Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T18:05:11.366Z Has data issue: false hasContentIssue false

5 - Phylogenetic inference based on distance methods

from Section III - Phylogenetic inference

Published online by Cambridge University Press:  05 June 2012

Philippe Lemey
Affiliation:
University of Oxford
Marco Salemi
Affiliation:
University of California, Irvine
Anne-Mieke Vandamme
Affiliation:
Katholieke Universiteit Leuven, Belgium
Get access

Summary

THEORY

Introduction

In addition to maximum parsimony (MP) and likelihood methods (see Chapters 6, and 8), pairwise distance methods form the third large group of methods to infer evolutionary trees from sequence data (Fig. 5.1). In principle, distance methods try to fit a tree to a matrix of pairwise genetic distances (Felsenstein, 1988). For every two sequences, the distance is a single value based on the fraction of positions in which the two sequences differ, defined as p-distance (see Chapter 4). The p-distance is an underestimation of the true genetic distance because some of the nucleotide positions may have experienced multiple substitution events. Indeed, because mutations are continuously fixed in the genes, there has been an increasing chance of multiple substitutions occurring at the same sequence position as evolutionary time elapses. Therefore, in distance-based methods, one tries to estimate the number of substitutions that have actually occurred by applying a specific evolutionary model that makes particular assumptions about the nature of evolutionary changes (see Chapter 4). When all the pairwise distances have been computed for a set of sequences, a tree topology can then be inferred by a variety of methods (Fig. 5.2).

Correct estimation of the genetic distance is crucial and, in most cases, more important than the choice of method to infer the tree topology.

Type
Chapter
Information
The Phylogenetic Handbook
A Practical Approach to Phylogenetic Analysis and Hypothesis Testing
, pp. 142 - 180
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×