Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T23:20:02.447Z Has data issue: false hasContentIssue false

57 - Late effects of the treatment of childhood cancer

from Part VI - Oncology

Published online by Cambridge University Press:  08 January 2010

Mark F. H. Brougham
Affiliation:
Department of Paediatric Haematology and Oncology, Royal Hospital for Sick Children, Edinburgh, UK
W. Hamish B. Wallace
Affiliation:
Department of Paediatric Haematology and Oncology, Royal Hospital for Sick Children, Edinburgh, UK
Mark D. Stringer
Affiliation:
University of Otago, New Zealand
Keith T. Oldham
Affiliation:
Children's Hospital of Wisconsin
Pierre D. E. Mouriquand
Affiliation:
Debrousse Hospital, Lyon
Get access

Summary

Introduction

Survival from childhood cancer has markedly improved over recent decades following major advances in available treatments and supportive care, such that now around 75%–80% of children with cancer will be alive 5 years from diagnosis. The number of long-term survivors is therefore increasing, and it has been estimated that, by the year 2010, about one in 715 of the adult population will have been treated for cancer in childhood. Because of this, the emphasis in the management of childhood cancer has changed, from “cure at any cost” to one in which quality of life after treatment has become increasingly important. Thus, whilst continuing to strive for improved survival, attention must be directed towards minimizing the late effects of treatment.

Adverse late effects of childhood cancer treatment are diverse and include growth impairment, disorders of the endocrine system, infertility, abnormalities of cardiac and pulmonary function, renal and hepatic impairment, second malignancies, and cognitive and psychosocial difficulties. This chapter focuses on these consequences of childhood cancer treatment. Long-term follow-up of these patients is essential, in order that adverse effects are diagnosed early and appropriate counselling and therapeutic intervention instituted. Awareness of the etiology and prevalence of late complications will allow modifications of treatment that will improve the quality of life for long-term survivors of childhood cancer.

Endocrine disorders and growth impairment

Collectively, disorders of the endocrine system represent the commonest long-term complication of cancer treatment, with one study demonstrating endocrine abnormalities in up to 40% of such patients at follow-up.

Type
Chapter
Information
Pediatric Surgery and Urology
Long-Term Outcomes
, pp. 727 - 744
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mertens, A. C., Yasui, Y., Neglia, J. P.et al.Late mortality experience in five-year survivors of childhood and adolescent cancer: the Childhood Cancer Survivor Study. J. Clin. Oncol. 2001;19:3163–3172.CrossRefGoogle ScholarPubMed
Scottish Intercollegiate Guidelines Network. Guideline 76: Long term follow up care of survivors of childhood cancer. Edinburgh, 2004.
Sklar, C. A.Overview of the effects of cancer therapies: the nature, scale and breadth of the problem. Acta. Paediatr. Suppl. 1999; 88:1–4.CrossRefGoogle Scholar
Muller, H. L., Klinkhammer-Schalke, M., & Kuhl, J.Final height and weight of long-term survivors of childhood malignancies. Exp. Clin. Endocrinol. Diabetes 1998; 106:135–139.CrossRefGoogle ScholarPubMed
Constine, L. S., Woolf, P. D., Cann, D.et al.Hypothalamic-pituitary dysfunction after radiation for brain tumors. N. Engl. J. Med. 1993; 328:87–94.CrossRefGoogle ScholarPubMed
Littley, M. D., Shalet, S. M., Beardwell, C. G., Robinson, E. L., & Sutton, M. L.Radiation-induced hypopituitarism is dose-dependent. Clin. Endocrinol. (Oxf.) 1989; 31:363–373.CrossRefGoogle ScholarPubMed
Brennan, B. M., Rahim, A., Mackie, E. M., Eden, O. B., & Shalet, S. M.Growth hormone status in adults treated for acute lymphoblastic leukaemia in childhood. Clin. Endocrinol. (Oxf.) 1998; 48:777–783.CrossRefGoogle ScholarPubMed
Littley, M. D., Shalet, S. M., Beardwell, C. G., Ahmed, S. R., Applegate, G., & Sutton, M. L.Hypopituitarism following external radiotherapy for pituitary tumours in adults. Quart. J. Med. 1989; 70:145–160.Google ScholarPubMed
Clayton, P. E. & Shalet, S. M.Dose dependency of time of onset of radiation-induced growth hormone deficiency. J. Pediatr. 1991; 118:226–228.CrossRefGoogle ScholarPubMed
Schmiegelow, M., Lassen, S., Poulsen, H. S.et al.Growth hormone response to a growth hormone-releasing hormone stimulation test in a population-based study following cranial irradiation of childhood brain tumors. Horm. Res. 2000; 54:53–59.Google Scholar
Bercu, B. B. & Diamond, F. B. Jr.Growth hormone neurosecretory dysfunction. Clin. Endocrinol. Metab. 1986; 15:537–590.CrossRefGoogle ScholarPubMed
Spoudeas, H. A., Hindmarsh, P. C., Matthews, D. R., & Brook, C. G.Evolution of growth hormone neurosecretory disturbance after cranial irradiation for childhood brain tumours: a prospective study. J. Endocrinol. 1996; 150:329–342.CrossRefGoogle ScholarPubMed
Shalet, S. M., Beardwell, C. G., Pearson, D., & Jones, P. H.The effect of varying doses of cerebral irradiation on growth hormone production in childhood. Clin. Endocrinol. (Oxf.) 1976; 5:287–290.CrossRefGoogle ScholarPubMed
Ogilvy-Stuart, A. L. & Shalet, S. M.Growth and puberty after growth hormone treatment after irradiation for brain tumours. Arch. Dis. Child. 1995; 73:141–146.CrossRefGoogle ScholarPubMed
, Boer H., Blok, G. J., & Veen, E. A.Clinical aspects of growth hormone deficiency in adults. Endocr. Rev. 1995; 16:63–86.Google Scholar
Talvensaari, K. & Knip, M.Childhood cancer and later development of the metabolic syndrome. Ann. Med. 1997; 29:353–355.CrossRefGoogle ScholarPubMed
Kaufman, J. M., Taelman, P., Vermeulen, A., & Vandeweghe, M.Bone mineral status in growth hormone-deficient males with isolated and multiple pituitary deficiencies of childhood onset. J. Clin. Endocrinol. Metab. 1992; 74:118–123.Google ScholarPubMed
Stabler, B.Impact of growth hormone (GH) therapy on quality of life along the lifespan of GH-treated patients. Horm. Res. 2001; 56 Suppl 1: 55–58.Google ScholarPubMed
Vassilopoulou-Sellin, Klein, M. J., Moore, B. D., Reid, H. L., Ater, J., & Zietz, H. A.Efficacy of growth hormone replacement therapy in children with organic growth hormone deficiency after cranial irradiation. Horm. Res. 1995; 43:188–193.CrossRefGoogle ScholarPubMed
Murray, R. D., Darzy, K. H., Gleeson, H. K., & Shalet, S. M.GH-deficient survivors of childhood cancer: GH replacement during adult life. J. Clin. Endocrinol. Metab. 2002; 87:129–135.CrossRefGoogle ScholarPubMed
Pfeifer, M., Verhovec, R., & Zizek, B.Growth hormone (GH) and atherosclerosis: changes in morphology and function of major arteries during GH treatment. Growth Horm. IGF Res. 1999; 9 Suppl A: 25–30.CrossRefGoogle ScholarPubMed
Longobardi, S., Di Rella, F., Pivonello, R.et al.Effects of two years of growth hormone (GH) replacement therapy on bone metabolism and mineral density in childhood and adulthood onset GH deficient patients. J. Endocrinol. Invest. 1999; 22:333–339.CrossRefGoogle Scholar
Lagrou, K., Xhrouet-Heinrichs, D., Massa, G.et al.Quality of life and retrospective perception of the effect of growth hormone treatment in adult patients with childhood growth hormone deficiency. J. Pediatr. Endocrinol. Metab. 2001; 14 Suppl 5: 1249–1262.Google ScholarPubMed
Vahl, N., Juul, A., Jorgensen, J. O., Orskov, H., Skakkebaek, N. E., & Christiansen, J. S.Continuation of growth hormone (GH) replacement in GH-deficient patients during transition from childhood to adulthood: a two-year placebo-controlled study. J. Clin. Endocrinol. Metab. 2000; 85:1874–1881.CrossRefGoogle ScholarPubMed
Watanabe, S., Tsunematsu, Y., Fujimoto, J., & Komiyama, A.Leukaemia in patients treated with growth hormone (letter). Lancet 1988; 1:1159–1160.CrossRefGoogle Scholar
Swerdlow, A. J., Higgins, C. D., Adlard, P., & Preece, M. A.Risk of cancer in patients treated with human pituitary growth hormone in the UK, 1959–1985: a cohort study. Lancet 2002; 360:273–277.CrossRefGoogle Scholar
Ogilvy-Stuart, A. L., Ryder, W. D., Gattamaneni, H. R., Clayton, P. E., & Shalet, S. M.Growth hormone and tumour recurrence. Br. Med. J. 1992; 304:1601–1605.CrossRefGoogle ScholarPubMed
Swerdlow, A. J., Reddingius, R. E., Higgins, C. D.et al.Growth hormone treatment of children with brain tumors and risk of tumor recurrence. J. Clin. Endocrinol. Metab. 2000; 85:4444–4449.Google ScholarPubMed
Sklar, C. A., Mertens, A. C., Mitby, P.et al.Risk of disease recurrence and second neoplasms in survivors of childhood cancer treated with growth hormone: a report from the Childhood Cancer Survivor Study. J. Clin. Endocrinol. Metab. 2002; 87:3136–3141.CrossRefGoogle ScholarPubMed
Hall, J. E., Martin, K. A., Whitney, H. A., Landy, H., & Crowley, W. F. Jr.Potential for fertility with replacement of hypothalamic gonadotrophin-releasing hormone in long term female survivors of cranial tumors. J. Clin. Endocrinol. Metab. 1994; 79:1166–1172.Google ScholarPubMed
Leiper, A. D., Stanhope, R., Preece, M. A., Grant, D. B., & Chessells, J. M.Precocious or early puberty and growth failure in girls treated for acute lymphoblastic leukaemia. Horm. Res. 1988; 30:72–76.CrossRefGoogle ScholarPubMed
Ogilvy-Stuart, A. L., Clayton, P. E., & Shalet, S. M.Cranial irradiation and early puberty. J. Clin. Endocrinol. Metab. 1994; 78:1282–1286.Google ScholarPubMed
Didcock, E., Davies, H. A., Didi, M., Ogilvy-Stuart, A. L., Wales, J. K., & Shalet, S. M.Pubertal growth in young adult survivors of childhood leukaemia. J. Clin. Oncol. 1995; 13:2503–2507.CrossRefGoogle Scholar
Davies, H. A., Didcock, E., Didi, M., Ogilvy-Stuart, A. L., Wales, J. K., & Shalet, S. M.Disproportionate short stature after cranial irradiation and combination chemotherapy for leukaemia. Arch. Dis. Child. 1994; 70:472–475.CrossRefGoogle ScholarPubMed
Cara, J. F., Kreiter, M. L., & Rosenfield, R. L.Height prognosis of children with true precocious puberty and growth hormone deficiency: effect of combination therapy with gonadotrophin releasing hormone agonist and growth hormone. J. Pediatr. 1992; 120:709–715.CrossRefGoogle ScholarPubMed
Waring, A. B. & Wallace, W. H. B.Subfertility following treatment for childhood cancer. Hosp. Med. 2000; 61:550–557.CrossRefGoogle ScholarPubMed
Whitehead, E., Shalet, S. M., Jones, P. H., Beardwell, C. G., & Deakin, D. P.Gonadal function after combination chemotherapy for Hodgkin's disease in childhood. Arch. Dis. Child. 1982; 57:287–291.CrossRefGoogle ScholarPubMed
Wallace, W. H., Shalet, S. M., Crowne, E. C., Morris-Jones, P. H., & Gattamaneni, H. R.Ovarian failure following abdominal irradiation in childhood: natural history and prognosis. Clin. Oncol. (R. Coll. Radiol.) 1989; 1:75–79.CrossRefGoogle ScholarPubMed
Speiser, B., Rubin, P., & Casarett, G.Aspermia following lower truncal irradiation in Hodgkin's disease. Cancer 1973; 32:692–698.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Relander, T., Cavallin-Stahl, E., Garwicz, S., Olsson, A. M., & Willen, M.Gonadal and sexual function in men treated for childhood cancer. Med. Pediatr. Oncol. 2000; 35:52–63.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Chemes, H. E.Infancy is not a quiescent period of testicular development. Int. J. Androl. 2001; 24:2–7.CrossRefGoogle Scholar
Kelnar, C. J., McKinnell, C., Walker, M.et al.Testicular changes during infantile ‘quiescence’ in the marmoset and their gonadotrophin dependence: a model for investigating susceptibility of the prepubertal human testis to cancer therapy?Hum. Reprod. 2002; 17:1367–1378.CrossRefGoogle ScholarPubMed
Whitehead, E., Shalet, S. M., Blackledge, G., Todd, I., Crowther, D., & Beardwell, C. G.The effect of combination chemotherapy on ovarian function in women treated for Hodgkin's disease. Cancer 1983; 52:988–993.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Clifton, D. K. & Bremner, W. J.The effect of testicular x-irradiation on spermatogenesis in man. A comparison with the mouse. J. Androl. 1983; 4:387–392.CrossRefGoogle Scholar
Centola, G. M., Keller, J. W., Henzler, M., & Rubin, P.Effect of low-dose testicular irradiation on sperm count and fertility in patients with testicular seminoma. J. Androl. 1994; 15:608–613.Google ScholarPubMed
Shalet, S. M., Tsatsoulis, A., Whitehead, E., Read, G.Vulnerability of the human Leydig cell to radiation damage is dependent upon age. J. Endocrinol. 1989; 120:161–165.CrossRefGoogle ScholarPubMed
Wallace, W. H., Shalet, S. M., Hendry, J. H., Morris-Jones, P. H., & Gattamaneni, H. R.Ovarian failure following abdominal irradiation in childhood: the radiosensitivity of the human oocyte. Br. J. Radiol. 1989; 62:995–998.CrossRefGoogle ScholarPubMed
Sanders, J. E., Hawley, J., Levy, W.et al.Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood 1996; 87:3045–3052.Google ScholarPubMed
Bath, L. E., Critchley, H. O., Chambers, S. E., Anderson, R. A., Kelnar, C. J., & Wallace, W. H.Ovarian and uterine characteristics after total body irradiation in childhood and adolescence: response to sex steroid replacement. Br. J. Obstet. Gynaecol. 1999; 106:1265–1272.CrossRefGoogle ScholarPubMed
Wallace, W. H. B., Thomson, A. B., & Kelsey, T. W.The radiosensitivity of the human oocyte. Hum. Reprod. 2003; 18:117–121.CrossRefGoogle ScholarPubMed
Wallace, W. H. & Kelsey, T. W.Ovarian reserve and reproductive age may be determined from measurement of ovarian volume by transvaginal sonography. Hum. Reprod. 2004; 19:1612–1617.CrossRefGoogle ScholarPubMed
Critchley, H. O., Wallace, W. H., Shalet, S. M., Mamtora, H., Higginson, J., & Anderson, D. C.Abdominal irradiation in childhood; the potential for pregnancy. Br. J. Obstet. Gynaecol. 1992; 99:392–394.CrossRefGoogle ScholarPubMed
Mackie, E. J., Radford, M., & Shalet, S. M.Gonadal function following chemotherapy for childhood Hodgkin's disease. Med. Pediatr. Oncol. 1996; 27:74–78.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Wallace, W. H., Shalet, S. M., Lendon, M., & Morris-Jones, P. H.Male fertility in long-term survivors of childhood acute lymphoblastic leukaemia. Int. J. Androl. 1991; 14:312–319.CrossRefGoogle ScholarPubMed
Wallace, W. H., Shalet, S. M., Crowne, E. C., Morris-Jones, P. H., Gattamaneni, H. R., & Price, D. A.Gonadal dysfunction due to cis-platinum. Med. Pediatr. Oncol. 1989; 17:409–413.CrossRefGoogle ScholarPubMed
Kreuser, E. D., Xiros, N., Hetzel, W. D., & Heimpel, H.Reproductive and endocrine gonadal capacity in patients treated with COPP chemotherapy for Hodgkin's disease. J. Cancer. Res. Clin. Oncol. 1987; 113:260–266.CrossRefGoogle ScholarPubMed
Thomson, A. B., Campbell, A. J., Irvine, D. S., Anderson, R. A., Kelnar, C. J. H., & Wallace, W. H. B.Semen quality and spermatozoal DNA integrity in survivors of childhood cancer: a case-control study. Lancet 2002; 360:361–367.CrossRefGoogle ScholarPubMed
Gerl, A., Muhlbayer, D., Hansmann, G., Mraz, W., & Hiddemann, W.The impact of chemotherapy on Leydig cell function in long term survivors of germ cell tumors. Cancer 2001; 91:1297–1303.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Thomson, A. B. & Wallace, W. H.Treatment of paediatric Hodgkin's disease: a balance of risks. Eur. J. Cancer. 2002; 38:468–477.CrossRefGoogle ScholarPubMed
Viviani, S., Santoro, A., Ragni, G., Bonfante, V., Bestetti, O., & Bonadonna, G.Gonadal toxicity after combination chemotherapy for Hodgkin's disease. Comparative results of MOPP vs ABVD. Eur. J. Cancer. Clin. Oncol. 1985; 21:601–605.CrossRefGoogle ScholarPubMed
Chiarelli, A. M., Marrett, L. D., & Darlington, G.Early menopause and infertility in females after treatment for childhood cancer diagnosed in 1964–1988 in Ontario, Canada. Am. J. Epidemiol. 1999; 150:245–254.CrossRefGoogle ScholarPubMed
Bryne, J., Fears, T. R., Gail, M. H.et al.Early menopause in long-term survivors of cancer during adolescence. Am. J. Obstet. Gynaecol. 1992; 166:788–793.CrossRefGoogle Scholar
Rueffer, U., Breuer, K., Josting, A.et al.Male gonadal dysfunction in patients with Hodgkin's disease prior to treatment. Ann. Oncol. 2001; 12:1307–1311.CrossRefGoogle ScholarPubMed
Hallak, J., Mahran, A., Chae, J., & Agarwal, A.The effects of cryopreservation on semen from men with sarcoma or carcinoma. J. Assist. Reprod. Genet. 2000; 17:218–221.CrossRefGoogle ScholarPubMed
Agarwal, A., Shekarriz, M., Sidhu, R. K., & Thomas, A. J. Jr.Value of clinical diagnosis in predicting the quality of cryopreserved sperm from cancer patients. J. Urol. 1996; 155:934–938.CrossRefGoogle ScholarPubMed
Pal, L., Leykin, L., Schifren, J. L.et al.Malignancy may adversely influence the quality and behaviour of oocytes. Hum. Reprod. 1998; 13:1837–1840.CrossRefGoogle ScholarPubMed
Marmor, D. & Duyck, F.Male reproductive potential after MOPP therapy for Hodgkin's disease: a long-term survey. Andrologia 1995; 27:99–106.CrossRefGoogle ScholarPubMed
Nasir, J., Walton, C., Lindow, S. W., & Masson, E. A.Spontaneous recovery of chemotherapy-induced primary ovarian failure: implications for management. Clin. Endocrinol. (Oxf.) 1997; 46:217–219.CrossRefGoogle ScholarPubMed
Anderson, R. A. & Sharpe, R. M.Regulation of inhibin production in the human male and its clinical applications. Int. J. Androl. 2000; 23:136–144.CrossRefGoogle ScholarPubMed
Roberts, V. J., Barth, S., Roeiy, el- A., & Yen, S. S.Expression of inhibin/activin subunits and follistatin messenger ribonucleic acids and proteins in ovarian follicles and the corpus luteum during the human menstrual cycle. J. Clin. Endocrinol. Metab. 1993; 77:1402–1410.Google ScholarPubMed
Wallace, E. M., Groome, N. P., Riley, S. C., Parker, A. C., & Wu, F. C.Effects of chemotherapy-induced testicular damage on inhibin, gonadotrophin, and testosterone secretion: a prospective longitudinal study. J. Clin. Endocrinol. Metab. 1997; 82:3111–3115.CrossRefGoogle ScholarPubMed
Crofton, P. M., Thomson, A. B., Evans, A. E. M.et al.Is inhibin B a potential marker of gonadotoxicity in prepubertal children treated for cancer?Clin. Endocrinol. (Oxf.) 2003; 58:296–301.CrossRefGoogle ScholarPubMed
Wallace, W. H. B. & Thomson, A. B.Preservation of fertility in children treated for cancer. Arch. Dis. Child. 2003; 88:493–496.CrossRefGoogle ScholarPubMed
Postovsky, S., Lightman, A., Aminpour, D., Elhasid, R., Peretz, M., & Arush, M. W.Sperm cryopreservation in adolescents with newly diagnosed cancer. Med. Pediatr. Oncol. 2003; 40:355–359.CrossRefGoogle ScholarPubMed
Hammadeh, M. E., Askari, A. S., Georg, T., Rosenbaum, P., & Schmidt, W.Effect of freeze-thawing procedure on chromatin stability, morphological alteration and membrane integrity of human spermatozoa in fertile and subfertile men. Int. J. Androl. 1999; 22:155–162.CrossRefGoogle ScholarPubMed
Salha, O., Picton, H., Balen, A., & Rutherford, A.Human oocyte cryopreservation. Hosp. Med. 2001; 62:18–24.CrossRefGoogle ScholarPubMed
Brinster, R. L. & Zimmermann, J. W.Spermatogenesis following male germ-cell transplantation. Proc. Natl. Acad. Sci. USA 1994; 91:11298–11302.CrossRefGoogle ScholarPubMed
Jahnukainen, K., Hou, M., Petersen, C., Setchell, B., & Soder, O.Intratesticular transplantation of testicular cells from leukemic rats causes transmission of leukemia. Cancer. Res. 2001; 61:706–710.Google ScholarPubMed
Tesarik, J., Bahceci, M., Ozcan, C., Greco, E., & Mendoza, C.Restoration of fertility by in-vitro spermatogenesis. Lancet 1999; 353(9152): 555–556.CrossRefGoogle ScholarPubMed
Ward, J. A., Robinson, J., Furr, B. J., Shalet, S. M., & Morris, I. D.Protection of spermatogenesis in rats from the cytotoxic procarbazine by the depot formulation of Zoladex, a gonadotropin-releasing hormone agonist. Cancer Res. 1990; 50:568–574.Google ScholarPubMed
Kurdoglu, B., Wilson, G., Parchuri, N., Ye, W. S., & Meistrich, M. L.Protection from radiation-induced damage to spermatogenesis by hormone treatment. Radiat. Res. 1994; 139:97–102.CrossRefGoogle ScholarPubMed
Thomson, A. B., Anderson, R. A., Irvine, D. S., Kelnar, C. J., Sharpe, R. M., & Wallace, W. H.Investigation of suppression of the hypothalamic–pituitary–gonadal axis to restore spermatogenesis in azoospermic men treated for childhood cancer. Hum. Reprod. 2002; 17:1715–1723.CrossRefGoogle ScholarPubMed
Gosden, R. G., Baird, D. T., Wade, J. C., & Webb, R.Restoration of fertility to oophorectomized sheep by ovarian autografts stored at –196 degrees C. Hum. Reprod. 1994; 9:597–603.CrossRefGoogle ScholarPubMed
Radford, J. A., Lieberman, B. A., Brison, D. R.et al.Orthotopic reimplantation of cryopreserved ovarian cortical strips after high-dose chemotherapy for Hodgkin's lymphoma. Lancet 2001; 357:1172–1175.CrossRefGoogle ScholarPubMed
Oktay, K., Buyuk, E., Rosenwaks, Z., & Rucinski, J.A technique for transplantation of ovarian cortical strips to the forearm. Fertil. Steril. 2003; 80:193–198.CrossRefGoogle ScholarPubMed
Shaw, J. M., Bowles, J., Koopman, P., Wood, E. C., & Trounson, A. O.Fresh and cryopreserved ovarian tissue samples from donors with lymphoma transmit the cancer to graft recipients. Hum. Reprod. 1996; 11:1668–1673.CrossRefGoogle ScholarPubMed
Royal College of Obstetricians and Gynaecologists. Storage of ovarian and prepubertal testicular tissue. Report of a working party. Royal College of Obstetricians and Gynaecologists, London, 2000.
Hawkins, M. M., Draper, G. J., & Smith, R. A.Cancer among 1,348 offspring of survivors of childhood cancer. Int. J. Cancer. 1989; 43:975–978.CrossRefGoogle ScholarPubMed
Spoudeas, H. A., Wallace, W. H. B., & Walker, D.Is germ cell harvest and storage justified in minors treated for cancer? (letter)Br. Med. J. 2000; 320:316.CrossRefGoogle Scholar
Wallace, W. H. & Walker, D. A.Conference consensus statement: ethical and research dilemmas for fertility preservation in children treated for cancer. Hum. Fertil. (Camb.) 2001; 4:69–76.CrossRefGoogle ScholarPubMed
Black, P., Straaten, A., & Gutjahr, P.Secondary thyroid carcinoma after treatment for childhood cancer. Med. Pediatr. Oncol. 1998; 31:91–95.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Sklar, C. A., Constine, L. S.Chronic neuroendocrinological sequalae of radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 1995; 31:1113–1121.CrossRefGoogle Scholar
Rose, S. R., Lustig, R. H., Pitukcheewanont, P.et al.Diagnosis of hidden central hypothyroidism in survivors of childhood cancer. J. Clin. Endocrinol. Metab. 1999; 84:4472–4479.Google ScholarPubMed
Rose, S. R.Isolated central hypothyroidism in short stature. Pediatr. Res. 1995; 38:967–973.CrossRefGoogle ScholarPubMed
Livesey, E. A. & Brook, C. G.Thyroid dysfunction after radiotherapy and chemotherapy of brain tumours. Arch. Dis. Child. 1989; 64:593–595.CrossRefGoogle ScholarPubMed
Michel, G., Socie, G., Gebhard, F.et al.Late effects of allogeneic bone marrow transplantation for children with acute myeloblastic leukaemia in first complete remission: the impact of conditioning regimen without total body irradiation- a report from the Societe Francaise de Greffe de Moelle. J. Clin. Oncol. 1997; 15:2238–2246.CrossRefGoogle ScholarPubMed
Sklar, C., Whitton, J., Mertens, A.et al.Abnormalities of the thyroid in survivors of Hodgkin's disease: data from the Childhood Cancer Survivor Study. J. Clin. Endocrinol. Metab. 2000; 85:3227–3232.Google ScholarPubMed
Doniach, I., Kingston, J. E., Plowman, P. N., & Malpas, J. S.The association of post-radiation thyroid nodular disease with compensated hypothyroidism. Br. J. Radiol. 1987; 60:1223–1226.CrossRefGoogle ScholarPubMed
Fleming, I. D., Black, T. L., Thompson, E. I., Pratt, C., Rao, B., & Hustu, O.Thyroid dysfunction and neoplasia in children receiving neck irradiation for cancer. Cancer 1985; 55:1190–1194.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Vathaire, F., Hardiman, C., Shamsaldin, A.et al.Thyroid carcinomas after irradiation for a first cancer during childhood. Arch. Intern. Med. 1999; 159:2713–2719.CrossRefGoogle ScholarPubMed
Ron, E., Modan, B., Preston, D., Alfandary, E., Stovall, M., & Boice, J. D. Jr.Thyroid neoplasia following low-dose radiation in childhood. Radiat. Res. 1989; 120:516–531.CrossRefGoogle ScholarPubMed
Inskip, P. D.Thyroid cancer after radiotherapy for childhood cancer. Med. Pediatr. Oncol. 2001; 36:568–573.CrossRefGoogle ScholarPubMed
Crom, D. B., Kaste, S. C., Tubergen, D. G., Greenwald, C. A., Sharp, G. B., & Hudson, M. M.Ultrasonography for thyroid screening after head and neck irradiation in childhood cancer survivors. Med. Pediatr. Oncol. 1997; 28:15–21.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Crowne, E. C., Wallace, W. H., Gibson, S., Moore, C. M., White, A., & Shalet, S. M.Adrenocorticotrophin and cortisol secretion after low dose cranial irradiation. Clin. Endocrinol. (Oxf.) 1993; 39:297–305.CrossRefGoogle ScholarPubMed
Ogilvy-Stuart, A. L., Shalet, S. M.Effect of chemotherapy on growth. Acta Paediatr. Suppl 1995; 411:52–56.CrossRefGoogle ScholarPubMed
Arikoski, P., Komulainen, J., Riikonen, P., Jurvelin, J. S., Voutilainen, R., & Kroger, H.Reduced bone density at completion of chemotherapy for a malignancy. Arch. Dis. Child. 1999; 80:143–148.CrossRefGoogle ScholarPubMed
Shalet, S. M., Gibson, B., Swindell, R., & Pearson, D.Effect of spinal irradiation on growth. Arch. Dis. Child. 1987; 62:461–464.CrossRefGoogle ScholarPubMed
Wallace, W. H., Shalet, S. M., Morris-Jones, P. H., Swindell, R., & Gattamaneni, H. R.Effect of abdominal irradiation on growth in boys treated for a Wilms' tumor. Med. Pediatr. Oncol. 1990; 18:441–446.CrossRefGoogle ScholarPubMed
Riseborough, E. J., Grabias, S. L., Burton, R. I., & Jaffe, N.Skeletal alterations following irradiation for Wilms' tumor: with particular reference to scoliosis and kyphosis. J. Bone. Joint. Surg. Am. 1976; 58:526–536.CrossRefGoogle ScholarPubMed
Rate, W. R., Butler, M. S., Robertson, W. W. Jr, & Angio, D' G. J.Late orthopedic effects in children with Wilms' tumor treated with abdominal irradiation. Med. Pediatr. Oncol. 1991; 19:265–268.CrossRefGoogle ScholarPubMed
Clayton, P. E., Shalet, S. M., Morris-Jones, P. H., & Price, D. A.Growth in children treated for acute lymphoblastic leukaemia. Lancet 1988; 1 (8583): 460–462.CrossRefGoogle ScholarPubMed
Schriock, E. A., Schell, M. J., Carter, M., Hustu, O., & Ochs, J. J.Abnormal growth patterns and adult short stature in 115 long-term survivors of childhood leukaemia. J. Clin. Oncol. 1991; 9:400–405.CrossRefGoogle Scholar
Sklar, C., Mertens, A., Walter, A.et al.Final height after treatment for childhood acute lymphoblastic leukaemia: comparison of no cranial irradiation with 1800 and 2400 centigrays of cranial irradiation. J. Pediatr. 1993; 123:59–64.CrossRefGoogle ScholarPubMed
Ahmed, S. F., Wallace, W. H., Crofton, P. M., Wardhaugh, B., Magowan, R., & Kelnar, C. J.Short-term changes in lower leg length in children treated for acute lymphoblastic leukaemia. J. Pediatr. Endocrinol. Metab. 1999; 12:75–80.CrossRefGoogle ScholarPubMed
Hokken-Koelega, A. C., Doorn, J. W., Hahlen, K.et al.Long-term effects of treatment for acute lymphoblastic leukaemia with and without cranial irradiation on growth and puberty: a comparative study. Pediatr. Res. 1993; 33:577–582.CrossRefGoogle ScholarPubMed
Kroger, H., Kotaniemi, A., Kroger, L., & Alhava, E.Development of bone mass and bone density of the spine and femoral neck- a prospective study of 65 children and adolescents. Bone. Miner. 1993; 23:171–182.CrossRefGoogle ScholarPubMed
Arikoski, P., Komulainen, J., Voutilainen, R.et al.Reduced bone mineral density in long-term survivors of childhood acute lymphoblastic leukaemia. J. Pediatr. Hematol. Oncol. 1998; 20:234–240.CrossRefGoogle Scholar
Crofton, P. M., Ahmed, S. F., Wade, J. C.et al.Effects of intensive chemotherapy on bone and collagen turnover and the growth hormone axis in children with acute lymphoblastic leukaemia. J. Clin. Endocrinol. Metab. 1998; 83:3121–3129.Google Scholar
Gaynon, P. S. & Lustig, R. H.The use of glucocorticoids in acute lymphoblastic leukaemia of childhood. Molecular, cellular, and clinical considerations. J. Pediatr. Hematol. Oncol. 1995; 17:1–12.CrossRefGoogle ScholarPubMed
Uehara, R., Suzuki, Y., & Ichikawa, Y.Methotrexate (MTX) inhibits osteoblastic differentiation in vitro: possible mechanism of MTX osteopathy. J. Rheumatol. 2001; 28:251–256.Google ScholarPubMed
Halton, J. M., Atkinson, S. A., Fraher, L.et al.Mineral homeostasis and bone mass at diagnosis in children with acute lymphoblastic leukaemia. J. Pediatr. 1995; 126:557–564.CrossRefGoogle Scholar
Muller, H. L., Bueb, K., Bartels, U.et al.Obesity after childhood craniopharyngioma – German multi-center study on pre-operative risk factors and quality of life. Klin. Padiatr. 2001; 213:244–249.CrossRefGoogle Scholar
Vile, C. J., Grant, D. B., Hayward, R. D., Kendall, B. E., Neville, B. G., & Stanhope, R.Obesity in childhood craniopharyngioma: relation to post-operative hypothalamic damage shown by magnetic resonance imaging. J. Clin. Endocrinol. Metab. 1996; 81:2734–2737.Google ScholarPubMed
Sklar, C. A., Mertens, A. C., Walter, A.et al.Changes in body mass index and prevalence of overweight in survivors of childhood acute lymphoblastic leukaemia: role of cranial irradiation. Med. Pediatr. Oncol. 2000; 35:91–95.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Reilly, J. J., Blacklock, C. J., Dale, E., Donaldson, M., & Gibson, B. E.Resting metabolic rate and obesity in childhood acute lymphoblastic leukaemia. Int. J. Obes. Relat. Metab. Disord. 1996; 20:1130–1132.Google ScholarPubMed
Reilly, J. J., Ventham, J. C., Ralston, J. M., Donaldson, M., & Gibson, B.Reduced energy expenditure in preobese children treated for acute lymphoblastic leukaemia. Pediatr. Res. 1998; 44:557–562.CrossRefGoogle Scholar
Odame, I., Reilly, J. J., Gibson, B. E., & Donaldson, M. D.Patterns of obesity in boys and girls after treatment for acute lymphoblastic leukaemia. Arch. Dis. Child. 1994; 71:147–149.CrossRefGoogle ScholarPubMed
Reilly, J. J., Ventham, J. C., Newell, J., Aitchison, T., Wallace, W. H., & Gibson, B. E.Risk factors for excess weight gain in children treated for acute lymphoblastic leukaemia. Int. J. Obes. Relat. Metab. Disord. 2000; 24; 1537–1541.CrossRefGoogle ScholarPubMed
Shaw, M. P., Bath, L. E., Duff, J., Kelnar, C. J., & Wallace, W. H.Obesity in leukaemia survivors: the familial contribution. Pediatr. Hematol. Oncol. 2000; 17:231–237.CrossRefGoogle ScholarPubMed
Reilly, J. J., Brougham, M., Montgomery, C., Richardson, F., Kelly, A., & Gibson, B. E.Effect of glucocorticoid therapy on energy intake in children treated for acute lymphoblastic leukaemia. J. Clin. Endocrinol. Metab. 2001; 86:3742–3745.CrossRefGoogle Scholar
Truesdell, S., Schwartz, C. L., Clark, E., & Constine, L. S. Cardiovascular effects of cancer. In Schwartz, C. L., Hobbie, W. L., Constine, L. S., & Ruccione, K. S. (eds) Survivors of Childhood Cancer. St Louis Mosby, 1994.Google Scholar
Hancock, S. L., Tucker, M. A., & Hoppe, R. T.Factors affecting late mortality from heart disease after treatment of Hodgkin's disease. J. Am. Med. Assoc. 1993; 270:1949–1955.CrossRefGoogle ScholarPubMed
Pihkala, J., Saarinen, U. M., Lundstrom, U.et al.Myocardial function in children and adolescents after therapy with anthracyclines and chest irradiation. Eur. J. Cancer. 1996; 32A:97–103.CrossRefGoogle ScholarPubMed
Sorensen, K., Levitt, G., Bull, C., Chessells, J., & Sullivan, I.Anthracycline dose in childhood acute lymphoblastic leukemia: issues of early survival versus late cardiotoxicity. J. Clin. Oncol. 1997; 15:61–68.CrossRefGoogle ScholarPubMed
Lipshultz, S. E., Lipsitz, S. R., Mone, S. M.et al.Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N. Engl. J. Med. 1995; 332:1738–1743.CrossRefGoogle ScholarPubMed
Mladosievicova, B., Foltinova, A., Petrasova, H., & Hulin, I.Late effects of anthracycline therapy in childhood on signal-averaged ECG parameters. Int. J. Mol. Med. 2000; 5:411–414.Google ScholarPubMed
Wexler, L. H., Andrich, M. P., Venzon, D.et al.Randomized trial of the cardioprotective agent ICRF-187 in pediatric sarcoma patients treated with doxorubicin. J. Clin. Oncol. 1996; 14:362–372.CrossRefGoogle ScholarPubMed
Nysom, K., Holm, K., Hesse, B.et al.Lung function after allogeneic bone marrow transplantation for leukaemia or lymphoma. Arch. Dis. Child. 1996; 74:432–436.CrossRefGoogle ScholarPubMed
Driscoll, O' B. R., Hasleton, P. S., Taylor, P. M., Poulter, L. W., Gattameneni, H. R., & Woodcock, A. A.Active lung fibrosis up to 17 years after chemotherapy with carmustine (BCNU) in childhood. N. Engl. J. Med. 1990; 323:378–382.CrossRefGoogle Scholar
Skinner, R., Pearson, A. D., English, M. W.et al.Risk factors for ifosfamide nephrotoxicity in children. Lancet 1996; 348:578–580.CrossRefGoogle ScholarPubMed
Hoff, J., Grier, H. E., Douglass, E. C., & Green, D. M.Etoposide, ifosfamide, and cisplatin therapy for refractory childhood solid tumors. Response and toxicity. Cancer 1995; 75:2966–2970.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Barclay, K. L. & Yeong, M. L.Actinomycin D associated hepatic veno-occlusive disease – a report of 2 cases. Pathology 1994; 26:257–260.CrossRefGoogle ScholarPubMed
Halonen, P., Mattila, J., Ruuska, T., Salo, M. K., & Makipernaa, A.Liver histology after current intensified therapy for childhood acute lymphoblastic leukemia: microvesicular fatty change and siderosis are the main findings. Med. Pediatr. Oncol. 2003; 40:148–154.CrossRefGoogle ScholarPubMed
Bruyne, R., Portmann, B., Samyn, B.et al.Chronic liver disease related to 6-thioguanine in children with acute lymphoblastic leukaemia. J. Hepatol. 2006; 44:407–410.CrossRefGoogle ScholarPubMed
Eiser, C.Children and cancer. Pediatr. Rehabil. 2002; 5:187–189.Google ScholarPubMed
Mulhern, R. K., Reddick, W. E., Palmer, S. L.et al.Neurocognitive deficits in medulloblastoma survivors and white matter loss. Ann. Neurol. 1999; 46:834–841.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Hawkins, M. M., Draper, G. J., & Kingston, J. E.Incidence of second primary tumours among childhood cancer survivors. Br. J. Cancer. 1987; 56:339–347.CrossRefGoogle ScholarPubMed
Hawkins, M. M., Wilson, L. M., Burton, H. S.et al.Radiotherapy, alkylating agents, and risk of bone cancer after childhood cancer. J. Natl. Cancer. Inst. 1996; 88:270–278.CrossRefGoogle ScholarPubMed
Tucker, M. A., Angio, D' G. J., Boice, J. D. Jr.et al.Bone sarcomas linked to radiotherapy and chemotherapy in children. N. Engl. J. Med. 1987; 317:588–593.CrossRefGoogle ScholarPubMed
Hawkins, M. M., Wilson, L. M., Stovall, M. A.et al.Epipodophyllotoxins, alkylating agents, and radiation and risk of secondary leukaemia after childhood cancer. Br. Med. J. 1992; 304:951–958.CrossRefGoogle ScholarPubMed
Tucker, M. A., Meadows, A. T., Boice, J. D. Jr., et al.Leukemia after therapy with alkylating agents for childhood cancer. J. Natl. Cancer. Inst. 1987; 78:459–464.CrossRefGoogle ScholarPubMed
Travis, L. B., Hill, D. A., Dores, G. M.et al.Breast cancer following radiotherapy and chemotherapy among young women with Hodgkin disease. J. Am. Med. Assoc. 2003; 290:465–475.CrossRefGoogle ScholarPubMed
Swerdlow, A. J., Barber, J. A., Hudson, G. V.et al.Risk of second malignancy after Hodgkin's disease in a collaborative British cohort: the relation to age at treatment. J. Clin. Oncol. 2000; 18:498–509.CrossRefGoogle Scholar
Wallace, W. H., Blacklay, A., Eiser, C.et al.Developing strategies for long term follow up of survivors of childhood cancer. Br. Med. J. 2001; 323:271–274.CrossRefGoogle ScholarPubMed
Taylor, A., Hawkins, M., Griffiths, A.et al.Long-term follow-up of survivors of childhood cancer in the UK. Pediatr. Blood Cancer 2004; 42:161–168.CrossRefGoogle ScholarPubMed
Wallace, H. & Green, D.Late Effects of Childhood Cancer. Arnold, 2004.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×