Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-29T20:29:59.522Z Has data issue: false hasContentIssue false

6 - Implications of a Bayesian formulation of visual information for processing for psychophysics

Published online by Cambridge University Press:  05 March 2012

D.C. Knill
Affiliation:
University of Pennsylvania
D. Kersten
Affiliation:
University of Minnesota
P. Mamassian
Affiliation:
University of Minnesota
David C. Knill
Affiliation:
University of Pennsylvania
Whitman Richards
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Introduction

The previous chapters have demonstrated the many ways one can use a Bayesian formulation for computationally modeling perceptual problems. In this chapter, we look at the implications of a Bayesian view of visual information processing for investigating human visual perception. We will attempt to outline the elements of a general program of empirical research which results from taking the Bayesian formulation seriously as a framework for characterizing human perceptual inference. A major advantage of following such a program is that it supports a strong integration of psychophysics and computational theory, since its structure is the same as that of the Bayesian framework for computational modeling. In particular, it provides the foundation for a psychophysics of constraints, used to test hypotheses about the quantitative and qualitative constraints used in human perceptual inferences. The Bayesian approach also suggests new ways to conceptualize the general problem of perception and to decompose it into isolatable parts for psychophysical investigation. Thus, it not only provides a framework for modeling solutions to specific perceptual problems; it also guides the definition of the problems.

The chapter is organized into four major sections. In the next section, we develop a framework for characterizing human perception in Bayesian terms and analyze its implications for studying human perceptual performance. The third and fourth sections of the chapter apply the framework to two specific problems: the perception of 3-D shape from surface contours and the perception of 3-D object motion from cast shadow motion.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×