Published online by Cambridge University Press: 05 June 2012
Introduction
The glass transition in noncrystalline polymers under ordinary experimental conditions occurs on cooling when the characteristic time of molecular motions responsible for structural rearrangements becomes longer than the timescale of the experiment. As a result, structural relaxation toward equilibrium is arrested below some temperature, Tg, and the polymer is in the glassy state. The molecular motions responsible for structural relaxation in polymers involve only a small number of repeat units of each chain, and it is appropriate to refer to them henceforth as local segmental motions. In polymers, molecular motions involving more repeat units of each chain are possible and they contribute to viscoelastic properties over broad ranges. The molecular motions of longer range have characteristic times longer than the local segmental motions, and therefore a necessary condition for the former to contribute to observable viscoelastic properties of the polymer is mobility of the latter, which means that the temperature has to be higher than the glass-transition temperature, Tg. Thus, the glass transition is perhaps the most important factor that determines at any temperature and pressure the viscoelastic properties and applications of noncrystalline polymers. For example, if Tg is much higher than the temperature of application, the polymer is a hard glass and may be suitable for applications as engineering plastics. If Tg is sufficiently lower, the polymer is rubbery and may be used in the rubber industry. Many polymers have no crystalline solid state because there are stereochemical variations along their molecular chain-like backbones.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.