoogle Scholar
Larmor, J. (1897) ‘On the theory of the magnetic influence on spectra; and on the radiation from moving ions’, Philosophical Magazine 44, 503–12.Google Scholar
Laudan, L. (1990) ‘Demistifying underdetermination in scientific theories’, in Savage, C. Wade (ed.) Scientific Theories, Minnesota Studies in the Philosophy of Science 14 (Minneapolis: University of Minnesota Press), 267–97.Google Scholar
Lieb, E. H. (1991) The Stability of Matter: From Atoms to Stars. Selecta of Elliott H. Lieb (Berlin: Springer-Verlag). Second edition (1997).CrossRefGoogle Scholar
Lieb, E. H. and Thirring, W. E. (1991) ‘Bound for the kinetic energy of fermions which proves the stability of matter’, Physical Review Letters 35, 687–90.CrossRefGoogle Scholar
Lipton, P. (2001) ‘Kant on wheels’, London Review of Books, 19 July, 30–1. Reprinted in Social Epistemology17, 2003, 215–19.
Lorentz, H. A. (1897) ‘Über den Einfluss magnetischer Kräfte auf die Emission des Lichtes’, Wiedemannsche Annalen der Physik 63, 278–84.CrossRefGoogle Scholar
Majorana, E. (1932) ‘Teoria relativistica di particelle con momento intrinseco arbitrario’, Il Nuovo Cimento 9, 335–44.CrossRefGoogle Scholar
Massimi, M. (2001) ‘Exclusion principle and the identity of indiscernibles: a response to Margenau's argument’, British Journal for the Philosophy of Science 52, 303–31.CrossRefGoogle Scholar
Massimi, M.(2004a) ‘Non-defensible middle ground for experimental realism: why we are justified to believe in colored quarks’, Philosophy of Science 71, 36–60.CrossRefGoogle Scholar
Massimi, M.(2004b) ‘What demonstrative induction can do against the threat of underdetermination: Bohr, Heisenberg, and Pauli on spectroscopic anomalies (1921–24)’, Synthese 140, 243–77.CrossRefGoogle Scholar
Massimi, M. and Redhead, M. (2003) ‘Weinberg's proof of the spin–statistics theorem’, Studies in History and Philosophy of Modern Physics 34, 621–50.CrossRefGoogle Scholar
Mehra, J. and Rechenberg, H. (1982a) The Historical Development of Quantum Theory. Vol. 2: The Discovery of Quantum Mechanics 1925 (New York: Springer Verlag).CrossRefGoogle Scholar
Mehra, J. and Rechenberg, H.(1982b) The Historical Development of Quantum Theory. Vol. 3: The Formulation of Matrix Mechanics and its Modifications, 1925–1926 (New York: Springer Verlag).CrossRefGoogle Scholar
Mehra, J. and Rechenberg, H.(1982c) The Historical Development of Quantum Theory. Vol. 4, Part 1: The Fundamental Equations of Quantum Mechanics, 1925–1926. Part 2: The Reception of the New Quantum Mechanics, 1925–1926 (New York: Springer Verlag).Google Scholar
Messiah, A. M. L. and Greenberg, O. W. (1964a) ‘Symmetrization postulate and its experimental foundation’, Physical Review 136, B248–67.CrossRefGoogle Scholar
Messiah, A. M. L. and Greenberg, O. W.(1964b) ‘Selection rules for parafields and the absence of para particles in naturePhysical Review 138, B1155–67.Google Scholar
Miyamoto, Y. (1965) ‘Three kinds of triplet model’, in Extra Number Supplement of Progress of Theoretical Physics: Thirtieth Anniversary of the Yukawa Meson Theory, p. 187.
Ne'eman, Y. (1961) ‘Derivation of strong interactions from a gauge invariance’, Nuclear Physics26, 222–9. Reprinted in Gell-Mann, M. and Ne'eman, Y. (eds.) (1964) The Eightfold Way (New York: W. A. Benjamin), 58–65.Google Scholar
Ne'eman, Y. and Kirsh, Y. (1986) The Particle Hunters (Cambridge: Cambridge University Press).Google Scholar
Newton, I. (1687) Philosophiae Naturalis Principia Mathematica. English translation (1803) The Mathematical Principles of Natural Philosophy, by W. Davis (London: H. D. Symonds).CrossRefGoogle Scholar
Nickles, T. (ed.) (2003) Thomas Kuhn (Cambridge: Cambridge University Press).Google Scholar
Norton, J. D. (1993) ‘The determination of theory by evidence: the case for quantum discontinuity’, Synthese 97, 1–31.CrossRefGoogle Scholar
Norton, J. D.(1994) ‘Science and certainty’, Synthese 99, 3–22.CrossRefGoogle Scholar
Norton, J. D.(1995) ‘Eliminative induction as a method of discovery: how Einstein discovered general relativity’, in Leplin, J. (ed.) The Creation of Ideas in Physics (Dordrecht: Kluwer).CrossRefGoogle Scholar
Ohnuki, Y. and Kamefuchi, S. (1982) Quantum Field Theory and Parastatistics (Berlin: Springer).CrossRefGoogle Scholar
Oppenheimer, J. R. (1930) ‘Two notes on the probability of radiative transitions’, Physical Review 35, 939–47.CrossRefGoogle Scholar
Oppenheimer, J. R. and Plesset, M. S. (1933) ‘On the production of the positive electron’, Physical Review 44, 53–5.CrossRefGoogle Scholar
Paschen, F. and Back, E. (1921) ‘Liniengruppen magnetish vervollständigt’, Physica 1, 261–73.Google Scholar
Pauli, W. (1923) ‘Über die Gesetzmäβigkeiten des anomalen Zeemaneffektes’, Zeitschrift für Physik 16, 155–64.CrossRefGoogle Scholar
Pauli, W.(1924) ‘Zur Frage der Zuordnung der Komplexstrukturterme in starken und in schwachen äuβeren Feldern’, Zeitschrift für Physik 20, 371–87.CrossRefGoogle Scholar
Pauli, W.(1925a) ‘Über den Einfluβ der Geschwindigkeitsabhängigkeit der Elektronenmasse auf den Zeemaneffekt’, Zeitschrift für Physik 31, 373–85.CrossRefGoogle Scholar
Pauli, W.(1925b) ‘Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren’, Zeitschrift für Physik 31, 765–83.CrossRefGoogle Scholar
Pauli, W.(1926a) ‘Quantentheorie’, in Geiger, H. and Scheel, K. (eds.) Handbuch der Physik (Berlin: Springer), vol. 23, 1–278.Google Scholar
Pauli, W.(1926b) ‘Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik’, Zeitschrift für Physik 36, 336–63.CrossRefGoogle Scholar
Pauli, W.(1927a) ‘Über Gasentartung und Paramagnetismus’, Zeitschrift für Physik 41, 81–102.CrossRefGoogle Scholar
Pauli, W.(1927b) ‘Zur Quantenmechanik des magnetischen Elektrons’, Zeitschrift für Physik 43, 601–23.CrossRefGoogle Scholar
Pauli, W.(1936) ‘Théorie quantique relativiste des particules obéissant à la statistique de Einstein-Bose’, Annales de l'Institut Henri Poincaré 6, 137–52.Google Scholar
Pauli, W.(1940) ‘The connection between spin and statistics’, Physical Review 58, 716–22.CrossRefGoogle Scholar
Pauli, W.(1946) ‘Remarks on the history of the exclusion principle’, Science 103, 213–15.CrossRefGoogle ScholarPubMed
Pauli, W.(1948) ‘Exclusion principle and quantum mechanics’ in Les Prix Nobel en 1946 (Stockholm: Norstedt & Söner), 131–47.Google Scholar
Pauli, W.(1955) ‘Rydberg and the periodic system of elements’, Proceedings of the Rydberg Centennial Conference on Atomic Spectroscopy, Lund 1954, Universitets Arsskrift 50, 22–6.Google Scholar
Pauli, W.(1964) Collected Scientific Papers by Wolfgang Pauli, Vols. I–II, edited by Kronig, R. and Weisskopf, V. F. (New York, London: Wiley Interscience).Google Scholar
Pauli, W.(1979) Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., Band 1: 1919–1929, edited by Hermann, A., Meyenn, K., and Weisskopf, V. F. (Berlin, Heidelberg: Springer Verlag).Google Scholar
Pauli, W.(1985) Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., Band 2: 1930–1939, edited by Meyenn, K. (Berlin: Springer Verlag).Google Scholar
Pauli, W(1993) Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., Band 3: 1940–1949, edited by Meyenn, K. (Berlin: Springer Verlag).Google Scholar
Pauli, W. and Belinfante, F. J. (1940) ‘On the statistical behaviour of known and unknown elementary particles’, Physica 7, 177–92.CrossRefGoogle Scholar
Pauli, W. and Weisskopf, V. (1934) ‘Über die Quantisierung der skalaren relativistischen Wellengleichung’, Helvetica Physica Acta 7, 709–31.Google Scholar
Petruccioli, S. (1988) Atomi metafore paradossi (Roma: Theoria). English translation (1993) Atoms, Metaphors and Paradoxes: Niels Bohr and the Construction of a New Physics (Cambridge: Cambridge University Press).Google Scholar
Pickering, A. (1984) Constructing Quarks (Edinburgh: Edinburgh University Press).Google Scholar
Poincaré, H. (1902) La science et l'hypothèse (Paris: Flammarion). English translation (1982) ‘Science and hypothesis’, in Royce, J. (ed.) The Foundations of Science (Washington: University Press of America).Google Scholar
Poincaré, H.(1905) La valeur de la science (Paris: Flammarion). English translation (1982) ‘The value of science,’ in Royce, J. (ed.) The Foundations of Science (Washington: University Press of America).Google Scholar
Politzer, H. D. (1973) ‘Reliable perturbative results for strong interactions?’, Physical Review Letters 30, 1346–9.CrossRefGoogle Scholar
Popper, K. (1934) Logik der Forschung (Vienna: Springer). English translation (1968) The Logic of Scientific Discovery (London: Hutchinson & Co.).Google Scholar
Popper, K.(1972) Objective Knowledge (Oxford: Clarendon Press).Google Scholar
Putnam, H. (1975) ‘The meaning of “meaning” ’, in Gunderson, K. (ed.) Language, Mind and Knowledge, Minnesota Studies in the Philosophy of Science 7 (Minneapolis: University of Minnesota Press). Reprinted in H. Putnam (1975) Mind, Language and Reality. Philosophical Papers, Vol. 2 (Cambridge: Cambridge University Press), 215–71.Google Scholar
Putnam, H.(1981) Reason, Truth and History (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Quine, W. V. O. (1951) ‘Two dogmas of empiricism’, Philosophical Review 60, 20–43.CrossRefGoogle Scholar
Quine, W. V. O.(1953) From a Logical Point of View (Cambridge, Mass.: Harvard University Press).Google Scholar
Ramberg, E. and Snow, G. (1990) ‘Experimental limit on a small violation of the Pauli principle’, Physics Letters B238, 438–41.CrossRefGoogle Scholar
Redhead, M. (1975) ‘Symmetry in intertheory relations’, Synthese 32, 77–112.CrossRefGoogle Scholar
Redhead, M.(1982) ‘Quantum field theory for philosophers’, PSA: Proceedings of the 1982 Biennial Meeting of the Philosophy of Science Association, vol. 2 (East Lansing, Mich.: Philosophy of Science Association), pp. 57–99.Google Scholar
Redhead, M.(2003) ‘The interpretation of gauge symmetry’, in Brading, K. and Castellani, E. (eds.) Symmetries in Physics (Cambridge: Cambridge University Press), 124–39.CrossRefGoogle Scholar
Redhead, M. and Teller, P. (1992) ‘Particle labels and the theory of indistinguishable particles in quantum mechanics’, British Journal for the Philosophy of Science 43, 201–18.CrossRefGoogle Scholar
Reichenbach, H. (1920) Relativitätstheorie und Erkenntnis Apriori (Berlin: Springer). English translation (1965) The Theory of Relativity and A Priori Knowledge (Los Angeles: University of California Press).CrossRefGoogle Scholar
Richter, B. (1977) ‘From the psi to charm: the experiments of 1975 and 1976’, Review of Modern Physics 49, 251–66.CrossRefGoogle Scholar
Rubinowicz, A. (1918) ‘Borsche Frequenzbedingung und Erhaltung des Impulsmomentes. Teil I’, Physikal Zeitschrift 19, 441–5.Google Scholar
Runge, C. (1907) ‘Über die Zerlegung von Spektallinien im magnetischen Felde’, Physikalische Zeitschrift 8, 232–37.Google Scholar
Salam, A. and Ward, J. C. (1964) ‘Electromagnetic and weak interactions’, Physics Letters 13, 168–71.CrossRefGoogle Scholar
Schrödinger, E. (1926a) ‘Quantisierung als Eigenwertproblem. Erste Mitteilung’, Annalen der Physik 79, 361–76.CrossRefGoogle Scholar
Schrödinger, E.(1926b) ‘Quantisierung als Eigenwertproblem. Zweite Mitteilung’, Annalen der Physik 79, 489–527.CrossRefGoogle Scholar
Schrödinger, E.(1926c) ‘Über das Verhältnis der Heisenberg–Born–Jordanschen Quantenmechanik zu der meinen’, Annalen der Physik 79, 734–56.CrossRefGoogle Scholar
Serwer, D. (1977) ‘Unmechanischer Zwang: Pauli, Heisenberg, and the rejection of the mechanical atom 1923–1925’, Historical Studies in the Physical Sciences 8, 189–256.CrossRefGoogle Scholar
Silvestrini, V. (1972) ‘Electron-positron interactions’, in Jackson, J. D. and Roberts, A. (eds.) Proceedings of the XVI International Conference on High Energy Physics, National Accelerator Laboratory, Batavia, Illinois, 6–13 September 1972 (Batavia: National Accelerator Laboratory).Google Scholar
Slater, J. C. (1929) ‘The theory of complex spectra’, Physical Review 34, 1293–322.CrossRefGoogle Scholar
Sommerfeld, A. (1916a) ‘Zur Quantentheorie der Spektrallinien’, Annalen der Physik 51, 1–94; 125–67.CrossRefGoogle Scholar
Sommerfeld, A.(1916b) ‘Zur Theorie des Zeeman-Effekts der Wasserstofflinien, mit einem Anhang über den Stark-EffektPhysikalische Zeitschrift 17, 491–507.Google Scholar
Sommerfeld, A.(1919) Atombau und Spektrallinien (Braunschweig: Vieweg).Google Scholar
Sommerfeld, A.(1920) ‘Allgemeine spektroskopische Gesetze, insbesondere ein magnetooptischer Zerlegungssatz’, Annalen der Physik 63, 221–63.CrossRefGoogle Scholar
Sommerfeld, A.(1922) ‘Quantentheoretische Umdeutung der Voigtschen Theorie des anomalen Zeemaneffektes vom D-Linientypus’, Zeitschrift für Physik 8, 257–72.CrossRefGoogle Scholar
Stolt, R. H. and Taylor, J. R. (1970) ‘Correspondence between the first- and the second-quantized theories of paraparticles’, Nuclear Physics 19B, 1–19.Google Scholar
Stoner, E. C. (1924) ‘The distribution of electrons among atomic levels’, Philosophical Magazine 48, 719–36.Google Scholar
Tavkhelidze, A. (1965) ‘Higher symmetries and composite models of elementary particles’, in High Energy Physics and Elementary Particles (Vienna: International Atomic Energy Agency), 753–62.Google Scholar
Thomas, L. H. (1926) ‘The motion of the spinning electron’, Nature 117, 514.CrossRefGoogle Scholar
Thomas, L. H.(1927) ‘The kinematics of an electron with an axis’, Philosophical Magazine (7)3, 1–22.Google Scholar
't Hooft, G. (1971) ‘Renormalizable Lagrangians for massive Yang-Mills fields’, Nuclear Physics B35, 167–88.CrossRefGoogle Scholar
Tomonaga, S. (1997) The History of Spin (Chicago: University of Chicago Press).Google Scholar
Uhlenbeck, G. E. and Goudsmit, S. (1925) ‘Ersetzung der Hypothese vom unmechanischer Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons’, Naturwissenschaften 13, 953–4.Google Scholar
Uhlenbeck, G. E. and Goudsmit, S.(1926) ‘Spinning electrons and the structure of spectra’, Nature 117, 264–5.CrossRefGoogle Scholar
Van der Waerden, B. L. (1960) ‘Exclusion principle and spin’, in Fierz, M. and Weisskopf, V. F. (eds.) Theoretical Physics in the Twentieth Century: A Memorial Volume to Wolfgang Pauli (New York: Interscience Publishers), 199–244.Google Scholar
Fraassen, Bas (1980) The Scientific Image (Oxford: Oxford University Press).CrossRefGoogle Scholar
Fraassen, Bas(2002) The Empirical Stance (New Haven and London: Yale University Press).Google Scholar
Vleck, J. H. (1922) ‘The normal helium atom and its relation to the quantum theoryPhilosophical Magazine 44, 842–69.Google Scholar
Neumann, J. and Wigner, E. (1928a) ‘Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons’, Zeitschrift für Physik 47, 203–20.CrossRefGoogle Scholar
Neumann, J. and Wigner, E.(1928b) ‘Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons. Zweiter Teil’, Zeitschrift für Physik 49, 73–94.CrossRefGoogle Scholar
Neumann, J. and Wigner, E.(1928c) ‘Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons. Dritter Teil’, Zeitschrift für Physik 51, 844–58.CrossRefGoogle Scholar
Weinberg, S. (1964) ‘Feynman Rules for any spin’, Physical Review 133, B1318–32.CrossRefGoogle Scholar
Weisskopf, V. (1934) ‘Über die Selbstenergie des Elektrons’, Zeitschrift für Physik 89, 27–39.CrossRefGoogle Scholar
Weisskopf, V.(1939) ‘On the self-energy of the electromagnetic field of the electron’, Physical Review 56, 72–85.CrossRefGoogle Scholar
Weisskopf, V. F. (1983) ‘Growing up with field theory: the development of quantum electrodynamics’, in Brown, L. M. and Hoddeson, L. (eds.) The Birth of Particle Physics (Cambridge: Cambridge University Press), 56–81.Google Scholar
Weyl, H. (1928) Gruppentheorie und Quantenmechanik (Leipzig: Hirzel). English translation (1930) The Theory of Groups and Quantum Mechanics (New York: Dover).Google Scholar
Weyl, H.(1929) ‘Elektrons und Gravitation. I’, Zeitschrift für Physik 56, 330–52.CrossRefGoogle Scholar
White, H. E. (1934) Introduction to Atomic Spectra (New York, London: McGraw-Hill Book Company).Google Scholar
Wigner, E. (1927) ‘Einige Folgerungen aus der Schrödingerschen Theorie für die TermstrukturenZeitschrift für Physik 43, 624–52.CrossRefGoogle Scholar
Wilczek, F. (1990) Fractional Statistics and Anyon Superconductivity (Singapore: World Scientific).CrossRefGoogle Scholar
Yang, C. N. and Mills, R. (1954) ‘Conservation of isotopic spin and isotopic gauge invariance’, Physical Review 96, 191–5.CrossRefGoogle Scholar
Zeeman, P. (1896) ‘Over den invloed eener magnetisatie op den aard van het door een stof uitgezonden licht’, Verlag van de Gewone Vergaderingen der Wis-en Natur-kundige Afdeeling, Koninklijke Akademie van Wetenschappen te Amsterdam5, 181–5, 242–8. English translation (1897) ‘On the influence of magnetism on the nature of the light emitted by a substance’, Philosophical Magazine43, 226–39.
Zweig, G. (1964a) ‘An SU3 model for strong interaction symmetry and its breaking’, CERN preprint 8182/TH401 (17 January 1964).
Zweig, G.(1964b) ‘An SU3 model for strong interaction symmetry and its breaking: II’, CERN preprint 8419/TH412 (21 February 1964).
Adler, S. L. (1969) ‘Axial-vector vertex in spinor electrodynamics’, Physical Review 177, 2426–38.CrossRefGoogle Scholar
Adler, S. L.(2004) ‘Anomalies to all orders’, arXiv: hep-th/0405040.
Adler, S. L.(2005) ‘Remarks on the history of quantum chromodynamics’, submitted to Physics Today. In arXiv: hep-ph/0412297.
d'Alembert, J. Le Rond (1751) ‘Discours préliminaire des editeurs’, in Encyclopédie, ou Dictionnaire raisonné des sciences, des artes et des métiers, par une société de gens de lettres (Paris: Briasson, Le Breton, Durand). English translation (1995) Preliminary Discourse on the Encyclopaedia of Diderot, translated by R. Schwab (Chicago: University of Chicago Press).Google Scholar
Allison, H. E. (1994) ‘Causality and causal laws in Kant: a critique of Michael Friedman’, in Parrini, P., (ed.) Kant and Contemporary Epistemology (Dordrecht: Kluwer Academic Publishers), 291–307.CrossRefGoogle Scholar
Anderson, C. D. (1933) ‘The positive electron’, Physical Review 43, 491–4.CrossRefGoogle Scholar
Appelquist, T. and Politzer, H. D. (1975) ‘Heavy quarks and e+e− annihilation’, Physical Review Letters 34, 43–5.CrossRefGoogle Scholar
Aubert, J. J., Ting, S.et al. (1974) ‘Experimental observation of a heavy particle J’, Physical Review Letters 33, 1404–6.CrossRefGoogle Scholar
Augustin, J. E., Richter, B.et al. (1974) ‘Discovery of a narrow resonance in e+e− annihilation’, Physical Review Letters 33, 1406–8.CrossRefGoogle Scholar
Bacry, H.et al. (1964) ‘Basic SU3 triplets with integral charge and unit baryon number’, Physics Letters 9, 279–80.CrossRefGoogle Scholar
Bardeen, W. A., Fritzsch, H., and Gell-Mann, M. (1973) ‘Light-cone current algebra, π0 decay, and e+e− annihilation’, in Gatto, R. (ed.) Scale and Conformal Symmetry in Hadron Physics (New York: Wiley). Reissued in arXiv: hep-ph/0212183.Google Scholar
Barnes, V. E., et al. (1964) ‘Observation of a hyperon with strangeness minus three’, Physical Review Letters12, 204–6. Reprinted in M. Gell-Mann and Y. Ne'eman (eds.) (1964) The Eightfold Way (New York: W. A. Benjamin), 88–90.CrossRef
Belinfante, F. J. (1939) ‘The undor equation of the meson field’, Physica 6, 870–86.CrossRefGoogle Scholar
Bell, J. S. and Jackiw, R. (1969) ‘A PCAC puzzle: π0→ γγ in the σ-model’, Il Nuovo Cimento A60, 47–61.CrossRefGoogle Scholar
Bjorken, J. D. and Glashow, S. L. (1964) ‘Elementary particles and SU(4)’, Physics Letters 11, 255–7.CrossRefGoogle Scholar
Bjorken, J. D. and Paschos, E. A. (1969) ‘Inelastic electron-proton and γ-proton scattering and the structure of nucleon’, Physical Review 185, 1975–82.CrossRefGoogle Scholar
Blackett, P. M. S. and Occhialini, G. P. S. (1933) ‘Some photographs of the tracks of penetrating radiation’, Proceedings of the Royal Society A139, 699–726.CrossRefGoogle Scholar
Bohr, N. (1913) ‘On the constitution of atoms and molecules’, Philosophical Magazine 26, 1–25; 476–502; 857–75.Google Scholar
Bohr, N.(1914) ‘Om Brintspektret’, Fysisk Tidsskrift 12, 97–114.Google Scholar
Bohr, N.(1923) ‘Linienspektren und Atombau’, Annalen der Physik 71, 228–88.CrossRefGoogle Scholar
Bohr, N.(1976) Niels Bohr Collected Works, Vol. 2, edited by Rosenfeld, L., Nielsen, J. Rudet al. (Amsterdam: North-Holland Publishing Company).Google Scholar
Bohr, N.(1977) Niels Bohr Collected Works, Vol. 3–4, edited by Rosenfeld, L., Nielsen, J. Rudet al. (Amsterdam: North-Holland Publishing Company).Google Scholar
Bohr, N. and Coster, D. (1923) ‘Röntegenspektren und periodisches System der Elemente’, Zeitschrift für Physik 12, 342–74.CrossRefGoogle Scholar
Bohr, N., Kramers, H. A., and Slater, J. C. (1924) ‘The quantum theory of radiation’, Philosophical Magazine 47, 785–802.Google Scholar
Born, M. and Jordan, P. (1925) ‘Zur QuantenmechanikZeitschrift für Physik 34, 858–88.CrossRefGoogle Scholar
Born, M., Heisenberg, W., and Jordan, P. (1926) ‘Zur Quantenmechanik IIZeitschrift für Physik 35, 557–615.CrossRefGoogle Scholar
Bose, S. N. (1924) ‘Plancks Gesetz und Lichtquantenhypothese’, Zeitschrift für Physik 26, 178–81.CrossRefGoogle Scholar
Brading, K. and Castellani, E. (eds.) (2003) Symmetries in Physics (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Buchdahl, G. (1969a) Metaphysics and the Philosophy of Science (Cambridge, Mass.: MIT Press).Google Scholar
Buchdahl, G.(1969b) ‘The Kantian “Dynamic of Reason”, with special reference to the place of causality in Kant's system’, in Beck, L. W. (ed.) Kant Studies Today (La Salle, Ill.: Open Court), 341–74.Google Scholar
Buchdahl, G.(1974) ‘The conception of lawlikeness in Kant's philosophy of science’, in Beck, L. W. (ed.) Kant's Theory of Knowledge (Dordrecht: Reidel), 128–50.CrossRefGoogle Scholar
Buchdahl, G.(1986) ‘Metaphysical and Internal Realism: the relations between ontology and methodology in Kant's philosophy of science’, in Marcus, R. Barcanet al. (eds.) Logic, Methodology, and Philosophy of Science VII: Proceedings of the Seventh International Congress of Logic, Methodology and Philosophy of Science, Salzburg, 1983 (Amsterdam: North–Holland), 623–41.Google Scholar
Butts, R. E. (1991) ‘Comments on Michael Friedman: “Regulative and Constitutive”’, The Southern Journal of Philosophy 30, Suppl., 103–8.CrossRefGoogle Scholar
Cabibbo, N. (1963) ‘Unitary symmetry and leptonic decay’, Physical Review Letters 10, 531–3.CrossRefGoogle Scholar
Cao, T. (2003a) ‘Structural realism and the interpretation of quantum field theory’, Synthese 136, 3–24.CrossRefGoogle Scholar
Cao, T.(2003b) ‘Can we dissolve physical entities into mathematical structures?’, Synthese 136, 57–71.CrossRefGoogle Scholar
Cassidy, D. C. (1979) ‘Heisenberg's first core model of the atom: the formation of a professional style’, Historical Studies in Physical Sciences 10, 187–224.CrossRefGoogle Scholar
Cassirer, E. (1910) Substanzbegriff und Funktionsbegriff. Untersuchungen zu den Grundfragen der Erkenntniskritik (Berlin: Bruno Cassirer). English translation (1953) Substance and Function and Einstein's Theory of Relativity, by W. C. Swabey (New York: Dover Publications).Google Scholar
Cassirer, E.(1932) Die Philosophie der Aufklärung (Tübingen: J. C. B. Mohr). English translation, fifth edition (1962) The Philosophy of the Enlightenment, by F. Koelln and J. Pettegrove (Boston: Beacon Press).Google Scholar
Cassirer, E.(1936) Determinismus und Indeterminismus in der modernen Physik (Göteborg: Högskolas Arsskrift 42). English translation (1956) Determinism and Indeterminism in Modern Physics, by O. T. Benfey (New Haven: Yale University Press).Google Scholar
Close, F. E. (1997) ‘Glueballs and hybrids: new states of matter’, Contemporary Physics 38, 1–12.CrossRefGoogle Scholar
Cowan, C. L., Reines, F.et al. (1956) ‘Detection of the free neutrino: a confirmation’, Science 124, 103–4.CrossRefGoogle ScholarPubMed
Darwin, C. G. (1927a) ‘The electron as a vector wave’, Nature 119, 282–4.CrossRefGoogle Scholar
Darwin, C. G.(1927b) ‘The electron as a vector wave’, Proceedings of the Royal Society A116, 227–53.CrossRefGoogle Scholar
Darwin, C. G.(1928) ‘The wave equation of the electron’, Proceedings of the Royal Society A118, 654–80.CrossRefGoogle Scholar
Broglie, L. (1925) ‘Recherche sur la théorie des quanta’, Annales de Physique 3, 22–128.CrossRefGoogle Scholar
Broglie, L. and Dauvillier, A. (1922) ‘Sur les analogies de structure entre les séries optiques et les séries de Röntgen’, Comptes Rendus de l'Académie des Sciences, Paris 175, 755–6.Google Scholar
Groot, J. G. H.et al. (1979) ‘Inclusive interactions of high-energy neutrinos and antineutrinos in iron’, Zeitschrift für Physik C1, 143–62.Google Scholar
Deilamian, K., Gillaspy, J. D., and Kelleher, D. E. (1995) ‘Search for small violations of the symmetrization postulate in an excited state of helium’, Physical Review Letters 74, 4787–90.CrossRefGoogle Scholar
Dirac, P. A. M. (1925) ‘The fundamental equations of quantum mechanicsProceedings of the Royal Society A109, 642–53.CrossRefGoogle Scholar
Dirac, P. A. M.(1926a) ‘Quantum mechanics and a preliminary investigation of the hydrogen atomProceedings of the Royal Society A110, 561–69.CrossRefGoogle Scholar
Dirac, P. A. M.(1926b) ‘On the theory of quantum mechanics’, Proceedings of the Royal Society A112, 661–77.CrossRefGoogle Scholar
Dirac, P. A. M.(1927) ‘The quantum theory of the emission and absorption of radiation’, Proceedings of the Royal Society A114, 243–65.CrossRefGoogle Scholar
Dirac, P. A. M.(1928a) ‘The quantum theory of the electron’, Proceedings of the Royal Society A117, 610–24.CrossRefGoogle Scholar
Dirac, P. A. M.(1928b) ‘The quantum theory of the electron. Part II’, Proceedings of the Royal Society A118, 351–61.CrossRefGoogle Scholar
Dirac, P. A. M.(1930a) ‘A theory of electrons and protons’, Proceedings of the Royal Society A126, 360–5.CrossRefGoogle Scholar
Dirac, P. A. M.(1930b) ‘On the annihilation of electrons and protons’, Proceedings of the Cambridge Philosophical Society 26, 361–75.CrossRefGoogle Scholar
Dirac, P. A. M.(1931) ‘Quantised singularities in the electromagnetic field’, Proceedings of the Royal Society A133, 60–72.CrossRefGoogle Scholar
Dirac, P. A. M.(1934a) ‘Theory of the positron’, in Structure et Propriétés des Noyaux Atomiques. Rapports et discussions du septième conseil de physique tenue à Bruxelles du 22 au 29 Octobre 1933 sous les auspices de l'Institut International de Physique Solvay (Paris: Gauthier-Villars), 203–30.Google Scholar
Dirac, P. A. M.(1934b) ‘Discussion of the infinite distribution of electrons in the theory of the positron’, Proceedings of the Cambridge Philosophical Society 30, 150–63.CrossRefGoogle Scholar
Dorling, J. (1973) ‘Demonstrative induction: its significant role in the history of physics’, Philosophy of Science 49, 360–72.CrossRefGoogle Scholar
Dorling, J.(1974) ‘Henry Cavendish's deduction of the electrostatic inverse square law from the result of a single experiment’, Studies in the History and Philosophy of Science 4, 327–48.CrossRefGoogle Scholar
Dorling, J.(1991) ‘Reasoning from phenomena: lessons from Newton’, PSA 1990, vol. 2, 197–208.Google Scholar
Drake, G. W. F. (1989) ‘Predicted energy shift for paronic helium’, Physical Review A39, 897–9.CrossRefGoogle Scholar
Duck, I. and Sudarshan, E. C. G. (1997) Pauli and the Spin-Statistics Theorem (Singapore: World Scientific).Google Scholar
Duhem, P. (1906) La Theorie Physique: Son Object, Sa Structure (Paris: Marcel Riviere & Cie.). English translation (1991) The Aim and Structure of Physical Theory (Princeton: Princeton University Press).Google Scholar
Dyson, F. J. (1967) ‘Ground-state energy of a finite system of charged particles’, Journal of Mathematical Physics 8, 1538–45.CrossRefGoogle Scholar
Dyson, F. J.(1996) Selected Papers of Freeman Dyson with commentary (Cambridge, Mass.: International Press).Google Scholar
Dyson, F. J. and Lenard, A. (1967) ‘Stability of matter I’, Journal of Mathematical Physics 8, 423–34.CrossRefGoogle Scholar
Dyson, F. J. and Lenard, A.(1968) ‘Stability of matter II’, Journal of Mathematical Physics 9, 698–711.Google Scholar
Eco, U. (1984) Semiotics and the Philosophy of Language (Bloomington: Indiana University Press).CrossRefGoogle Scholar
Ehrenfest, P., (1913) ‘Een mechanische theorema van Boltzmann en zijne betrekking tot de quanta theorie’, Verslag van de Gewoge Vergaderingen der Wis-en Natuurkundinge Afdeeling, Amsterdam, 586–93. English translation (1914) ‘A mechanical theorem of Boltzmann and its relation to theory of energy quanta’, Proceedings of the Amsterdam Academy16, 591–7.
Ehrenfest, P.(1927) ‘Besteht ein allgemeiner Zusammenhang zwischen der wechselseitigen Undurchdringlichkeit materieller Teilchen und dem “Pauli-Verbot”?Naturwissenschaften 15, 161–2.CrossRefGoogle Scholar
Einstein, A. (1924) ‘Quantentheorie des einatomigen idealen Gases’, Sitzungsberichte Preussische Akademie der Wissenschaften, Physikalisch–Mathematische Klasse, 261–67.Google Scholar
Einstein, A.(1925a) ‘Quantentheorie des einatomigen idealen Gases. 2. Abhandlung’, Sitzungsberichte Preussische Akademie der Wissenschaften, Physikalisch–Mathematische Klasse, 3–14.Google Scholar
Einstein, A.(1925b) ‘Quantentheorie des idealen Gases’, Sitzungsberichte Preussische Akademie der Wissenschaften, Phyisikalisch–Mathematische Klasse, 18–25.Google Scholar
Enz, C. P. (2002) No Time to be Brief. A Scientific Biography of Wolfgang Pauli (Oxford: Oxford University Press).CrossRefGoogle Scholar
Fermi, E. (1926) ‘Sulla quantizzazione del gas perfetto monoatomico’, Rendiconti della Reale Accademia dei Lincei 3, 145–9.Google Scholar
Fermi, E.(1934) ‘Versuch einer Theorie der β–Strahlen’, Zeitschrift für Physik 88, 161–71.CrossRefGoogle Scholar
Fermi, E.(1962) Collected Papers, Vol. I (Chicago: University of Chicago Press).Google Scholar
Feynman, R. P. (1972), Photon-Hadron Interactions (New York: Benjamin).Google Scholar
Feynman, R. P. and Gell-Mann, M. (1958) ‘Theory of the Fermi interaction’, Physical Review 109, 193–98.CrossRefGoogle Scholar
Fierz, M. (1939) ‘Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin’, Helvetica Physica Acta 12, 3–37.Google Scholar
Fierz, M. and Pauli, W. (1939) ‘Über relativistische Feldgleichungen von Teilchen mit beliebigem Spin im elektromagnetischen Feld’, Helvetica Physica Acta 12, 297–300. Reprinted with the English translation (1939) in Proceedings of the Royal Society A173, 211–32.Google Scholar
Forman, P. (1968) ‘The doublet riddle and atomic physics circa 1924’, Isis 59, 156–74.CrossRefGoogle Scholar
Forman, P.(1970) ‘Alfred Landé and the anomalous Zeeman effect, 1919–1921’, Historical Studies in the Physical Sciences 2, 153–261.CrossRefGoogle Scholar
French, S., (1984) ‘Identity and individuality in classical and quantum physics’, Ph.D. thesis, University of London.
French, S.(1995) ‘The esperable uberty of quantum chromodynamics’, Studies in History and Philosophy of Modern Physics 26, 87–105.CrossRefGoogle Scholar
French, S. and Ladyman, J. (2003a) ‘Remodelling structural realism: quantum physics and the metaphysics of structure’, Synthese 136, 31–56.CrossRefGoogle Scholar
French, S. and Ladyman, J.(2003b) ‘The dissolution of objects: between Platonism and Phenomenalism’, Synthese 136, 73–7.CrossRefGoogle Scholar
French, S. and Redhead, M. (1988) ‘Quantum physics and the identity of indiscernibles’, British Journal for the Philosophy of Science 39, 233–46.CrossRefGoogle Scholar
French, S. and Rickles, D. (2003) ‘Understanding permutation symmetry’, in Brading, K. and Castellani, E. (eds.) Symmetries in Physics (Cambridge: Cambridge University Press), 212–38.CrossRef
Frenkel, J. (1926) ‘Die Elektrodynamik des rotierenden Elektrons’, Zeitschrift für Physik 37, 243–62.CrossRefGoogle Scholar
Friedman, M. (1989) ‘Kant on space, the understanding, and the law of gravitation: Prolegomena 38’, Monist 79, 236–84.CrossRefGoogle Scholar
Friedman, M.(1991) ‘Regulative and constitutive’, The Southern Journal of Philosophy 30, Suppl., 73–102.CrossRefGoogle Scholar
Friedman, M.(1992a) Kant and the Exact Sciences (Cambridge, Mass.: Harvard University Press).Google Scholar
Friedman, M.(1992b) ‘Causal laws and the foundations of natural science’, in Guyer, P. (ed.) The Cambridge Companion to Kant (Cambridge: Cambridge University Press), 161–99.CrossRefGoogle Scholar
Friedman, M.(1994) ‘Kant and the twentieth century’, in Parrini, P. (ed.) Kant and Contemporary Epistemology (Dordrecht: Kluwer Academic Publishers), 27–46.CrossRefGoogle Scholar
Friedman, M.(1999) Reconsidering Logical Positivism (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Friedman, M.(2000a) ‘Transcendental philosophy and a priori knowledge: a neo-Kantian perspective’, in Boghossian, P. and Peacocke, C. (eds.) New Essays on the A Priori (Oxford: Clarendon Press).CrossRefGoogle Scholar
Friedman, M.(2000b) A Parting of the Ways. Carnap, Cassirer, Heidegger (La Salle, Ill.: Open Court).Google Scholar
Friedman, M.(2001) The Dynamics of Reason. Stanford Kant Lectures (Stanford: CSLI Publications).Google Scholar
Fritzsch, H. and Gell-Mann, M. (1972) ‘Light cone current algebra’, hep-ph/0301127.
Galison, P. (1997) Image and Logic (Chicago: University of Chicago Press).Google Scholar
Gell-Mann, M. (1961) ‘The Eightfold Way: A Theory of Strong Interaction Symmetry’, California Institute of Technology Synchrotron Laboratory Report CTSL-20. Reprinted in Gell-Mann, M. and Ne'eman, Y. (eds.) (1964) The Eightfold Way (New York: W. A. Benjamin), 11–57.Google Scholar
Gell-Mann, M.(1962a) ‘Strange particle physics. Strong interactions’, Proceedings of the International Conference on High Enery Physics (CERN, 1962). Reprinted in Gell-Mann, M. and Ne'eman, Y. (eds.) (1964) The Eightfold Way (New York: W. A. Benjamin), 87.Google Scholar
Gell-Mann, M.(1962b) ‘Symmetries of baryons and mesons’, Physical Review 125, 1067–84.CrossRefGoogle Scholar
Gell-Mann, M.(1964) ‘A schematic model of baryons and mesons’, Physics Letters8, 214–5. Reprinted in Gell-Mann, M. and Ne'eman, Y. (eds.) (1964) The Eightfold Way (New York: W. A. Benjamin), 168–9.Google Scholar
Gell-Mann, M. and Lévy, M. (1960) ‘The axial vector current in beta decay’, Il Nuovo Cimento 16, 705–25.CrossRefGoogle Scholar
Gentile, G. (1940) ‘Osservazioni sopra le statistiche intermedie’, Il Nuovo Cimento 17, 493–7.CrossRefGoogle Scholar
Glashow, S. L. (1961) ‘Partial symmetries of weak interactions’, Nuclear Physics 22, 579–88.CrossRefGoogle Scholar
Glashow, S. L., Iliopoulos, J., and Maiani, L. (1970) ‘Weak interactions with lepton-hadron symmetry’, Physical Review D2, 1285–92.Google Scholar
Goldhaber, M. and Scharff-Goldhaber, G. (1948) ‘Identification of beta-rays with atomic electrons’, Physical Review 73, 1472–3.CrossRefGoogle Scholar
Gordon, W. (1926) ‘Der Compton Effekt nach der Schrödingerschen Theorie’, Zeitschrift für Physik 40, 117–33.CrossRefGoogle Scholar
Gordon, W.(1928) ‘Die Energieniveaus des Wasserstoffatoms nach der Diracschen Quantentheorie des Elektrons’, Zeitschrift für Physik 48, 11–4.CrossRefGoogle Scholar
Green, H. S. (1953) ‘A generalised method of field quantization’, Physical Review 90, 270–3.CrossRefGoogle Scholar
Greenberg, O. W. (1964) ‘Spin and unitary-spin independence in a paraquark model of baryons and mesonsPhysical Review Letters 13, 598–602.CrossRefGoogle Scholar
Greenberg, O. W.(1991) ‘Particles with small violations of Fermi or Bose statistics’, Physical Review D43, 4111–20.Google Scholar
Greenberg, O. W.(1993) ‘Color: from baryon spectroscopy to QCD’, in Gai, Moshe (ed.) International Conference on the Structure of Baryons and Related Mesons, June 1–4, 1992, Yale University (Singapore; River Edge, NJ: World Scientific).Google Scholar
Greenberg, O. W.(1999) ‘Quon statistics for composite systems and a limit on the violation of the Pauli principle for nucleons and quarks’, Physical Review Letters 83, 4460–63.CrossRefGoogle Scholar
Greenberg, O. W. and Macrae, K. I. (1983) ‘Locally gauge-invariant formulation of parastatistics’, Nuclear Physics B219, 358–66.CrossRefGoogle Scholar
Greenberg, O. W. and Mohapatra, R. N. (1989) ‘Phenomenology of small violations of Fermi and Bose statistics’, Physical Review D39, 2032–8.Google Scholar
Greenberg, O. W. and Nelson, C. A. (1977) ‘Color models of hadrons’, Physics Reports 32, 69–121.CrossRefGoogle Scholar
Gross, D. J. and Wilczek, F. (1973) ‘Asymptotically free gauge theories: I’, Physical Review D8, 3633–52.Google Scholar
Guyer, P. (1990) ‘Reason and reflective judgement: Kant on the significance of systematicity’, Noûs 24, 17–43.CrossRefGoogle Scholar
Guyer, P.(2003) ‘Kant's principles of reflecting judgment’, in Guyer, P. (ed.) Kant's Critique of the Power of Judgment. Critical Essays (Lanham: Rowman & Littlefield Publishers), 1–61.Google Scholar
Haar, D. (1952) ‘Gentile's intermediate statistics’, Physica 18, 199–200.CrossRefGoogle Scholar
Hacking, I. (1983) Representing and Intervening (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Hacking, I.(1993) ‘Working in a new world: the taxonomic solution’, in Horwich, P. (ed.) World Changes. Thomas Kuhn and the Nature of Science (Cambridge, Mass.: MIT Press), 275–310.Google Scholar
Han, M. Y. and Nambu, Y. (1965) ‘Three-triplet model with double SU(3) symmetry’, Physical Review 139, B1006–10.CrossRefGoogle Scholar
Harper, W. (1990) ‘Newton's classic deductions from phenomena’, PSA 1990: Proceedings of the 1990 Biennial Meeting of the Philosophy of Science Association, vol. 2 (East Lansing, Mich.: Philosophy of Science Association).Google Scholar
Harper, W. and Smith, G. E. (1995) ‘Newton's new way of inquiry’, in Leplin, J. (ed.) The Creation of Ideas in Physics (Dordrecht: Kluwer), 113–66.CrossRefGoogle Scholar
Heilbron, J. L. (1966) ‘The work of H. G. J. Moseley’, Isis 57, 336–64.CrossRefGoogle Scholar
Heilbron, J. L.(1967) ‘The Kossel-Sommerfeld theory and the ring atom’, Isis 58, 451–85.CrossRefGoogle Scholar
Heilbron, J. L.(1982) ‘The origins of the exclusion principle’, Historical Studies in the Physical Sciences 13, 261–310.CrossRefGoogle Scholar
Heisenberg, W.(1922) ‘Zur Quantentheorie der Linienstruktur und der anomalen Zeemaneffekte’, Zeitschrift für Physik 8, 273–97.CrossRefGoogle Scholar
Heisenberg, W.(1924) ‘Über eine Abänderung der formalen Regeln der Quantentheorie beim Problem der anomalen Zeemaneffekte’, Zeitschrift für Physik 26, 291–307.CrossRefGoogle Scholar
Heisenberg, W.(1925a) ‘Zur Quantentheorie der Multiplettstruktur und der anomalen Zeemaneffekte’, Zeitschrift für Physik 32, 841–60.CrossRefGoogle Scholar
Heisenberg, W.(1925b) ‘Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen’, Zeitschrift für Physik 33, 879–93.CrossRefGoogle Scholar
Heisenberg, W.(1926) ‘Über die Spektra von Atomsystemen mit zwei Elektronen’, Zeitschrift für Physik 39, 499–518.CrossRefGoogle Scholar
Heisenberg, W.(1934) ‘Bemerkungen zur Diracschen Theorie des Positrons’, Zeitschrift für Physik 90, 209–31.CrossRefGoogle Scholar
Heisenberg, W. and Jordan, P. (1926) ‘Anwendung der Quantenmechanik auf das Problem der anomalen Zeemaneffekte’, Zeitschrift für Physik 37, 263–77.CrossRefGoogle Scholar
Heisenberg, W. and Pauli, W. (1929) ‘Zur Quantenelektodynamik der Wellenfelder’, Zeitschrift für Physik 56, 1–61.CrossRefGoogle Scholar
Heisenberg, W. and Pauli, W.(1930) ‘Zur Quantentheorie der Wellenfelder II’, Zeitschrift für Physik 59, 168–90.CrossRefGoogle Scholar
Hesse, M. (1983) ‘Comment on Kuhn's “Commensurability, Comparability, Communicability” ’, in Asquith, P. D. and Nickles, T. (eds.) PSA 1982: Proceedings of the 1982 Biennial Meeting of the Philosophy of Science Association, vol. 2 (East Lansing, Mich.: Philosophy of Science Association), 707–11.Google Scholar
Higgs, P. W. (1964a) ‘Broken symmetries, massless particles, and gauge fields’, Physics Letters 12, 132–3.CrossRefGoogle Scholar
Higgs, P. W.(1964b) ‘Broken symmetries and the masses of gauge bosons’, Physical Review Letters 13, 508–9.CrossRefGoogle Scholar
Hilborn, R. C. and Tino, G. M. (eds) (2000) Spin-Statistics Connection and Commutation Relations: Experimental Tests and Theoretical Implications (Melville, NY: American Institute of Physics).Google Scholar
Hofmann, W. (1981) Jets of Hadrons (Berlin: Springer Verlag).CrossRefGoogle Scholar
Jackiw, R. (1999) ‘The unreasonable effectiveness of quantum field theory’, in Cao, T. Y. (ed.) Conceptual Foundations of Quantum Field Theory (Cambridge: Cambridge University Press), 148–59.CrossRefGoogle Scholar
Jammer, M. (1966) The Conceptual Development of Quantum Mechanics (New York: McGraw Hill); second edition (1989) (American Institute of Physics: Tomash Publishers).Google Scholar
Jordan, P. (1925) ‘Bemerkungen zur Theorie der Atomstruktur’, Zeitschrift für Physik 33, 563–70.CrossRefGoogle Scholar
Jordan, P.(1927) ‘Zur Quantenmechanik der Gasentartung’, Zeitschrift für Physik 44, 473–80.CrossRefGoogle Scholar
Jordan, P. and Pauli, W. (1928) ‘Zur Quantenelektrodynamik ladungsfreier Felder’, Zeitschrift für Physik 47, 151–73.CrossRefGoogle Scholar
Jordan, P. and Wigner, E. (1928) ‘Über das Paulische Äquivalenzverbot’, Zeitschrift für Physik 47, 631–51.CrossRefGoogle Scholar
Kant, I. (1781) Critik der reinen Vernunft (Riga: Johann Hartknoch). English translation (1997) Guyer, P. and Wood, A. W. (eds.) Critique of Pure Reason (Cambridge: Cambridge University Press).Google Scholar
Kant, I.(1790) Kritik der Urteilskraft (Berlin: Lagarde). English translation (2000) Guyer, P. and Matthews, E. (eds.) Critique of the Power of Judgment (Cambridge: Cambridge University Press).Google Scholar
Kitcher, P. (1983) ‘Implications of incommensurability’, in Asquith, P. D. and Nickles, T. (eds.) PSA 1982: Proceedings of the 1982 Biennial Meeting of the Philosophy of Science Association, vol. 2 (East Lansing, Mich.: Philosophy of Science Association), 692–3.Google Scholar
Kitcher, P.(1986) ‘Projecting the order of nature’, in Butts, R. E. (ed.) Kant's Philosophy of Physical Science (Dordrecht: Reidel), 201–35.CrossRefGoogle Scholar
Klein, O. (1927) ‘Elektrodynamik und Wellenmechanik von Standpunkt des Korrespondenzprinzips’, Zeitschrift für Physik 41, 407–42.CrossRefGoogle Scholar
Klein, O. and Nishina, Y. (1929) ‘Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac’, Zeitschrift für Physik 52, 853–68.CrossRefGoogle Scholar
Kragh, H. (1979) ‘Niels Bohr's second atomic theory’, Historical Studies in the Physical Sciences 10, 123–86.CrossRefGoogle Scholar
Kripke, S. (1972) ‘Naming and necessity’, in Harman, G. and Davidson, D. (eds.) The Semantics of Natural Language (Dordrecht: Reidel).Google Scholar
Kronig, R. (1960) ‘The turning point’, in Fierz, M. and Weisskopf, V. F. (eds.) Theoretical Physics in the Twentieth Century: A Memorial Volume to Wolfgang Pauli (New York: Interscience Publishers).Google Scholar
Kuhn, T. S. (1957) The Copernican Revolution: Planetary Astronomy in the Development of Western Thought (Cambridge, Mass.: Harvard University Press).Google Scholar
Kuhn, T. S.(1962) The Structure of Scientific Revolutions, International Encyclopaedia of Unified Science: Foundations of the Unity of Science, vol. 2, no. 2 (Chicago: University of Chicago Press).Google Scholar
Kuhn, T. S.(1970) ‘Reflections on my critics’, in Lakatos, I. and Musgrave, A. (eds.) Criticism and the Growth of Knowledge: Proceedings of the International Colloquium in the Philosophy of Science, London 1965, vol. IV (Cambridge: Cambridge University Press), 231–78. Reprinted in Kuhn (2000), 123–75.CrossRefGoogle Scholar
Kuhn, T. S.(1977) The Essential Tension: Selected Studies in Scientific Tradition and Change (Chicago: University of Chicago Press).Google Scholar
Kuhn, T. S.(1978) Black-Body Theory and the Quantum Discontinuity 1894–1912 (Oxford: Oxford University Press).Google Scholar
Kuhn, T. S.(1983) ‘Commensurability, comparability, communicability’, in Asquith, P. D. and Nickles, T. (eds.) PSA 1982: Proceedings of the 1982 Biennial Meeting of the Philosophy of Science Association, vol. 2 (East Lansing, Mich.: Philosophy of Science Association), 669–88. Reprinted in Kuhn (2000), 33–58.Google Scholar
Kuhn, T. S.(1989) ‘Possible worlds in history of science’, in Allén, Sture (ed.) Possible Worlds in Humanities, Arts and Sciences: Proceedings of Nobel Symposium 65 (Berlin: Walter de Gruyter). Reprinted in Kuhn (2000), 58–90.Google Scholar
Kuhn, T. S.(1990) ‘Dubbing and redubbing: the vulnerability of rigid designation’, in Savage, C. Wade (ed.) Scientific Theories, Minnesota Studies in the Philosophy of Science 14 (Minneapolis: University of Minnesota Press), 298–318.Google Scholar
Kuhn, T. S.(1991) ‘The road since structure’, in Fine, A., Forbes, M., and Wessels, L. (eds.) PSA 1990: Proceedings of the 1990 Biennial Meeting of the Philosophy of Science Association, vol. 2 (East Lansing, Mich.: Philosophy of Science Association), 3–13. Reprinted in Kuhn (2000), 90–105.Google Scholar
Kuhn, T. S.(1993) ‘Afterwards’, in Horwich, P. (ed.) World Changes. Thomas Kuhn and the Nature of Science (Cambridge, Mass.: MIT Press), 311–39. Reprinted in Kuhn (2000), 224–53.Google Scholar
Kuhn, T. S.(2000) The Road Since Structure. Philosophical Essays, 1970–1993, with an Autobiographical Interview (Chicago: University of Chicago Press).Google Scholar
Lakatos, I. (1978) Philosophical Papers, Vol. I: The Methodology of Scientific Research Programmes (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Landé, A. (1921a) ‘Über den anomalen Zeemaneffekt (Teil I)’, Zeitschrift für Physik 5, 231–41.CrossRefGoogle Scholar
Landé, A.(1921b) ‘Über den anomalen Zeemaneffekt (Teil II)’, Zeitschrift für Physik 7, 398–405.CrossRefGoogle Scholar
Landé, A.(1923a) ‘Termstruktur und Zeemaneffekt der Multipletts’, Zeitschrift für Physik 15, 189–205; ‘Termstruktur und Zeemaneffekt der Multipletts. Zweite Mitteilung’, Zeitschrift für Physik 19, 112–23.CrossRefGoogle Scholar
Landé, A.(1923b) ‘Zur Theorie der Röntgenspektren’, Zeitschrift für Physik 16, 391–96.CrossRefGoogle Scholar
Landé, A.(1923c) ‘Zur Struktur des Neonspektrums’, Zeitschrift für Physik 17, 292–4.CrossRefGoogle Scholar
Landé, A.(1923d) ‘Feinstruktur und Zeemaneffekt der Multipletts’, Zeitschrift für Physik 19, 112–23.CrossRefGoogle Scholar
Landé, A. and Heisenberg, W. (1924) ‘Termstruktur der Multipletts höherer Stufe’, Zeitschrift für Physik 25, 279–86.CrossRefGoogle Scholar
Larmor, J. (1897) ‘On the theory of the magnetic influence on spectra; and on the radiation from moving ions’, Philosophical Magazine 44, 503–12.Google Scholar
Laudan, L. (1990) ‘Demistifying underdetermination in scientific theories’, in Savage, C. Wade (ed.) Scientific Theories, Minnesota Studies in the Philosophy of Science 14 (Minneapolis: University of Minnesota Press), 267–97.Google Scholar
Lieb, E. H. (1991) The Stability of Matter: From Atoms to Stars. Selecta of Elliott H. Lieb (Berlin: Springer-Verlag). Second edition (1997).CrossRefGoogle Scholar
Lieb, E. H. and Thirring, W. E. (1991) ‘Bound for the kinetic energy of fermions which proves the stability of matter’, Physical Review Letters 35, 687–90.CrossRefGoogle Scholar
Lipton, P. (2001) ‘Kant on wheels’, London Review of Books, 19 July, 30–1. Reprinted in Social Epistemology17, 2003, 215–19.
Lorentz, H. A. (1897) ‘Über den Einfluss magnetischer Kräfte auf die Emission des Lichtes’, Wiedemannsche Annalen der Physik 63, 278–84.CrossRefGoogle Scholar
Majorana, E. (1932) ‘Teoria relativistica di particelle con momento intrinseco arbitrario’, Il Nuovo Cimento 9, 335–44.CrossRefGoogle Scholar
Massimi, M. (2001) ‘Exclusion principle and the identity of indiscernibles: a response to Margenau's argument’, British Journal for the Philosophy of Science 52, 303–31.CrossRefGoogle Scholar
Massimi, M.(2004a) ‘Non-defensible middle ground for experimental realism: why we are justified to believe in colored quarks’, Philosophy of Science 71, 36–60.CrossRefGoogle Scholar
Massimi, M.(2004b) ‘What demonstrative induction can do against the threat of underdetermination: Bohr, Heisenberg, and Pauli on spectroscopic anomalies (1921–24)’, Synthese 140, 243–77.CrossRefGoogle Scholar
Massimi, M. and Redhead, M. (2003) ‘Weinberg's proof of the spin–statistics theorem’, Studies in History and Philosophy of Modern Physics 34, 621–50.CrossRefGoogle Scholar
Mehra, J. and Rechenberg, H. (1982a) The Historical Development of Quantum Theory. Vol. 2: The Discovery of Quantum Mechanics 1925 (New York: Springer Verlag).CrossRefGoogle Scholar
Mehra, J. and Rechenberg, H.(1982b) The Historical Development of Quantum Theory. Vol. 3: The Formulation of Matrix Mechanics and its Modifications, 1925–1926 (New York: Springer Verlag).CrossRefGoogle Scholar
Mehra, J. and Rechenberg, H.(1982c) The Historical Development of Quantum Theory. Vol. 4, Part 1: The Fundamental Equations of Quantum Mechanics, 1925–1926. Part 2: The Reception of the New Quantum Mechanics, 1925–1926 (New York: Springer Verlag).Google Scholar
Messiah, A. M. L. and Greenberg, O. W. (1964a) ‘Symmetrization postulate and its experimental foundation’, Physical Review 136, B248–67.CrossRefGoogle Scholar
Messiah, A. M. L. and Greenberg, O. W.(1964b) ‘Selection rules for parafields and the absence of para particles in naturePhysical Review 138, B1155–67.Google Scholar
Miyamoto, Y. (1965) ‘Three kinds of triplet model’, in Extra Number Supplement of Progress of Theoretical Physics: Thirtieth Anniversary of the Yukawa Meson Theory, p. 187.
Ne'eman, Y. (1961) ‘Derivation of strong interactions from a gauge invariance’, Nuclear Physics26, 222–9. Reprinted in Gell-Mann, M. and Ne'eman, Y. (eds.) (1964) The Eightfold Way (New York: W. A. Benjamin), 58–65.Google Scholar
Ne'eman, Y. and Kirsh, Y. (1986) The Particle Hunters (Cambridge: Cambridge University Press).Google Scholar
Newton, I. (1687) Philosophiae Naturalis Principia Mathematica. English translation (1803) The Mathematical Principles of Natural Philosophy, by W. Davis (London: H. D. Symonds).CrossRefGoogle Scholar
Nickles, T. (ed.) (2003) Thomas Kuhn (Cambridge: Cambridge University Press).Google Scholar
Norton, J. D. (1993) ‘The determination of theory by evidence: the case for quantum discontinuity’, Synthese 97, 1–31.CrossRefGoogle Scholar
Norton, J. D.(1994) ‘Science and certainty’, Synthese 99, 3–22.CrossRefGoogle Scholar
Norton, J. D.(1995) ‘Eliminative induction as a method of discovery: how Einstein discovered general relativity’, in Leplin, J. (ed.) The Creation of Ideas in Physics (Dordrecht: Kluwer).CrossRefGoogle Scholar
Ohnuki, Y. and Kamefuchi, S. (1982) Quantum Field Theory and Parastatistics (Berlin: Springer).CrossRefGoogle Scholar
Oppenheimer, J. R. (1930) ‘Two notes on the probability of radiative transitions’, Physical Review 35, 939–47.CrossRefGoogle Scholar
Oppenheimer, J. R. and Plesset, M. S. (1933) ‘On the production of the positive electron’, Physical Review 44, 53–5.CrossRefGoogle Scholar
Paschen, F. and Back, E. (1921) ‘Liniengruppen magnetish vervollständigt’, Physica 1, 261–73.Google Scholar
Pauli, W. (1923) ‘Über die Gesetzmäβigkeiten des anomalen Zeemaneffektes’, Zeitschrift für Physik 16, 155–64.CrossRefGoogle Scholar
Pauli, W.(1924) ‘Zur Frage der Zuordnung der Komplexstrukturterme in starken und in schwachen äuβeren Feldern’, Zeitschrift für Physik 20, 371–87.CrossRefGoogle Scholar
Pauli, W.(1925a) ‘Über den Einfluβ der Geschwindigkeitsabhängigkeit der Elektronenmasse auf den Zeemaneffekt’, Zeitschrift für Physik 31, 373–85.CrossRefGoogle Scholar
Pauli, W.(1925b) ‘Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren’, Zeitschrift für Physik 31, 765–83.CrossRefGoogle Scholar
Pauli, W.(1926a) ‘Quantentheorie’, in Geiger, H. and Scheel, K. (eds.) Handbuch der Physik (Berlin: Springer), vol. 23, 1–278.Google Scholar
Pauli, W.(1926b) ‘Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik’, Zeitschrift für Physik 36, 336–63.CrossRefGoogle Scholar
Pauli, W.(1927a) ‘Über Gasentartung und Paramagnetismus’, Zeitschrift für Physik 41, 81–102.CrossRefGoogle Scholar
Pauli, W.(1927b) ‘Zur Quantenmechanik des magnetischen Elektrons’, Zeitschrift für Physik 43, 601–23.CrossRefGoogle Scholar
Pauli, W.(1936) ‘Théorie quantique relativiste des particules obéissant à la statistique de Einstein-Bose’, Annales de l'Institut Henri Poincaré 6, 137–52.Google Scholar
Pauli, W.(1940) ‘The connection between spin and statistics’, Physical Review 58, 716–22.CrossRefGoogle Scholar
Pauli, W.(1946) ‘Remarks on the history of the exclusion principle’, Science 103, 213–15.CrossRefGoogle ScholarPubMed
Pauli, W.(1948) ‘Exclusion principle and quantum mechanics’ in Les Prix Nobel en 1946 (Stockholm: Norstedt & Söner), 131–47.Google Scholar
Pauli, W.(1955) ‘Rydberg and the periodic system of elements’, Proceedings of the Rydberg Centennial Conference on Atomic Spectroscopy, Lund 1954, Universitets Arsskrift 50, 22–6.Google Scholar
Pauli, W.(1964) Collected Scientific Papers by Wolfgang Pauli, Vols. I–II, edited by Kronig, R. and Weisskopf, V. F. (New York, London: Wiley Interscience).Google Scholar
Pauli, W.(1979) Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., Band 1: 1919–1929, edited by Hermann, A., Meyenn, K., and Weisskopf, V. F. (Berlin, Heidelberg: Springer Verlag).Google Scholar
Pauli, W.(1985) Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., Band 2: 1930–1939, edited by Meyenn, K. (Berlin: Springer Verlag).Google Scholar
Pauli, W(1993) Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., Band 3: 1940–1949, edited by Meyenn, K. (Berlin: Springer Verlag).Google Scholar
Pauli, W. and Belinfante, F. J. (1940) ‘On the statistical behaviour of known and unknown elementary particles’, Physica 7, 177–92.CrossRefGoogle Scholar
Pauli, W. and Weisskopf, V. (1934) ‘Über die Quantisierung der skalaren relativistischen Wellengleichung’, Helvetica Physica Acta 7, 709–31.Google Scholar
Petruccioli, S. (1988) Atomi metafore paradossi (Roma: Theoria). English translation (1993) Atoms, Metaphors and Paradoxes: Niels Bohr and the Construction of a New Physics (Cambridge: Cambridge University Press).Google Scholar
Pickering, A. (1984) Constructing Quarks (Edinburgh: Edinburgh University Press).Google Scholar
Poincaré, H. (1902) La science et l'hypothèse (Paris: Flammarion). English translation (1982) ‘Science and hypothesis’, in Royce, J. (ed.) The Foundations of Science (Washington: University Press of America).Google Scholar
Poincaré, H.(1905) La valeur de la science (Paris: Flammarion). English translation (1982) ‘The value of science,’ in Royce, J. (ed.) The Foundations of Science (Washington: University Press of America).Google Scholar
Politzer, H. D. (1973) ‘Reliable perturbative results for strong interactions?’, Physical Review Letters 30, 1346–9.CrossRefGoogle Scholar
Popper, K. (1934) Logik der Forschung (Vienna: Springer). English translation (1968) The Logic of Scientific Discovery (London: Hutchinson & Co.).Google Scholar
Popper, K.(1972) Objective Knowledge (Oxford: Clarendon Press).Google Scholar
Putnam, H. (1975) ‘The meaning of “meaning” ’, in Gunderson, K. (ed.) Language, Mind and Knowledge, Minnesota Studies in the Philosophy of Science 7 (Minneapolis: University of Minnesota Press). Reprinted in H. Putnam (1975) Mind, Language and Reality. Philosophical Papers, Vol. 2 (Cambridge: Cambridge University Press), 215–71.Google Scholar
Putnam, H.(1981) Reason, Truth and History (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Quine, W. V. O. (1951) ‘Two dogmas of empiricism’, Philosophical Review 60, 20–43.CrossRefGoogle Scholar
Quine, W. V. O.(1953) From a Logical Point of View (Cambridge, Mass.: Harvard University Press).Google Scholar
Ramberg, E. and Snow, G. (1990) ‘Experimental limit on a small violation of the Pauli principle’, Physics Letters B238, 438–41.CrossRefGoogle Scholar
Redhead, M. (1975) ‘Symmetry in intertheory relations’, Synthese 32, 77–112.CrossRefGoogle Scholar
Redhead, M.(1982) ‘Quantum field theory for philosophers’, PSA: Proceedings of the 1982 Biennial Meeting of the Philosophy of Science Association, vol. 2 (East Lansing, Mich.: Philosophy of Science Association), pp. 57–99.Google Scholar
Redhead, M.(2003) ‘The interpretation of gauge symmetry’, in Brading, K. and Castellani, E. (eds.) Symmetries in Physics (Cambridge: Cambridge University Press), 124–39.CrossRefGoogle Scholar
Redhead, M. and Teller, P. (1992) ‘Particle labels and the theory of indistinguishable particles in quantum mechanics’, British Journal for the Philosophy of Science 43, 201–18.CrossRefGoogle Scholar
Reichenbach, H. (1920) Relativitätstheorie und Erkenntnis Apriori (Berlin: Springer). English translation (1965) The Theory of Relativity and A Priori Knowledge (Los Angeles: University of California Press).CrossRefGoogle Scholar
Richter, B. (1977) ‘From the psi to charm: the experiments of 1975 and 1976’, Review of Modern Physics 49, 251–66.CrossRefGoogle Scholar
Rubinowicz, A. (1918) ‘Borsche Frequenzbedingung und Erhaltung des Impulsmomentes. Teil I’, Physikal Zeitschrift 19, 441–5.Google Scholar
Runge, C. (1907) ‘Über die Zerlegung von Spektallinien im magnetischen Felde’, Physikalische Zeitschrift 8, 232–37.Google Scholar
Salam, A. and Ward, J. C. (1964) ‘Electromagnetic and weak interactions’, Physics Letters 13, 168–71.CrossRefGoogle Scholar
Schrödinger, E. (1926a) ‘Quantisierung als Eigenwertproblem. Erste Mitteilung’, Annalen der Physik 79, 361–76.CrossRefGoogle Scholar
Schrödinger, E.(1926b) ‘Quantisierung als Eigenwertproblem. Zweite Mitteilung’, Annalen der Physik 79, 489–527.CrossRefGoogle Scholar
Schrödinger, E.(1926c) ‘Über das Verhältnis der Heisenberg–Born–Jordanschen Quantenmechanik zu der meinen’, Annalen der Physik 79, 734–56.CrossRefGoogle Scholar
Serwer, D. (1977) ‘Unmechanischer Zwang: Pauli, Heisenberg, and the rejection of the mechanical atom 1923–1925’, Historical Studies in the Physical Sciences 8, 189–256.CrossRefGoogle Scholar
Silvestrini, V. (1972) ‘Electron-positron interactions’, in Jackson, J. D. and Roberts, A. (eds.) Proceedings of the XVI International Conference on High Energy Physics, National Accelerator Laboratory, Batavia, Illinois, 6–13 September 1972 (Batavia: National Accelerator Laboratory).Google Scholar
Slater, J. C. (1929) ‘The theory of complex spectra’, Physical Review 34, 1293–322.CrossRefGoogle Scholar
Sommerfeld, A. (1916a) ‘Zur Quantentheorie der Spektrallinien’, Annalen der Physik 51, 1–94; 125–67.CrossRefGoogle Scholar
Sommerfeld, A.(1916b) ‘Zur Theorie des Zeeman-Effekts der Wasserstofflinien, mit einem Anhang über den Stark-EffektPhysikalische Zeitschrift 17, 491–507.Google Scholar
Sommerfeld, A.(1919) Atombau und Spektrallinien (Braunschweig: Vieweg).Google Scholar
Sommerfeld, A.(1920) ‘Allgemeine spektroskopische Gesetze, insbesondere ein magnetooptischer Zerlegungssatz’, Annalen der Physik 63, 221–63.CrossRefGoogle Scholar
Sommerfeld, A.(1922) ‘Quantentheoretische Umdeutung der Voigtschen Theorie des anomalen Zeemaneffektes vom D-Linientypus’, Zeitschrift für Physik 8, 257–72.CrossRefGoogle Scholar
Stolt, R. H. and Taylor, J. R. (1970) ‘Correspondence between the first- and the second-quantized theories of paraparticles’, Nuclear Physics 19B, 1–19.Google Scholar
Stoner, E. C. (1924) ‘The distribution of electrons among atomic levels’, Philosophical Magazine 48, 719–36.Google Scholar
Tavkhelidze, A. (1965) ‘Higher symmetries and composite models of elementary particles’, in High Energy Physics and Elementary Particles (Vienna: International Atomic Energy Agency), 753–62.Google Scholar
Thomas, L. H. (1926) ‘The motion of the spinning electron’, Nature 117, 514.CrossRefGoogle Scholar
Thomas, L. H.(1927) ‘The kinematics of an electron with an axis’, Philosophical Magazine (7)3, 1–22.Google Scholar
't Hooft, G. (1971) ‘Renormalizable Lagrangians for massive Yang-Mills fields’, Nuclear Physics B35, 167–88.CrossRefGoogle Scholar
Tomonaga, S. (1997) The History of Spin (Chicago: University of Chicago Press).Google Scholar
Uhlenbeck, G. E. and Goudsmit, S. (1925) ‘Ersetzung der Hypothese vom unmechanischer Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons’, Naturwissenschaften 13, 953–4.Google Scholar
Uhlenbeck, G. E. and Goudsmit, S.(1926) ‘Spinning electrons and the structure of spectra’, Nature 117, 264–5.CrossRefGoogle Scholar
Van der Waerden, B. L. (1960) ‘Exclusion principle and spin’, in Fierz, M. and Weisskopf, V. F. (eds.) Theoretical Physics in the Twentieth Century: A Memorial Volume to Wolfgang Pauli (New York: Interscience Publishers), 199–244.Google Scholar
Fraassen, Bas (1980) The Scientific Image (Oxford: Oxford University Press).CrossRefGoogle Scholar
Fraassen, Bas(2002) The Empirical Stance (New Haven and London: Yale University Press).Google Scholar
Vleck, J. H. (1922) ‘The normal helium atom and its relation to the quantum theoryPhilosophical Magazine 44, 842–69.Google Scholar
Neumann, J. and Wigner, E. (1928a) ‘Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons’, Zeitschrift für Physik 47, 203–20.CrossRefGoogle Scholar
Neumann, J. and Wigner, E.(1928b) ‘Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons. Zweiter Teil’, Zeitschrift für Physik 49, 73–94.CrossRefGoogle Scholar
Neumann, J. and Wigner, E.(1928c) ‘Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons. Dritter Teil’, Zeitschrift für Physik 51, 844–58.CrossRefGoogle Scholar
Weinberg, S. (1964) ‘Feynman Rules for any spin’, Physical Review 133, B1318–32.CrossRefGoogle Scholar
Weisskopf, V. (1934) ‘Über die Selbstenergie des Elektrons’, Zeitschrift für Physik 89, 27–39.CrossRefGoogle Scholar
Weisskopf, V.(1939) ‘On the self-energy of the electromagnetic field of the electron’, Physical Review 56, 72–85.CrossRefGoogle Scholar
Weisskopf, V. F. (1983) ‘Growing up with field theory: the development of quantum electrodynamics’, in Brown, L. M. and Hoddeson, L. (eds.) The Birth of Particle Physics (Cambridge: Cambridge University Press), 56–81.Google Scholar
Weyl, H. (1928) Gruppentheorie und Quantenmechanik (Leipzig: Hirzel). English translation (1930) The Theory of Groups and Quantum Mechanics (New York: Dover).Google Scholar
Weyl, H.(1929) ‘Elektrons und Gravitation. I’, Zeitschrift für Physik 56, 330–52.CrossRefGoogle Scholar
White, H. E. (1934) Introduction to Atomic Spectra (New York, London: McGraw-Hill Book Company).Google Scholar
Wigner, E. (1927) ‘Einige Folgerungen aus der Schrödingerschen Theorie für die TermstrukturenZeitschrift für Physik 43, 624–52.CrossRefGoogle Scholar
Wilczek, F. (1990) Fractional Statistics and Anyon Superconductivity (Singapore: World Scientific).CrossRefGoogle Scholar
Yang, C. N. and Mills, R. (1954) ‘Conservation of isotopic spin and isotopic gauge invariance’, Physical Review 96, 191–5.CrossRefGoogle Scholar
Zeeman, P. (1896) ‘Over den invloed eener magnetisatie op den aard van het door een stof uitgezonden licht’, Verlag van de Gewone Vergaderingen der Wis-en Natur-kundige Afdeeling, Koninklijke Akademie van Wetenschappen te Amsterdam5, 181–5, 242–8. English translation (1897) ‘On the influence of magnetism on the nature of the light emitted by a substance’, Philosophical Magazine43, 226–39.
Zweig, G. (1964a) ‘An SU3 model for strong interaction symmetry and its breaking’, CERN preprint 8182/TH401 (17 January 1964).
Zweig, G.(1964b) ‘An SU3 model for strong interaction symmetry and its breaking: II’, CERN preprint 8419/TH412 (21 February 1964).

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Michela Massimi, University of Cambridge
  • Book: Pauli's Exclusion Principle
  • Online publication: 07 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535352.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Michela Massimi, University of Cambridge
  • Book: Pauli's Exclusion Principle
  • Online publication: 07 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535352.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Michela Massimi, University of Cambridge
  • Book: Pauli's Exclusion Principle
  • Online publication: 07 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535352.011
Available formats
×