Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-01T09:11:29.103Z Has data issue: false hasContentIssue false

5 - Observer theory, Bayes theory, and psychophysics

Published online by Cambridge University Press:  05 March 2012

B.M. Bennett
Affiliation:
University of California at Irvine
D.D. Hoffman
Affiliation:
University of California at Irvine
C. Prakash
Affiliation:
California State University
S.N. Richman
Affiliation:
University of California at Irvine
David C. Knill
Affiliation:
University of Pennsylvania
Whitman Richards
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Introduction

The search is on for a general theory of perception. As the papers in this volume indicate, many perceptual researchers now seek a conceptual framework and a general formalism to help them solve specific problems.

One candidate framework is “observer theory” (Bennett, Hoffman, & Prakash, 1989a). This paper discusses observer theory, gives a sympathetic analysis of its candidacy, describes its relationship to standard Bayesian analysis, and uses it to develop a new account of the relationship between computational theories and psychophysical data. Observer theory provides powerful tools for the perceptual theorist, psychophysicist, and philosopher. For the theorist it provides (1) a clean distinction between competence and performance, (2) clear goals and techniques for solving specific problems, and (3) a canonical format for presenting and analyzing proposed solutions. For the psychophysicist it provides techniques for assessing the psychological plausibility of theoretical solutions in the light of psychophysical data. And for the philosopher it provides conceptual tools for investigating the relationship of sensory experience to the material world.

Observer theory relates to Bayesian approaches as follows. In Bayesian approaches to vision one is given an image (or small collection of images), and a central goal is to compute the probability of various scene interpretations for that image (or small collection of images). That is, a central goal is to compute a conditional probability measure, called the “posterior distribution”, which can be written p(Scene | Image) or, more briefly, p(S | I).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×