Skip to main content Accessibility help
×
  • Cited by 64
    • Show more authors
    • You may already have access via personal or institutional login
    • Select format
    • Publisher:
      Cambridge University Press
      Publication date:
      July 2009
      June 2005
      ISBN:
      9780511498589
      9780521837828
      9780521119986
      Dimensions:
      (228 x 152 mm)
      Weight & Pages:
      0.71kg, 368 Pages
      Dimensions:
      (229 x 152 mm)
      Weight & Pages:
      0.54kg, 368 Pages
    You may already have access via personal or institutional login
  • Selected: Digital
    Add to cart View cart Buy from Cambridge.org

    Book description

    Offering a collection of fifteen essays that deal with issues at the intersection of phenomenology, logic, and the philosophy of mathematics, this 2005 book is divided into three parts. Part I contains a general essay on Husserl's conception of science and logic, an essay of mathematics and transcendental phenomenology, and an essay on phenomenology and modern pure geometry. Part II is focused on Kurt Godel's interest in phenomenology. It explores Godel's ideas and also some work of Quine, Penelope Maddy and Roger Penrose. Part III deals with elementary, constructive areas of mathematics. These are areas of mathematics that are closer to their origins in simple cognitive activities and in everyday experience. This part of the book contains essays on intuitionism, Hermann Weyl, the notion of constructive proof, Poincaré and Frege.

    Refine List

    Actions for selected content:

    Select all | Deselect all
    • View selected items
    • Export citations
    • Download PDF (zip)
    • Save to Kindle
    • Save to Dropbox
    • Save to Google Drive

    Save Search

    You can save your searches here and later view and run them again in "My saved searches".

    Please provide a title, maximum of 40 characters.
    ×

    Contents

    Bibliography
    Bibliography
    Barwise, J. (ed.), 1977. Handbook of Mathematical Logic. Amsterdam: North Holland
    Becker, O., 1923. “Beiträge zur phänomenologischen Begründung der Geometrie und ihrer physikalischen Anwendungen”, Jahrbuch für Philosophie und phänomenologische Forschung 6, 385–560
    Becker, O., 1927. “Mathematische Existenz: Untersuchungen zur Logik und Ontologie mathematischer Phänomene”, Jahrbuch für Philosophie und phänomenologische Forschung 8, 439–809
    Bell, D., 1990. Husserl. London: Routledge
    Benacerraf, P., 1973. “Mathematical Truth”, Journal of Philosophy 70, 661–679
    Benacerraf, P., and Putnam, H. (eds.), 1983. Philosophy of Mathematics: Selected Readings, 2nd ed. Cambridge: Cambridge University Press
    Bernays, P., 1935. “Sur le platonisme dans les mathématiques”, L'Enseignement Mathématique 34, 52–69. Translated by C. Parsons in Benacerraf and Putnam (eds.) 1983, 258–271
    Bishop, E., 1967. Foundations of Constructive Analysis. New York: McGraw-Hill
    Boolos, G., 1971. “The Iterative Conception of Set”, Journal of Philosophy 68, 215–232
    Boolos, G., 1987. “A Curious Inference”, Journal of Philosophical Logic 16, 1–12
    Brouwer, L. E. J., 1921. “Comments on Weyl 1921.” Translated by W. van Stigt in P. Mancosu (ed.) 1998, 119–122
    Brouwer, L. E. J., 1975. Collected Works, Vol. I. Edited by A. Heyting. Amsterdam: North Holland
    Carnap, R., 1922. Der Raum. Ein Betrag zur Wissenschaftslehre. Kant-Studien Ergänzungsheft 56. Berlin: Reuther & Reichard
    Curry, H., 1951. Outline of a Formalist Philosophy of Mathematics. Amsterdam: North Holland
    da Silva, J., 1997. “Husserl's Phenomenology and Weyl's Predicativism”, Synthese 110, 277–296
    Dennett, D., 1971. “Intentional Systems”, Journal of Philosophy 68, 87–106
    Deppert, W. (ed.), 1988. Exact Sciences and Their Philosophical Foundations. Frankfurt am Main: Lang
    Detlefsen, M., 1990. “Brouwerian Intuitionism”, Mind 99, 501–534
    Detlefsen, M., 1992. “Poincaré Against the Logicians”, Synthese 90, 349–378
    Drummond, J., 1978–79. “On Seeing a Material Thing in Space: The Role of Kinaesthesis in Visual Percpeption”, Philosophy and Phenomenological Research 40, 19–32
    Drummond, J., 1984. “The Perceptual Roots of Geometric Idealization”, Review of Metaphysics 37, 785–810
    Dummett, M., 1973. Frege: Philosophy of Language. New York: Harper & Row
    Dummett, M., 1977. Elements of Intuitionism. Oxford: Oxford University Press
    Dummett, M., 1978. “The Philosophical Basis of Intuitionistic Logic”, in M. Dummett, Truth and Other Enigmas. Cambridge, Mass.: Harvard University Press, 186–201
    Dummett, M., 1981. The Interpretation of Frege's Philosophy. Cambridge, Mass.: Harvard University Press
    Dummett, M., 1991. The Logical Basis of Metaphysics. Cambridge, Mass.: Harvard University Press
    Dummett, M., 1991a. Frege and Other Philosophers. Oxford: Oxford University Press
    Dummett, M., 1991b. “Frege and the Paradox of Analysis”, in Dummett 1991a, 16–52
    Dummett, M., 1991c. Frege: Philosophy of Mathematics. Cambridge, Mass.: Harvard University Press
    Dummett, M., 1991d. “Thought and Perception: The Views of Two Philosophical Innovators”, in Dummett 1991a, 263–288
    Dummett, M., 1993. “What Is a Theory of Meaning? (II)”, in M. Dummett, The Seas of Language. Oxford: Oxford University Press, 34–93
    Dummett, M., 1994. Origins of Analytic Philosophy. Cambridge, Mass.: Harvard University Press
    Feferman, S., 1988. “Weyl Vindicated: Das Kontinuum 70 Years Later”, Atti del Congresso Temi e prospettive della logica e della filosofia della scienza contemporanee, Vol. I. Bologna, CLUEB, 59–93. Reprinted in Feferman 1998, 249–283
    Feferman, S., 1996. “Penrose's Gödelian Argument”, Psyche 2, 21–32
    Feferman, S., 1998. In the Light of Logic. Oxford: Oxford University Press
    Feferman, S., et al. (eds.), 1986. Kurt Gödel: Collected Works, Vol. I. Oxford: Oxford University Press
    Feferman, S., 1990. Kurt Gödel: Collected Works, Vol. II. Oxford: Oxford University Press
    Feferman, S., 1995. Kurt Gödel: Collected Works, Vol. III. Oxford: Oxford University Press
    Fichte, J. G., 1908–1912. Werke, 6 vols. Edited by F. Medicus. Leipzig: Meiner
    Field, H., 1989. Realism, Mathematics and Modality. Oxford: Blackwell
    Folina, J., 1992. Poincaré and the Philosophy of Mathematics. New York: St. Martin's Press
    F⊘llesdal, D., 1988. “Husserl on Evidence and Justification”, in R. Sokolowski (ed.), Edmund Husserl and the Phenomenological Tradition. Washington, D.C.: Catholic University of America Press, 107–129
    F⊘llesdal, D., 1995. “Gödel and Husserl”, in J. Hintikka (ed.), Essays on the Development of the Foundations of Mathematics. Dordrecht: Kluwer, 427–446
    Frege, G., 1879. Begriffschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle: L. Nebert. Translated by S. Bauer-Mengelberg in van Heijenoort (ed.) 1967, 1–82
    Frege, G., 1884. Die Grundlagen der Arithmetik. Breslau: Koebner. Reprinted and translated by J. Austin as The Foundations of Arithmetic, Evanston: Northwestern University Press, 1978
    Frege, G. 1892. “Uber Sinn und Bedeutung”, Zeitschrift für Philosophie und philosophische Kritik 100, 25–50. Translated by M. Black in P. Geach and M. Black (eds.) 1970, 56–78
    Frege, G., 1892–95. “Comments on Sense and Reference”, in Hermes et al. 1979, 118–125
    Frege, G., 1893. Grundgesetze der Arithmetik, Vol. I. Jena: H. Pohle. Translated in part by R. Furth as The Basic Laws of Arithmetic. Berkeley: University of California Press, 1964
    Frege, G. 1894. “Review of E. Husserl, Philosophie der Arithmetik”, Zeitschrift für Philosophie und philosophische Kritik 103, 313–332. Translated by E. Kluge, in Mind 81, 1972, 321–337
    Frege, G., 1903. Grundgesetze der Arithmetik, Vol. II. Jena: H. Pohle. Translated in part in P. Geach and M. Black (eds.) 1970, 173–244
    Frege, G. 1918. “Der Gedanke: Eine logische Untersuchung”, Beiträge zur Philosophie des deutschen Idealismus 1, 58–77. Translated by A. Quinton and M. Quinton in Mind 65, 1956, 289–311
    Frege, G., 1924–25a. “A New Attempt at a Foundation for Arithmetic”, in Hermes et al. 1979, 278–281
    Frege, G., 1924–25b. “Numbers and Arithmetic”, in Hermes et al. 1979, 275–277
    Frege, G., 1924–25c. “Sources of Knowledge of Mathematics and the Mathematical Natural Sciences”, in Hermes et al. 1979, 267–274
    Friedman, M., 1999. Reconsidering Logical Positivism. Cambridge: Cambridge University Press
    Friedman, M., 2000. A Parting of the Ways: Carnap, Cassirer, and Heidegger. La Salle, Ill.: Open Court
    Geach, P., and Black, M. (eds.), 1970. Translations from the Philosophical Writings of Gottlob Frege. Oxford: Blackwell
    George, A., 1988. “The Conveyability of Intuitionism: An Essay on Mathematical Cognition”, Journal of Philosophical Logic 17, 133–156
    George, A. 1993. “How Not to Refute Realism”, Journal of Philosophy 90, 53–72
    Gödel, K., 1929. “On the Completeness of the Calculus of Logic”, in Feferman et al. (eds.) 1986, 60–101
    Gödel, K., 1931. “On Formally Undecidable Propositions of Principia Mathematica and Related Systems I”, in Feferman et al. (eds.) 1986, 145–195
    Gödel, K., 1933e. “On Intuitionistic Arithmetic and Number Theory”, in Feferman et al. (eds.) 1986, 286–295
    Gödel, K., 1933f. “An Interpretation of the Intuitionistic Propositional Calculus”, in Feferman et al. (eds.) 1986, 300–303
    Gödel, K., *1933o. “The Present Situation in the Foundations of Mathematics”, in Feferman et al. (eds.) 1995, 45–53
    Gödel, K., 1934. “On Undecidable Propositions of Formal Mathematical Systems”, in Feferman et al. (eds.) 1986, 346–371
    Gödel, K., *1938a. “Lecture at Zilsel's”, in Feferman et al. (eds.) 1995, 87–113
    Gödel, K., *193?. “Undecidable Diophantine Propositions”, in Feferman et al. (eds.) 1995, 164–175
    Gödel, K., 1940. “The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory”, in Feferman et al. (eds.) 1990, 33–101
    Gödel, K., *1941. “In What Sense Is Intuitionistic Logic Constructive?” in Feferman et al. (eds.) 1995, 189–2000
    Gödel, K., 1944. “Russell's Mathematical Logic”, in Feferman et al. (eds.) 1990, 119–143
    Gödel, K., 1946. “Remarks Before the Princeton Bicentennial Conference on Problems in Mathematics”, in Feferman et al. (eds.) 1990, 150–153
    Gödel, K., 1947. “What Is Cantor's Continuum Problem?” in Feferman et al. (eds.) 1990, 176–187
    Gödel, K., 1949. “An Example of a New Type of Cosmological Solutions of Einstein's Field Equations of Gravitation”, in Feferman et al. (eds.) 1990, 190–198
    Gödel, K., 1949a. “A Remark About the Relationship Between Relativity Theory and Idealistic Philosophy”, in Feferman et al. (eds.) 1990, 202–207
    Gödel, K., *1951. “Some Basic Theorems on the Foundations of Mathematics and Their Implications”, in Feferman et al. (eds.) 1995, 304–323
    Gödel, K., *1953/59, III and V. “Is Mathematics Syntax of Language?” in Feferman et al. (eds.) 1995, 334–363
    Gödel, K., 1958. “On an Extension of Finitary Mathematics Which Has Not Yet Been Used”, in Feferman et al. (eds.) 1990, 240–251
    Gödel, K., *1961/? “The Modern Development of the Foundations of Mathematics in the Light of Philosophy”, in Feferman et al. (eds.) 1995, 374–387
    Gödel, K., 1964. “What Is Cantor's Continuum Problem?” in Feferman et al. (eds.) 1990, 254–270. Revised version of Gödel 1947
    Gödel, K., 1972. “On an Extension of Finitary Mathematics Which Has Not Yet Been Used”, in Feferman et al. (eds.) 1990, 271–280. Revised version of Gödel 1958
    Gödel, K., 1972a. “Some Remarks on the Undecidability Results”, in Feferman et al. (eds.) 1990, 305–306
    Goldfarb, W., 1988. “Poincaré Against the Logicists”, in P. Kitcher and W. Aspray (eds.), History and Philosophy of Modern Mathematics, Minneapolis: University of Minnesota Press, 61–81
    Greenberg, M. J., 1993. Euclidean and Non-Euclidean Geometries, 3rd ed. New York: W. H. Freeman
    Gurwitsch, A., 1974. Phenomenology and the Theory of Science. Evanston, Ill.: Northwestern University Press
    Hallett, M., 1984. Cantorian Set Theory and Limitation of Size. Oxford: Oxford University Press
    Hardy, L., and Embree, L. (eds.), 1993. Phenomenology of Natural Science. Dordrecht: Kluwer
    Hauser, K., forthcoming. “Gödel's Program Revisted”, in Husserl Studies
    Heelan, P., 1983. Space Perception and the Philosophy of Science. Berkeley: University of California Press
    Heelan, P., 1989. “Husserl's Philosophy of Science”, in J. N. Mohanty and W. McKenna (eds.), Husserl's Phenomenology: A Textbook. Lanham, Md.: Center for Advanced Research in Phenomenology/University Press of America
    Heidegger, M., 1962. Being and Time. Translated by J. Macquarrie and E. Robinson. New York: Harper & Row. Originally published in German in 1927
    Heinzmann, G., 1997. “Umfangslogik, Inhaltslogik, Theorematic Reasoning”, in E. Agazzi and G. Darvas (eds.), Philosophy of Mathematics Today. Dordrecht: Kluwer, 353–361
    Hermes, H., Kambartel, F., and Kaulbach, F. (eds.), 1979. Gottlob Frege: Posthumous Writings. Translated by P. Long and R. White. Chicago: University of Chicago Press
    Heyting, A., 1931. “Die intuitionistische Grundlegung der Mathematik”, Erkenntnis 2, 106–115. Translated by E. Putnam and G. Massey in Benacerraf and Putnam (eds.) 1983, 52–61
    Heyting, A., 1962. “After Thirty Years”, in E. Nagel, P. Suppes, and A. Tarski (eds.), Logic, Methodology and Philosophy of Science. Stanford, Calif.: Stanford University Press, 194–197
    Heyting, A., 1971. Intuitionism: An Introduction, 3rd ed. Amsterdam: North-Holland
    Hilbert, D., 1926. “Über das Unendliche”, Mathematische Annalen 95, 161–190. Translated by S. Bauer-Mengelberg in van Heijenoort (ed.) 1967, 367–392
    Hill, C., and Rosado-Haddock, G., 2000. Husserl or Frege? La Salle, Ill.: Open Court
    Husserl, E., 1891. Philosophie der Arithmetik. Psychologische und logische Untersuchungen. Halle: Pfeffer
    Husserl, E., 1900. Logische Untersuchungen, Erster Theil: Prolegomena zur reinen Logik. Halle: M. Niemeyer. 2nd ed. 1913
    Husserl, E., 1901. Logische Untersuchungen, Zweiter Theil: Untersuchungen zur Phänomenologie und Theorie der Erkenntnis. Halle: M. Niemeyer. 2nd ed. in two parts 1913/22
    Husserl, E. 1911. “Philosophie als strenge Wissenschaft”, Logos I, 289–341
    Husserl, E. 1913. “Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie”, Jahrbuch für Philosophie und phänomenologische Forschung 1, 1–323. Published simultaneously as Separatum by M. Niemeyer
    Husserl, E., 1928. “Vorlesungen zur Phänomenologie des inneren Zeitbewusstseins”, edited by M. Heidegger in Jahrbuch für Philosophie und phänomenologische Forschung 9, ⅷ–ⅹ, 367–498. Published simultaneously by M. Niemeyer
    Husserl, E. 1929. “Formale und transzendentale Logik. Versuch einer Kritik der logischen Vernunft”, Jahrbuch für Philosophie und phänomenologische Forschung 10, ⅴ–ⅷ, 1–298. Published simultaneously as Separatum
    Husserl, E., 1931. Méditations cartésiennes. Introduction à la phenoménologie. Paris: Librairie Armand Colin
    Husserl, E. 1936. “Die Krisis der europäischen Wissenschaften und die transzendentale Phänomenologie”, Philosophia 1, 77–176
    Husserl, E., 1939. Erfahrung und Urteil: Untersuchungen zur Genealogie der Logik. Edited by L. Landgrebe. Prague: Akademia Verlagsbuchhandlung
    Husserl, E., 1950a. Cartesianische Meditationen und Pariser Vorträge. Husserliana I. 2nd ed. 1973. The Hague: Nijhoff
    Husserl, E., 1950b. Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie. Erstes Buch: Allgemeine Einführung in die reine Phänomenologie. Husserliana III. Revised ed. in two parts 1976. The Hague: Nijhoff
    Husserl, E., 1952a. Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie. Zweites Buch: Phänomenologische Untersuchungen zur Konstitution. Husserliana IV. The Hague: Nijhoff
    Husserl, E., 1952b. Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie. Drittes Buch: Die Phänomenologie und die Fundamente der Wissenschaften. Husserliana V. The Hague: Nijhoff
    Husserl, E., 1954. Die Krisis der europäischen Wissenschaften und die transzendentale Phänomenologie. Husserliana VI. The Hague: Nijhoff
    Husserl, E., 1960. Cartesian Meditations: An Introduction to Phenomenology. Translated by D. Cairns. The Hague: Martinus Nijhoff
    Husserl, E., 1962. Phänomenologische Psychologie. Vorlesungen Sommersemester 1925. Husserliana IX. The Hague: Nijhoff
    Husserl, E., 1965. “Philosophy as Rigorous Science”, Translated by Q. Lauer in Phenomenology and the Crisis of Philosophy. New York: Harper, 71–147
    Husserl, E., 1966. Zur Phänomenologie des inneren Zeitbewusstseins (1893–1917). Husserliana X. Revised ed. 1966. The Hague: Nijhoff
    Husserl, E., 1969. Formal and Transcendental Logic. Translated by D. Cairns. The Hague: Nijhoff
    Husserl, E., 1970a. Philosophie der Arithmetik (1890–1901). Husserliana Ⅻ. The Hague: Nijhoff
    Husserl, E., 1970b. The Crisis of the European Sciences and Transcendental Phenomenology. Translated by D. Carr. Evanston, Ill.: Northwestern University Press
    Husserl, E., 1973a. Ding und Raum. Husserliana XVI. The Hague: Nijhoff
    Husserl, E., 1973b. Experience and Judgment. Translated by J. Churchill and K. Ameriks. Evanston, Ill.: Northwestern University Press
    Husserl, E., 1973c. Logical Investigations, Vols. I and II. Translation of the 2nd ed. by J. N. Findlay. London: Routledge and Kegan Paul
    Husserl, E., 1974. Formale und transzendentale Logik. Versuch einer Kritik der logischen Vernunft. Husserliana XVII. The Hague: Nijhoff
    Husserl, E., 1975. Logische Untersuchungen. Erster Band: Prolegomena zur reinen Logik. Husserliana XVIII. The Hague: Nijhoff
    Husserl, E., 1977. Phenomenological Psychology: Lectures, Summer Semester 1925. Translated by J. Scanlon. The Hague: Nijhoff
    Husserl, E., 1979. Aufsätze und Rezensionen (1890–1910). Husserliana XⅫ. The Hague: Nijhoff
    Husserl, E., 1980. Ideas Pertaining to a Pure Phenomenology and to a Phenomenological Philosophy: Third Book. Translated by T. Klein and W. Pohl. Dordrecht: Kluwer
    Husserl, E., 1982. Ideas Pertaining to a Pure Phenomenology and to a Phenomenological Philosophy: First Book. Translated by F. Kersten. Dordrecht: Kluwer
    Husserl, E., 1983. Studien zur Arithmetik und Geometrie (1886–1901). Husserliana XⅪ. The Hague: Nijhoff
    Husserl, E., 1984a. Logische Untersuchungen. Zweiter Band: Untersuchunger zur Phänomenologie und Theorie der Erkenntnis. Husserliana XIX, 2 vols. The Hague: Nijhoff
    Husserl, E., 1984b. Einleitung in die Logik und Erkenntnistheorie. Vorlesungen 1906/07. Husserliana XXIV. The Hague: Nijhoff
    Husserl, E., 1989. Ideas Pertaining to a Pure Phenomenology and to a Phenomenological Philosophy: Second Book. Translated by R. Rojcewicz and A. Schuwer. Dordrecht: Kluwer
    Husserl, E., 1990. On the Phenomenology of the Consciousness of Internal Time (1893–1917). Translated by J. Brough. Dordrecht: Kluwer
    Husserl, E., 1994. Early Writings in the Philosophy of Mathematics and Logic. Translated by D. Willard. Dordrecht: Kluwer
    Husserl, E., 1997. Thing and Space: Lectures of 1907. Translation by R. Rojcewicz. Dordrecht: Kluwer
    Husserl, E., 2003. Philosophy of Arithmetic: Psychological and Logical Investigations. Translated by D. Willard. Dordrecht: Kluwer
    Jackson, F., 1986. “What Mary Didn't Know”, Journal of Philosophy 83, 291–295
    Kac, M., Rota, G., and Schwartz, J. T., 1986. Discrete Thoughts: Essays on Mathematics, Science and Philosophy. Boston: Birkhaüser
    Kant, I., 1973. Critique of Pure Reason. Translated by N. K. Smith. London: Macmillan. 1st ed. originally published in 1781; 2nd ed. originally published in 1787
    Kaufmann, F., 1930. Das Unendliche in der Mathematik und seine Ausschaltung. Wien: Deuticke. Translated by P. Foulkes as The Infinite in Mathematics. Dordrecht: Reidel, 1978
    Kim, J., 1981. “The Role of Perception in A Priori Knowledge”, Philosophical Studies 40, 339–354
    Kleene, S., 1952. Introduction to Metamathematics. Amsterdam: North-Holland
    Klein, F., 1893. “Vergleichende Betrachtungen über neuere geometrische Forschungen”, Mathematische Annalen 43, 63–100. This is a revised text of the “Erlanger Program” paper that was first published in 1872
    Klein, F., 1948. Elementary Mathematics from an Advanced Standpoint. Part II. Geometry. Translated by E. Hedrick and C. Noble. New York: Dover
    Kockelmans, J., 1993. Ideas for a Hermeneutical Phenomenology of the Natural Sciences. Dordrecht: Kluwer
    Kockelmans, J., and Kisiel, T. (eds.), 1970. Phenomenology and the Natural Sciences. Evanston, Ill.: Northwestern University Press
    Kolmogorov, A., 1932. “Zur Deutung der Intuitionistischen Logik”, Mathematische Zeitschrift 35, 58–65. Translated by P. Mancosu in P. Mancosu (ed.) 1998, 328–334
    Kreisel, G., 1967. “Informal Rigour and Completeness Proofs”, in I. Lakatos (ed.), Problems in the Philosophy of Mathematics. Amsterdam: North-Holland, 138–86
    Kreisel, G., 1971. “Observations on Popular Discussions of Foundations”, in Scott (ed.) 1971, 189–198
    Kreisel, G., 1980. “Kurt Gödel, 28 April 1906–14 January 1978”, Biographical Memoirs of Fellows of the Royal Society 26, 148–224
    Leonardi, P., and Santambrogio, M. (eds.), 1995. On Quine. Cambridge: Cambridge University Press
    Lohmar, D., 1989. Phänomenologie der Mathematik. Dordrecht: Kluwer
    Lucas, J. R., 1961. “Minds, Machines and Gödel”, Philosophy 36, 112–127
    MacLane, S., and Moerdijk, I., 1995. Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Berlin: Springer Verlag
    Maddy, P., 1980. “Perception and Mathematical Intuition”, Philosophical Review 89, 163–196
    Maddy, P., 1983. “Proper Classes”, Journal of Symbolic Logic 48, 113–139
    Maddy, P., 1990. Realism in Mathematics. Oxford: Oxford University Press
    Mancosu, P., forthcoming. “ ‘Das Abenteuer der Vernunft’: O. Becker and D. Mahnke on the Phenomenological Foundations of the Exact Sciences.”
    Mancosu, P., (ed.), 1998. From Brouwer to Hilbert. Oxford: Oxford University Press
    Mancosu, P., and Ryckman, T., 2002. “The Correspondence Between O. Becker and H. Weyl”, Philosophia Mathematica 10, 130–202
    Mancosu, P., and Ryckman, T., Forthcoming. “Geometry, Physics and Phenomenology: Four Letters of O. Becker to H. Weyl.”
    Martin-Löf, P., 1982. “Constructive Mathematics and Computer Programming”, in H. Rose and J. Shepherdson (eds.), Logic, Methodology and Philosophy of Science, Vol. VI. Amsterdam: North-Holland, 73–118
    Martin-Löf, P., 1983–84. “On the Meanings of the Logical Constants and the Justifications of the Logical Laws”, in Atti Degli Incontri di Logica Matematica, Vol. 2. Siena: Università di Siena, 203–281
    Martin-Löf, P., 1984. Intuitionistic Type Theory, Napoli: Bibliopolis
    Martin-Löf, P., 1987. “Truth of a Proposition, Evidence of a Judgment, Validity of a Proof”, Synthese 73, 407–420
    Merleau-Ponty, M., 1962. Phenomenology of Perception. Translated by C. Smith. London: Routledge & Kegan Paul. Original French ed. 1945
    Meserve, B., 1953. Fundamental Concepts of Geometry. New York: Dover
    Miller, I., 1984. Husserl, Perception, and Temporal Awareness. Cambridge, Mass.: MIT Press
    Miller, J. P., 1982. Numbers in Presence and Absence. Dordrecht: Nijhoff
    Mohanty, J. N., 1982. Husserl and Frege. Bloomington: Indiana University Press
    Natanson, M. (ed.), 1973. Phenomenology and the Social Sciences, 2 vols. Evanston, Ill.: Northwestern University Press
    Pagels, H., 1988. The Dreams of Reason: The Computer and the Rise of the Sciences of Complexity. New York: Simon & Schuster
    Paris, J., and Harrington, L., 1977. “A Mathematical Incompleteness in Peano Arithmetic”, in Barwise (ed.) 1977, 1133–1142
    Parsons, C., 1965. “Frege's Theory of Number”, in M. Black (ed.), Philosophy in America. London: Allen & Unwin. Reprinted in Parsons 1983a, 150–175
    Parsons, C., 1977. “What Is the Iterative Conception of Set?” in R. Butts and J. Hintikka (eds.), Logic, Foundations of Mathematics, and Computaibility Theory. Dordrecht: Reidel, 335–367. Reprinted in Parsons 1983a, 268–297
    Parsons, C., 1980. “Mathematical Intuition”, Proceedings of the Aristotelian Society, 80, 145–168
    Parsons, C., 1983a. Mathematics in Philosophy: Selected Essays. Ithaca, N.Y.: Cornell University Press
    Parsons, C., 1983b. “Quine on the Philosophy of Mathematics” in Parsons 1983a, 176–205
    Parsons, C., 1986. “Intuition in Constructive Mathematics” in J. Butterfield (ed.), Language, Mind and Logic. Cambridge: Cambridge University Press, 211–229
    Parsons, C., 1990. “Introductory Note to 1944”, in Feferman et al. (eds.) 1990, 102–118
    Parsons, C., 1992. “The Impredicativity of Induction”, in M. Detlefsen (ed.), Proof, Logic and Formalization. London: Routledge, 139–161
    Parsons, C., 1995a. “Platonism and Mathematical Intuition in Kurt Gödel's Thought”, Bulletin of Symbolic Logic 1, 44–74
    Parsons, C., 1995b. “Quine and Gödel on Analyticity”, in Leonardi and Santambrogio (eds.) 1995, 297–313
    Penrose, R., 1989. The Emperor's New Mind. Oxford: Oxford University Press
    Penrose, R., 1994. Shadows of the Mind: A Search for the Missing Science of Consciousness. Oxford: Oxford University Press
    Poincaré, H., 1902. La Science et l'hypothèse. Paris: Ernest Flammarion. Translated by G. Holsted as Science and Hypothesis. New York: Dover, 1952
    Poincaré, H., 1905. La valeur de la science. Paris: Ernest Flammarion. Translated by G. Halsted as The Value of Science. New York: Dover, 1958
    Poincaré, H., 1908. Science et méthode. Paris: Ernest Flammarion. Translated by F. Maitland as Science and Method. New York: Dover, 1952
    Poincaré, H., 1913. Dernières pensées. Paris: Ernest Flammarion. Translated by J. Bolduc as Mathematics and Science: Last Essays. New York: Dover, 1963
    Pollard, S., 1987. “Introduction to The Continuum”, in Weyl 1987, ⅹⅴ–ⅹⅹⅵ
    Prawitz, D., 1965. Natural Deduction: A Proof Theoretical Study. Stockholm: Almqvist and Wiksell
    Prawitz, D., 1977. “Meaning and Proofs: On the Conflict Between Classical and Intuitionistic Logic”, Theoria 4, 1–40
    Prawitz, D., 1978. “Proof and the Meaning and Completeness of the Logical Constants”, in J. Hintikka, I. Niiniluoto, and E. Saarinen et al. (eds.), Essays on Mathematical and Philosophical Logic. Dordrecht: Reidel, 25–40
    Quine, W. V., 1937. “New Foundations for Mathematical Logic”, American Mathematical Monthly 44, 70–80. Reprinted with revisions in Quine 1953, 80–101
    Quine, W. V., 1940. Mathematical Logic. New York: Norton. Revised 2nd ed., Cambridge, Mass.: Harvard University Press, 1951
    Quine, W. V., 1951. “Two Dogmas of Empiricism”, reprinted in Quine 1953, 20–46
    Quine, W. V., 1953. From a Logical Point of View. Cambridge, Mass.: Harvard University Press
    Quine, W. V., 1960. Word and Object. Cambridge, Mass.: MIT Press
    Quine, W. V., 1966a. “Necessary Truth”, in Quine 1966b, 68–76
    Quine, W. V., 1966b. The Ways of Paradox and Other Essays. New York: Random House
    Quine, W. V., 1969. Set Theory and Its Logic, 2nd ed. Cambridge, Mass.: Harvard University Press
    Quine, W. V., 1970. Philosophy of Logic. Englewood Cliffs, N.J.: Prentice-Hall
    Quine, W. V., 1974. The Roots of Reference. La Salle, Ill.: Open Court
    Quine, W. V., 1984. “Review of Charles Parsons' Mathematics in Philosophy”, Journal of Philosophy 81, 783–794
    Quine, W. V., 1986. “Reply to Charles Parsons”, in L. Hahn and P. A. Schilpp (eds.), The Philosophy of W. V. Quine. La Salle, Ill.: Open Court, 396–403
    Quine, W. V., 1992. Pursuit of Truth, 2nd ed. Cambridge, Mass.: Harvard University Press
    Quine, W. V., 1995. From Stimulus to Science. Cambridge, Mass.: Harvard University Press
    Resnik, M., 1979. “Frege as Idealist and Then Realist”, Inquiry 22, 350–57
    Resni, M., 1980. Frege and the Philosophy of Mathematics. Ithaca, N.Y.: Cornell University Press
    Riemann, B., 1959. Über die Hypothesen, welche der Geometrie zugrunde leigen. Darmstadt: Wissenschaftliche Buchgesellschaft. Reprint of the 1st ed., published in 1867 in Abhandlungen der Kgl. Gesellschaft der Wissenschaften zu Göttingen, Vol. 13
    Rosado-Haddock, G., 1987. “Husserl's Epistemology of Mathematics and the Foundation of Platonism in Mathematics”, Husserl Studies 4, 81–102. Reprinted in Hill and Rosado-Haddock 2000, 221–239
    Saaty, T. L., and Weyl, F. J., 1969. The Spirit and the Uses of the Mathematical Sciences. New York: McGraw-Hill
    Schmit, R., 1981. Husserls Philosophie der Mathematik. Platonistische und konstrucktivistische Momente in Husserls Mathematikbegriff. Bonn: Grundmann
    Scott, D. (ed.), 1971. Axiomatic Set Theory, Proceedings of Symposia in Pure Mathematics, Vol. 13, part 1. Providence, R. I.: American Mathematical Society
    Searle, J., 1980. “Minds, Brains and Programs”, Behavioral and Brain Sciences 3, 417–457
    Searle, J., 1983. Intentionality. Cambridge: Cambridge University Press
    Seebohm, T., F⊘llesdal, D., and Mohanty, J. N. (eds.), 1991. Phenomenology and the Formal Sciences. Dordrecht: Kluwer
    Sluga, H., 1980. Gottlob Frege. London: Routledge & Kegan Paul
    Smith, D., 1984. “Content and Context of Perception”, Synthese 61, 61–87
    Smith, D., and McIntyre, R., 1982. Husserl and Intentionality. Dordrecht: Reidel
    Steiner, M., 1975. Mathematical Knowledge. Ithaca, N.Y.: Cornell University Press
    Ströker, E., 1979. Lebenswelt und Wissenschaft in der Philosophie Edmund Husserls. Frankfurt am Main: Vittorio Klostermann
    Ströker, E., 1987a. The Husserlian Foundations of Science. Lanham, Md.: Center for Advanced Research in Phenomenology/University Press of America
    Ströker, E., 1987b. Investigations in the Philosophy of Space. Translated by A. Mickunas. Athens, Ohio: Ohio University Press
    Ströker, E., 1988. “Husserl and the Philosophy of Science”, Journal of the British Society for Phenomenology 19, 221–234
    Sundholm, G., 1983. “Constructions, Proofs and the Meanings of the Logical Constants”, Journal of Philosophical Logic 12, 151–172
    Sundholm, G., 1986. “Proof Theory and Meaning”, in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. III. Dordrecht: Kluwer/Reidel, 471–506
    Tait, W. W., 1981. “Finitism”, Journal of Philosophy 78, 524–546
    Tieszen, R., 1984. “Mathematical Intuition and Husserl's Phenomenology”, Noûs 18, 395–421
    Tieszen, R., 1989. Mathematical Intuition: Phenomenology and Mathematical Knowledge. Dordrecht: Kluwer
    Tieszen, R., 1990. “Frege and Husserl on Number”, Ratio 3, 150–164
    Tieszen, R., 1991. “Review of D. Lohmar, Phänomenologie der Mathematik”, Husserl Studies 7, 199–205
    Tieszen, R., 1994a. “What Is the Philosophical Basis of Intuitionistic Mathematics?”, in D. Prawitz, B. Skyrms, and D. Westerståhl (eds.), Logic, Methodology and Philosophy of Science IX. Amsterdam: Elsevier, 579–594
    Tieszen, R., 1994b. “Mathematical Realism and Gödel's Incompleteness Theorems”, Philosophia Mathematica 2, 177–201
    Tieszen, R., 1997a: “Review of Kurt Gödel: Unpublished Philosophical Essays”, Edited by F. Rodriguez-Consuegra, Annals of Science 54, 99–101
    Tieszen, R., 1997b. “Science Within Reason: Is There a Crisis of the Modern Sciences?” in M. Otte and M. Panza (eds.), Analysis and Synthesis in Mathematics. Dordrecht: Kluwer, 243–259
    Tieszen, R., 2004. “Husserl's Logic”, in D. Gabbay and J. Woods (eds.), The Handbook of the History of Logic: The Rise of Modern Logic: From Leibniz to Frege. Amsterdam: Elsevier, 207–321
    Tonietti, T., 1988. “Four Letters of E. Husserl to H. Weyl and their Context”, in Deppert (ed.) 1988, 343–384
    Torretti, R., 1978. Philosophy of Geometry from Riemann to Poincaré. Dordrecht: Reidel
    Tragesser, R., 1977. Phenomenology and Logic. Ithaca, N.Y.: Cornell University Press
    Tragesser, R., 1984. Husserl and Realism in Logic and Mathematics. Cambridge: Cambridge University Press
    Troelstra, A., 1969. “Principles of Intuitionism”, Lecture Notes in Mathematics 95. Berlin: Springer Verlag
    Troelstra, A., 1982, “Logic in the Writings of Brouwer and Heyting”, in Atti del convegno internazionale di Storia della Logica. San Gimignano, dicembre 4–8, 1982. Bologna: CLUEB, 193–210
    Troelstra, A., 1990. “On the Early History of Intuitionistic Logic”, in P. Pethov (ed.), in Proceedings of the Heyting'88 Summer School and Conference on Mathematical Logic, September 13–23, 1988. New York: Plenum, 3–17
    Troelstra, A., and van Dalen, D., 1988. Constructivism in Mathematics, 2 vols. Amsterdam: North-Holland
    van Atten, M., 1999. “Phenomenology of Choice Sequences”, Proefschrift, Universiteit Utrecht
    Atten, M., and Kennedy, J., 2003. “On the Philosophical Development of Kurt Gödel”, Bulletin of Symbolic Logic 9, 425–476
    Atten, M., Dalen, D., and Tieszen, R., 2002. “Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive Continuum”, Philosophia Mathematica 10, 203–226
    van Dalen, D. 1973. “Lectures on Intuitionism”, Lecture Notes in Mathematics 337. Berlin: Springer Verlag
    Dalen, D., 1984. “Four Letters from Edmund Husserl to Hermann Weyl”, Husserl Studies 1, 1–12
    van Dalen, D., 1991. “Brouwer's Dogma of Languageless Mathematics and Its Role in His Writings”, in E. Heijerman and H. Schmit (eds.), Significs, Mathematics and Semiotics. Amsterdam: Benjamins, 33–43
    Dalen, D., 1995. “Hermann Weyl's Intuitionistic Mathematics”, Bulletin of Symbolic Logic 1, 145–169
    van Dalen, D., 1999. Mystic, Geometer and Intuitionist: The Life of L. E. J. Brouwer, Vol. 1. Oxford: Oxford University Press
    van Heijenoort, J. (ed.), 1967. From Frege to Gödel. Cambridge, Mass.: Harvard University Press
    Wang, H., 1974. From Mathematics to Philosophy. New York: Humanities Press
    Wang, H., 1978. “Kurt Gödel's Intellectual Development”, Mathematical Intelligencer I, 182–184
    Wang, H., 1981. “Some Facts About Kurt Gödel”, Journal of Symbolic Logic 46, 653–659
    Wang, H., 1986. Beyond Analytic Philosophy: Doing Justice to What We Know. Cambridge, Mass.: MIT Press
    Wang, H., 1987. Reflections on Kurt Gödel. Cambridge, Mass.: MIT Press
    Wang, H., 1996. A Logical Journey: From Gödel to Philosophy. Cambridge, Mass.: MIT Press
    Weyl, H., 1910. “Über die Definitionen der mathematischen Grundbegriffe”, Mathematische-naturwissenschaftliche Blätter 7, 93–95, 109–113. Reprinted in Weyl 1968, I, 298–304
    Weyl, H., 1918a. Das Kontinnum. Leipzig: Veit
    Weyl, H., 1918b. Raum, Zeit, Materie. Berlin: Springer Verlag
    Weyl, H., 1919. “Der circulus vitiosus in der heutigen Begründung der Analysis”, Jahrebericht der Deutschen Mathematiker-Vereinigung 28, 85–92. Reprinted in Weyl 1968, I, 43–50. English translation in Weyl 1987
    Weyl, H., 1921. “Über die neue Grundlagenkrise der Mathematik”, Mathematische Zeitschrift 10, 39–79. Reprinted in Weyl 1968, II, 143–80. Translated by B. Müller in Mancosu (ed.) 1998, 86–118
    Weyl, H., 1925. “Die heutige Erkenntnislage in der Mathematik”, Symposion 1, 1–23. Reprinted in Weyl 1968, II, 511–542. Translated by B. Müller in Mancosu (ed.) 1998, 123–142
    Weyl, H., 1926. Philosophie der Mathematik und Naturwissenschaft. München: Leibniz Verlag. Expanded and translated as Philosophy of Mathematics and Natural Science. Princeton, N.J.: Princeton University Press
    Weyl, H., 1928. “Diskussionsbemerkungen zu dem zweiten Hilbertschen Vortrag über die Grundlagen der Mathematik”, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität 6, 86–88. Translated by S. Bauer-Mengelberg and D. F⊘llesdal in van Heijenoort (ed.) 1967, 480–84
    Weyl, H., 1949. Philosophy of Mathematics and Natural Science. Princeton, N.J.: Princeton University Press
    Weyl, H., 1955. “Erkenntnis und Besinnung (Ein Lebensrückblick)”, Studia Philosophica 15, 17–38. Reprinted in Weyl 1968, IV, 631–49. Translated in Saaty and Weyl 1969, 281–301
    Weyl, H., 1968. Gesammelte Abhandlungen, I–IV. Edited by K. Chandrasekharan. Berlin: Springer Verlag
    Weyl, H., 1985. Space, Time, Matter. New York: Dover
    Weyl, H., 1987. The Continuum. Translated by S. Pollard and T. Bole. Kirksville, Mo.: Thomas Jefferson Press
    Willard, D., 1981. “Introduction to ‘On the Concept of Number’”, in F. Elliston and P. McCormick (eds.), Husserl: Shorter Works. Notre Dame, Ind.: University of Notre Dame Press
    Willard, D., 1984. Logic and the Objectivity of Knowledge. Athens, Ohio: Ohio University Press
    Wright, C., 1982. “Strict Finitism”, Synthese 51, 203–282
    Zermelo, E., 1908. “Neuer Beweis für die Möglichkeit einer Wohlordnung”, Mathematische Annalen 65, 107–128. Translated by S. Bauer-Mengelberg as “A New Proof of the Possibility of a Well-Ordering”, in van Heijenoort (ed.) 1967, 183–198
    Zermelo, E., 1930. “Über Grenzzahlen und Mengenbereiche”, Fundamenta Mathematicae 16, 29–47

    Metrics

    Altmetric attention score

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Book summary page views

    Total views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.

    Accessibility standard: Unknown

    Why this information is here

    This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

    Accessibility Information

    Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.