Published online by Cambridge University Press: 13 August 2009
To study equilibrium statistical physics, we will start with Ising spin systems (here-after referred to as Ising systems), because they serve as important reference systems in understanding various phase transitions [1]–[7]. We will then proceed to one- and two-component fluids with short-range interaction, which are believed to be isomorphic to Ising systems with respect to static critical behavior. We will treat equilibrium averages of physical quantities such as the spin, number, and energy density and then show that thermodynamic derivatives can be expressed in terms of fluctuation variances of some density variables. Simple examples are the magnetic susceptibility in Ising systems and the isothermal compressibility in one-component fluids expressed in terms of the correlation function of the spin and density, respectively. More complex examples are the constant-volume specific heat and the adiabatic compressibility in one- and two-component fluids. For our purposes, as far as the thermodynamics is concerned, we need equal-time correlations only in the long-wavelength limit. These relations have not been adequately discussed in textbooks, and must be developed here to help us to correctly interpret various experiments of thermodynamic derivatives. They will also be used in dynamic theories in this book. We briefly summarize equilibrium thermodynamics in the light of these equilibrium relations for Ising spin systems in Section 1.1, for one-component fluids in Section 1.2, and for binary fluid mixtures in Section 1.3.
Spin models
Ising hamiltonian
Let each lattice point of a crystal lattice have two microscopic states.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.