Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-16T05:17:24.836Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  12 August 2009

Andrew Ball
Affiliation:
The Open University, Milton Keynes
James Garry
Affiliation:
Universiteit Leiden
Ralph Lorenz
Affiliation:
The Johns Hopkins University
Viktor Kerzhanovich
Affiliation:
NASA Jet Propulsion Laboratory
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aamot, H. W. C. (1967). The philberth probe for investigating polar ice caps. CRREL Special Report 119, Cold Regions Research & Engineering Laboratory, Hanover, New Hampshire.
Adamski, D. F. (1962). The lunar seismograph experiment: ranger 3, 4, 5. National Aeronautics and Space Administration TR 32–272, Jet Propulsion Laboratory.
A'Hearn, M., Delamere, A. and Frazier, W. (2000). The deep impact mission: opening a new chapter in cometary science. Paper IAA-00-IAA.11.2.04 at the 51st International Astronautical Congress, Rio de Janeiro, 2–6 October 2000.
Aleksashkin, S. N., Karyagin, V. P., Pichkhadze, K. M., Targamadze, R. Ch. and Terterashvili, A. V. (1988a). Aerodynamic characteristics of the aerostatic probe of Project VeGa. Kosmich. Issled. 26(3), 434–440 (in Russian). Translation in Cosmic Res. 26(3), 375–381.Google Scholar
Aleksashkin, S. N., Zukakishvili, R. I., Pichkhadze, K. M., Targamadze, R. Ch. and Terterashvili, A. V. (1988b). Dynamic characteristics of the sensor of the vertical component of wind speed. Aerostatic Experiment of Project VeGa. Kosmich. Issled. 26(3), 441–447 (in Russian). Translation in Cosmic Res. 26(3), 381–387.Google Scholar
Angrist, S. W. (1982). Direct Energy Conversion, 4th edn. Boston, Allyn and Bacon.Google Scholar
Arakaki, G. and D'Agostino, S. (1999). New millennium DS2 electronic packaging. An advanced electronic packaging. IEEE Aerospace Conference, Snowmass, Colorado, United States of America.CrossRefGoogle Scholar
Atzei, A., Schwehm, G., Coradini, M., Hechler, M., Lafontaine, J. and Eiden, M. (1989). Rosetta/Comet Nucleus Sample Return–European Space Agency's Planetary Cornerstone Mission. European Space Agency Bulletin, 59, 18–29.Google Scholar
Avduevsky, V. S., Marov, M. Ya., Rozhdestvensky, M. K., Borodin, N. F. and Kerzhanovich, V. V. (1971). Landing of the automatic Station Venera 7 on the Venus surface and preliminary results of investigations of the Venus atmosphere. J. Atmos. Sci. 28(2), 263.2.0.CO;2>CrossRefGoogle Scholar
Avduevskii, V. S., Godnev, A. G., Zakharov, Yu. V.et al (1983). An estimate of the physical and mechanical characteristics of the soil of Venus from measurements of the impact overloads during the landings of the Venera 13 and Venera 14 automatic interplanetary stations. Kosmich. Issled. 21(3), 331–339 (in Russian). Translation in Cosmic Res. 21(3), 260–268.Google Scholar
Avotin, E. V., Bolkhovitinov, I. S., Kemurdzhian, A. L., Malenkov, M. I. and Shpak, F. P. (1979) Дυнαмυκα Πлαнемоxо∂а (Dynamics of Planet Rovers) (in Russian). Moscow, Nauka.Google Scholar
Backes, P. G., Tso, K. S., Norris, J. S.et al. (2000). Internet-based operations for the Mars polar lander mission. Proc. 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA.Google Scholar
Barmin, I. V. and Shevchenko, A. A. (1983). Soil-scooping mechanism for the Venera 13 and Venera 14 unmanned interplanetary spacecraft. Kosmich. Issled. 21(2), 171–175 (in Russian). Translation in: Cosmic Res. 21(2), 118–122.Google Scholar
Barsukov, V. L. (ed.), (1978) Peredvizhnaya Laboratoriya na Lune Lunokhod-1. 2. Moscow, Nauka. 1978.Google Scholar
Barsukov, V. L. and Surkov, Yu. A. (eds.), (1979). Grunt iz Materikovogo Raiona Luny (Lunar Highland Soil). Moscow, Nauka (in Russian).Google Scholar
Barsukov, V. L. (ed.), (1980). Lunnyi Grunt iz Moria Krizisov (Lunar Soil from Mare Crisium). Moscow, Nauka (in Russian).Google Scholar
Bartlette, P. W., Carlson, L. E., Chu, P. C., Davis, K. R., Gorevan, S. P., KUnited States of Americack, A. G., Myrick, T. M., and Wilson, J. J. and the Athena Science Team (2005). Summary of rock abrasion tool (Rock Abrasion Tool) results pertinent to the Mars exploration Rover Science data set. Lunar and Planetary Science Conference, XXXVI, abstract 2292.
Bauske, R. (2004). Dependence of the Beagle 2 trajectory on the Mars atmosphere. Presented at the 18th Int. Symposium on Space Flight Dynamics, Munich.
Bazhenov, V. I. and Osin, M. I. (1978) Posadka Kosmicheskikh Apparatov na Planety (The Landing of Spacecraft on the Planets, or Space-vehicle Landings on Planets). Moscow, Mashinostroenie.Google Scholar
Beattie, D. A. (2001). Taking Science to the Moon: Lunar Experiments and the Apollo Program. Baltimore, MD, Johns Hopkins University Press.Google Scholar
Bekker, M. G. (1962). Land locomotion on the surface of planets. ARS Journal, 32(11), 1651–1659.CrossRefGoogle Scholar
Bell, J. and Mitton, J. (eds.) (2002). Asteroid Rendezvous.Cambridge, Cambridge University Press.Google Scholar
Biele, J., Ulamec, S., Feuerbacher, B.et al. (2002). Current status and scientific capabilities of the Rosetta lander payload. Adv. Space Res. 29(8), 1199–1208.CrossRefGoogle Scholar
Biele, J. (2002). The experiments onboard the Rosetta lander. Earth, Moon and Planets, 90(1–4), 445–458.CrossRefGoogle Scholar
Biele, J. and Ulamec, S. (2004). Implications of the new target comet on science operations for the Rosetta lander. In Colangeli, L., Mazzotta Epifani, E. and Palumbo, P. (eds.), The New Rosetta Targets: Observations, Simulations and Instrument Performances. Astrophysics and Space Science Library vol. 311. Dordrecht, Kluwer, pp. 281–288.CrossRefGoogle Scholar
Bienstock, B. J. (2004). Pioneer Venus and Galileo entry probe heritage. In Wilson, A. (ed.), Proc. Int. Workshop on Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science, Lisbon, 6–9 October 2003. European Space Agency SP-544, pp. 37–45.Google Scholar
Bird, M. K., Heyl, M., Allison, M. et al. (1997). The Huygens Doppler Wind Experiment. In Huygens: Science, Payload and Mission, pp. 139–163, Wilson, A. (ed.) European Space Agency SP-1177, Noordwijk.Google Scholar
Bird, M. K., Dutta-Roy, R., Heyl, M., Allison, M., Asmar, S. W., Folkner, W. M., Preston, R. A., Atkinson, D. H., Edenhofer, P., Plettemeier, D., Wohlmuth, R., Iess, L., Tyler, G. L. (2002). The Huygens Doppler wind experiment – Titan winds derived from probe radio frequency measurements. Space Science Reviews, 104(1), 611–638.CrossRefGoogle Scholar
Blagonravov, A. A. (ed.), (1968) USSR Achievements in Space Research (First Decade in Space, 1957–1967), Moscow, Nauka. (In Russian). Translation available as JPRS-47311, (1969) Washington, Joint Publications Research Service.
Blamont, J., Boloh, L., Kerzhanovich, V.et al. (1993). Balloons on planet Venus: final results. Adv. Space Res. 13(2), 145–152.CrossRefGoogle Scholar
Bogdanov, A. V., Nikolaev, A. V., Serbin, V. I., Skuridin, G. A., Khavroshkin, O. B. and Tsyplakov, V. V. (1988). Method for analysing terrestrial planets. Kosmich. Issled. 26(4), 591–603 (in Russian). Translation in Cosmic Res. 26(4), 505–515.Google Scholar
Bonitz, R., Slostad, J., Bon, B.et al. (2001). Mars volatiles and climate surveyor robotic arm. J. Geophys. Res. 106(E8), 623–640.CrossRefGoogle Scholar
Bonnefoy, R., Link, D., Casani, J.et al. (2004). Beagle 2 European Space Agency/UK Commission of Enquiry.Google Scholar
Boynton, W. V. and Reinert, R. P. (1995). The cryo-penetrator: an approach to exploration of icy bodies in the solar system. Acta Astronautica 35(suppl.), 59–68.CrossRefGoogle Scholar
Braun, R. D., Spencer, D. A., Kallemeyn, P. H. and Vaughan, R. M. (1999a). Mars Pathfinder atmospheric entry navigation operations. J. Spacecraft and Rockets 36(3), 348–356.CrossRefGoogle Scholar
Braun, R. D., Micheltree, R. A. and Cheatwood, F. M. (1999b). Mars microprobe entry-to-impact analysis. J. Spacecraft and Rockets 36(3), 412–420.CrossRefGoogle Scholar
Brodsky, P. N., Gromov, V. V., Yudkin, E. N., Kulakova, I. B., Kuzmin, M. M., (1995). Deepening method of the device for borehole creation in soil. Patent no. 2 04 98 53. Bulletin of the Russian Federation Committee on Patents and Trademarks, N34.
Brodsky, R. F. (1979) Pioneer Venus: Case Study in Spacecraft Design. New York, American Institute of Aeronautics and Astronautics Professional Study Series.Google Scholar
Bruch, C. W. (1964). Some biological and physical factors in dry-heat sterilization: a general review. In Floriskin, M. and Dollfus, A. (eds.) Life Sciences and Space Research II. Amsterdam, New Holland.
Burgess, E. (1978). To The Red Planet.New York, Columbia University Press.Google Scholar
Buslaev, S. P. (1987). Predicting the successful landing of an automatic interplanetary station on the surface of a celestial body in the presence of uncertainty. Kosmich. Issled. 25(2), 186–192 (in Russian). Translation in Cosmic Res. 25(2), 149–154.Google Scholar
Buslaev, S. P., Stulov, V. A. and Grigor'ev, E. I., (1983) Mathematical modeling and experimental investigation of the landing of the Venera 9–14 spacecraft on deformable soils. Kosmich. Issled. 21(4), 540–544. (in Russian). Translation in Cosmic Res. 21(4), 439–442, 1983.Google Scholar
Cadogan, D., Sandy, C. and Grahne, M. (2002). Development and evaluation of the Mars Pathfinder inflatable airbag landing system. Acta Astronautica, 50(10), 633–640.CrossRefGoogle Scholar
Carrier III, W. D., Olhoeft, G. and Mendell, W. (1991). Physical properties of the lunar surface: Section 9.1.11 – Trafficability. In Heiken, G., Vaniman, D., French, B. (eds.). Lunar Sourcebook – A User's Guide to the Moon. Cambridge, Cambridge University Press.Google Scholar
Casani, J. et al. (Jet Propulsion Laboratory Special Review Board) (2000). Report on the loss of the Mars polar lander and Deep Space 2 missions. Jet Propulsion Laboratory D-18709.
Cheremukhina, Z. P., et al. (1974). Estimate of temperature of Venus' stratosphere from data on deceleration forces acting on the Venera 8 probe. Kosmich. Issled. 12(2), 264–271 (in Russian). Translation in: Cosmic Res. 12(2), 238–245, 1974.Google Scholar
Cherkasov, I. I., Kemurdzhian, A. L., Mikhailov, L. N.et al. (1967). Determination of the density and mechanical strength of the surface layer of lunar soil at the landing site of the Luna 13 Probe. Kosmich. Issled. 5(5), 746–757 (in Russian). Translation in Cosmic Res. 4, 636–645, 1968a.Google Scholar
Cherkasov, I. I., Gromov, V. V., Zobachev, N. M.et al. (1968a). Soil-density meter-penetrometer of the automatic lunar station Luna-13. Doklady Akademii Nauk SSSR, 179(4), 829–831 (in Russian). Translation in Soviet Physics–Doklady13(4), 336–338.Google Scholar
Cherkasov, I. I., Vakhnin, V. M., Kemurjian, A. L. et al. (1968b). Determination of the Physical and Mechanical Properties of the Lunar Surface Layer by Means of Luna 13 Automatic Station. Moon and Planets 2 (ed. Dollfus, A.). Amsterdam, North-Holland 70–76.Google Scholar
Chertok, B. (1999). Rockets and People. Moscow, Mashinostroenie.Google Scholar
Christensen, P. R., Mehall, G. L., Silverman, S. H., et al. (2003). Miniature thermal emission spectrometer for the Mars Exploration rovers. Journal of Geophysical Research, 108(E12), 8064, DOI 10.1029/2003JE002117CrossRefGoogle Scholar
Centre National d’Études Spatiales (1993). Missions, Technologies and Design of Planetary Mobile Vehicles. Proceedings of the Centre National d’Études Spatiales Conference, Toulouse, September 1992. Cépaduès Editions.
Colombatti, G. et al. (2006). Reconstruction of the trajectory of the Huygens probe using the Huygens Atmospheric Structure Instrument (Huygens Atmospheric Structure Instrument). Planet. Space Sci., submitted.
Cooley, C. G. and Lewis, J. G. (1977). Viking 75 project: Viking lander system primary mission performance report. National Aeronautics and Space Administration Contractor Report CR-145148, National Aeronautics and Space Administration/Martin Marietta.Google Scholar
Corliss, W. R. (1965). Space Probes and Planetary Exploration. Princeton, Van Nostrand.Google Scholar
Corliss, W. R. (1975). The Viking mission To Mars. National Aeronautics and Space Administration SP-334.Google Scholar
Cortright, E. M. (ed.) (1975). Apollo expeditions to the Moon. National Aeronautics and Space Administration SP-350.Google Scholar
Cowart, E. G. (1973). Lunar Roving Vehicle: Spacecraft on Wheels. Proc. Inst. Mech. Engrs. 187(45/73), 463–481CrossRefGoogle Scholar
DeVincenzi, D. L. and Stabekis, P. D., (1984). Revised planetary protection policy for solar system exploration. Adv. Space Res. 4(12), 291–295.CrossRef
Debus, A., Runavot, J., Rogovsky, G., Bogomolov, V., Khamidullina, N., and Trofimov, V., (2002). Landers sterile integration implementations: example of Mars 96 mission. Acta Astronautica, 50(6), 385–392.CrossRefGoogle Scholar
Desai, P. N., and Lyons, D. T. (2005). Entry, descent, and landing operations analysis for the Genesis re-entry capsule. 15th AAS/American Institute of Aeronautics and Astronautics Space Flight Mechanics Conference, paper AAS 05–121.
Doenecke, J. and Elsner, M. (1994). Special heat transfer problems within the Huygens probe. Proceedings, 4th European Symposium on Space Environmental Control Systems, 279–283.Google Scholar
Doiron, H. H. and Zupp, G. A. (2000). Apollo Lunar Module Landing Dynamics. 4th American Institute of Aeronautics and Astronautics/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Atlanta GA, 3–6 April 2000. American Institute of Aeronautics and Astronautics-2000–1678.CrossRefGoogle Scholar
Dornheim, M. (2003), ‘Can $$$ buy time?’. Aviation Week and Space Technology, 158(21), 56–58.Google Scholar
Dunham, D. W., Farquhar, R. W., McAdams, J. V.et al. (2002). Implementation of the First Asteroid Landing. Icarus, 159(2), 433–438.CrossRefGoogle Scholar
Eisen, H. J., Wen L. C., Hickey, G. and Braun, D. F. (1998). Sojourner Mars rover thermal performance, SAE paper 981685, 28th International Conference on Environmental Systems, Danvers, MA, July, 1998.
Ellery, A. (2000). An Introduction to Space Robotics.Chichester, Springer-Praxis.Google Scholar
European Space Agency (1986). Comet nucleus sample return. Proceedings of an European Space Agency Workshop held at the University of Kent at Canterbury, UK, 15–17 July, 1986. European Space Agency SP-249, December 1986.
European Space Agency (1987). Rosetta comet nucleus sample return: report of the science definition team. European Space Agency SCI(87)3, December 1987.
European Space Agency (1988). Vesta: a mission to the small bodies of the solar system. European Space Agency SCI(88)6.
European Space Agency (1991). Rosetta comet-nucleus sample return: Mission and system definition document. European Space Agency SP-1125, June 1991.
European Space Agency (1993). Rosetta Comet Rendezvous Mission, European Space Agency SCI(93)7, September 1993.
Ezell, E. C. and Ezell, L. N., (1984). On Mars: Exploration of the Red Planet 1958–1978, National Aeronautics and Space Administration SP-4212.Google Scholar
Fearn, D. G. and Martin, A. R., (1995). The promise of electric propulsion for low-cost interplanetary missions. Acta Astronautica, 35, 615–624.CrossRefGoogle Scholar
Fimmel, et al., (1983). Pioneer Venus. National Aeronautics and Space Administration SP-461.Google Scholar
Fimmel, et al., (1995). Pioneering Venus.National Aeronautics and Space Administration SP-518.Google Scholar
Forrestal, M. J. and Luk, V. K. (1992). Penetration into soil targets. Int. J. Impact Engng. 12, 427–444.CrossRefGoogle Scholar
Fraser, S. J., Olson, R. L., Leavens, W. M., (1975). Plasma sterilization technology for spacecraft applications. Seattle, WA, Boeing Co., Aerospace Group.Google Scholar
Galimov, E. M., Kulikov, S. D., Kremnev, R. S., Surkov, Yu. A. and Khavroshkin, O. B. (1999). The Russian lunar exploration project. Astronomich. Vestnik. 33(5), 374–385 (in Russian). Translation in: Solar System Res. 33(5), 327–337.Google Scholar
Goldblinth, S. A., (1971) The inhibition and destruction of the microbial cell by radiations. In Inhibition and Destruction of the Microbial Cell, Hugo, W. B. (ed.) San Diego, Academic Press.Google Scholar
Goldstein, D. B., Austin, J. V., Barker, E. S. and Nerem, R. S. (2001). Short-time exosphere evolution following an impulsive vapor release on the Moon. J. Geophys. Res. 106(E12), 32841–32845.CrossRefGoogle Scholar
Gorevan, S. P., Myrick, T., Davis, K.et al., (2003). Rock abrasion tool: Mars exploration rover mission. J. Geophys. Res. 108(E12), 8068.CrossRefGoogle Scholar
Grafov, V. E., Bulekov, V. P., Dryuchenko, D. D.et al., (1971). First experimental boring on the Moon. Kosmich. Issled. 9(4), 580–586 (in Russian). Translation in Cosmic Res. 9(4), 530–535.Google Scholar
Green, M. J. and Davy, W. C. (1981). Galileo Probe Forebody Thermal Protection. American Institute of Aeronautics and Astronautics-81–1073, American Institute of Aeronautics and Astronautics 16th Thermophysics Conference, Palo Alto, CA, June 23–25, 1981.Google Scholar
Grigor'ev, E. I. and Ermakov, S. N., (1983). Physical modeling of the Venera 9 and Venera 14 landing probes. Kosmich. Issled. 21(4), 536–539 (in Russian). Translation in Cosmic Res. 21(4), 435–438, 1983.Google Scholar
Gromov, V. V., Misckevich, A. V., Yudkin, E. N., Kochan, H., Coste, P., and Re, E., (1997). The mobile penetrometer, a“Mole” for sub-surface soil investigation. Proc. 7th European Space Mechanisms & Tribology Symposium. ESTEC, Noordwijk, The Netherlands, 1–3 October 1997. European Space Agency SP-410, pp. 151–156.
Hall, J. L., MacNeal, P. D., Salama, M. A., Jones, J. A. and Heun, M. K. (1999). Thermal and structural test results for a Venus deep-atmosphere instrument enclosure. Journal of Spacecraft and Rockets, 37,(1), 142–144.CrossRefGoogle Scholar
Hall, R. C., (1977). Lunar impact – a history of project ranger. National Aeronautics and Space Administration SP-4210.
Hanson, A. W., (1978). Antenna design for Pioneer venus probes. IEEE International Symposium on Antennas and Propagation, Washington DC, May 1978.Google Scholar
Harland, D. M. (2000). Jupiter Odyssey. Chichester, Springer-Praxis.Google Scholar
Harland, D. M. (2002). Mission To Saturn. Chichester, Springer-Praxis.Google Scholar
Harland, D. M. and Lorenz, R. D. (2005). Space Systems Failures.Chichester, Springer-Praxis.Google Scholar
Hashimoto, T., Kubota, T. and Mizuno, T. (2003). Light weight sensors for the autonomous asteroid landing of MU Space Engineering Spacecraft C mission. Acta Astronautica, 52(2–6), 381–388.CrossRefGoogle Scholar
Hassan, H. and J. C. Jones, The Huygens probe. European Space Agency Bulletin 92, November 1997.
Heiken, G. H., Vaniman, D. T. and French, B. M. (eds), (1991). Lunar Sourcebook – A User's Guide to The Moon. Cambridge, Cambridge University Press.Google Scholar
Hennis, L. A. and Varon, M. N. (1978). Thermal design and development of the pioneer Venus large probe. In: Thermophysics and Thermal Control (R. Visjanta, ed.) Vol.65 of Progress in Astronautics and Aeronautics, American Institute of Aeronautics and Astronautics (Presented as Paper 78–916 at the 2nd American Institute of Aeronautics and Astronautics/ASME Thermophysics and Heat Transfer Conference, Palo Alto, California, May 24–26, 1978).
Hilchenbach, M., Küchemann, O. and Rosenbauer, H. (2000). Impact on a comet: Rosetta lander simulations. Planet. Space Sci. 48(5), 361–369.CrossRefGoogle Scholar
Hilchenbach, M., Rosenbauer, H. and Chares, B. (2004). First contact with a comet surface: Rosetta lander simulations. In: Colangeli, L., Epifani, Mazzotta E. and Palumbo, P. (eds), The New Rosetta Targets: Observations, Simulations and Instrument Performances. Astrophysics and Space Science Library vol. 311. Dordrecht, Kluwer, pp. 289–296.CrossRefGoogle Scholar
Hirano, Y. and Miura, K. (1970). Water impact accelerations of axially symmetric bodies. J. Spacecraft and Rockets 7, 762–764.CrossRefGoogle Scholar
Holmberg, N. A., Faust, R. P. and Holt, H. M. (1980). Viking 75 spacecraft design and test summary. National Aeronautics and Space Administration Reference Publication RP-1027, National Aeronautics and Space Administration Langley Research Center.Google Scholar
Hope, A. S., Kaufman, B., Dasenbrock, R. and Bakeris, D. (1997). A Clementine II mission to the asteroids. In: Wytrzyszczak, I. M., Lieske, J. H. and Feldman, R. A. (eds.), Dynamics and Astrometry of Natural and Artificial Celestial Bodies. Proc. IAU Colloquium 165, Dordrecht, Kluwer, pp. 183–190.Google Scholar
Horneck, G., (1993). Responses of Bacillus subtilis spores to the space environment: results from experiments in space. Origins Life Evol. Biosph., 23, 37–52.CrossRefGoogle ScholarPubMed
Hunten, et al. (eds), (1983). Venus. Tueson, University of Arizona Press.Google Scholar
Hunten, D. M., Colin, L. and Hansen, J. E. (1986). Atmospheric science on the Galileo mission. Space Sci. Rev. 44, 191–240.CrossRefGoogle Scholar
Ivanov, N. M. (1977). Upravlenie Dvizheniem Kosmicheskogo Apparata v Atmosfere Marsa (in Russian). Moscow, Nauka.Google Scholar
Jankovsky, R. S., Jacobson, D. T., Pinero, L. R., Sarmiento C. J., Manzella, D. H., Hofer, R. R. and Peterson, P. Y. (2002). National Aeronautics and Space Administration's Hall Thruster Program 2002. Paper American Institute of Aeronautics and Astronautics-2002–3675 at the 38th American Institute of Aeronautics and Astronautics Joint Propulsion Conference, Indianapolis, 7–10 July 2002.
Jastrow, R. and Rasool, S. I. (eds.) (1969). The Venus Atmosphere.New York, Gordon and Breach.Google Scholar
Johnson, N. L. (1979). Handbook of Soviet Lunar and Planetary Exploration. American Astronautical Society Science and Technology Series, vol. 47. San Dieg., Univelt.Google Scholar
Johnson, N. L. (1995). The Soviet Reach for the Moon: The L-1 and L-3 Manned Lunar Programs and the Story of the N-1 “Moon Rocket”. 2nd edn. Huntsville, Cosmos Books.Google Scholar
Jones, J. C. and Giovagnoli, F. (1997). The Huygens probe system Design. In: Wilson, A. (ed.), Huygens Science, Payload and Mission. European Space Agency SP-1177. European Space Agency.Google Scholar
Jones, R. H., (1971). Lunar surface mechanical properties from surveyor data. J. Geophys. Res. 76(32), 7833–7843.CrossRefGoogle Scholar
Jones, R. M. (2000). The MUSES–CN rover and asteroid exploration mission. In: Arakawa, Y. (ed.), Proc. 22nd International Symposium on Space Technology and Science, Morioka, Japan, 28 May–4 June 2000. pp. 2403–2410.Google Scholar
Kawaguchi, J., Uesugi, K. and Fujiwara, A. (2003). The MU Space Engineering Spacecraft C mission for the sample and return – its technology development status and readiness. Acta Astronautica, 52(2–6), 117–123.CrossRefGoogle Scholar
Keating, G. M. and the rest of the Mars Global Surveyor Aero-braking Team (1998). The structure of the upper atmosphere of Mars: in-situ accelerometer measurements from Mars Global Surveyor. Science, 279, 1672–1676.CrossRefGoogle ScholarPubMed
Keldysh, M. V. (ed.) (1979). Pervye Panoramy Poverkhnosti Venery (in Russian). Moscow, Nauka.Google Scholar
Keldysh, M. V. (ed.) (1980). Tvorcheskoye naslediye Akademika Sergeya Pavlovicha Koroleva: izbrannyye trudy i dokumenty. Moscow, Nauka.Google Scholar
Kelley, T. J. (2001). Moon Lander: How We Developed the Apollo Lunar Module. Washington DC, Smithsonian.Google Scholar
Kemurdzhian, A. L. (ed.) (1986). Πередвижение по Грунтам Луны и Планет(Transport on Lunar and Planetary Soils) (in Russian). Moscow, Mashinostroenie.Google Scholar
Kemurdzhian, A. L., Bogomolov, A. F., Brodskii, P. N.et al. (1988). Study of Phobos' surface with a movable robot. In: Phobos – Scientific and Methodological Aspects of the Phobos Study. Proceedings of the International Workshop, Moscow, 24–28 November 1986. Space Research Institute, USSR Academy of Sciences. pp. 357–367.Google Scholar
Kemurdzhian, A. L., Brodskii, P. N., Gromov, V. V. et al. (1989a). A roving vehicle for studying the surface of Phobos (PROP). In Balebanov, V. M. (ed.), Instrumentation and Methods for Space Exploration (in Russian). Moscow, Nauka.Google Scholar
Kemurdzhian, A. L., Brodskii, P. N., Gromov, V. V. et al. (1989b). Instruments for measuring the physical and mechanical properties of soil, evaluating its electroconductivity, and determining the inclination of angles of the PROP roving vehicle in the framework of the “Phobos” project. In Balebanov, V. M. (ed.), Instrumentation and Methods for Space Exploration (in Russian). Moscow, Nauka.Google Scholar
Kemurdzhian, A. L., Gromov, V. V., Kazhukalo, I. F.et al. (1993). Planetokhody (Planet Rovers) (in Russian). 2nd edn., Moscow, Mashinostroenie.Google Scholar
Kerr, R. A. (2002). Safety versus science on next trips to Mars. Science, 296, 1006–1008.CrossRefGoogle Scholar
Kerzhanovich, V. V. (1977). Mars 6: improved analysis of the descent module measurements. Icarus, 30, 1–25.CrossRefGoogle Scholar
Kieffer, et al. (eds.) (1993). Mars. Tucson, University of Arizona Press.Google Scholar
Klingelhöfer, G., Morris, R. V., de Souza, P. A., Jr., Bernhardt, B., and the Athena Science Team (2003). The miniaturized Mössbauer spectrometer MIMOS II of the Athena payload for the 2003 Mars Exploration Rover missions. Sixth International Conference on Mars, abstract 3132.
Knacke, T., (1992). Parachute Recovery Systems Design Guide. Santa Barbara, CA, Para Publishing (originally published as NWC TP 6575 by the Naval Weapons Center, China Lake); see also H. W. Bixby, E. G. Ewing and T. W. Knacke. Recovery Systems Design Guide. United States of AmericaF, December 1978. (United States of AmericaF Report AFFDL-TR-78–151.)
Koon, W. S., Lo, M. W., Marsden, J. E. and Ross, S. D. (2000). Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos, 10(2), 427–469.CrossRefGoogle Scholar
Koppes, C. R. (1982). Jet Propulsion Laboratory! and the American Space Program. New Haven CT, Yale University Press.CrossRefGoogle Scholar
Kremnev, R. S., Selivanov, A. S., Linkin, V. M.et al. (1986). The VeGa balloons: a tool for studying atmosphere dynamics on Venus. Pis'ma Astronom. Zh. 12(1), 19–24, (in Russian). Translation in: Sov. Astronom. Lett. 12(1), 7–9.Google Scholar
Kubota, T., Hashimoto, T., Sawai, S., et al. (2003). An autonomous navigation and guidance system for MU Space Engineering Spacecraft C asteroid landing. Acta Astronautica, 52(2–6), 125–131.CrossRefGoogle Scholar
Kurt, V. G. (1994), Per aspera… to the planets. Space Bulletin 1(4), 23–25.Google Scholar
Landis, G. A., Kerslake, T. W., Jenkins, P. P. and Scheiman, D. A. (2004). Mars solar power, American Institute of Aeronautics and Astronautics-2004–5555 (National Aeronautics and Space Administration Thermal Mapper-2004–213367).
Lanzerotti, L. J., Rinnert, K., Carlock, D., Sobeck, C. K. and Dehmel, G. (1998). Spin rate of Galileo probe during descent into the atmosphere of Jupiter. Journal of Spacecraft and Rockets, 35(1), 100–102.CrossRefGoogle Scholar
Latham, G. V., Ewing, M., Dorman, J.et al. (1970). Seismic data from man-made impacts on the Moon. Science, 170(3958), 620–626.CrossRefGoogle Scholar
Latham, G. V., Dorman, H. J., Horvath, P., Ibrahim, A. K., Koyama, J. and Nakamura, Y. (1978). Passive seismic experiment: a summary of current status. Proc. 9th Lunar Planet. Sci. Conf., Houston, pp. 3609–3613.
Croissette, D. H., (1969). The scientific instruments on surveyor. IEEE Trans. Aerospace and Electronic Systems, 5(1), 2–21.CrossRefGoogle Scholar
Lebreton, J. -P., Witasse, O., Sollazzo, C.et al. (2005). An overview of the descent and landing of the Huygens probe on Titan. Nature, 438(7069), 758–764.CrossRefGoogle ScholarPubMed
Lei, X., Zhang, R., Peng, L., Li-Li, D. and Ru-Juan, Z., (2004). Sterilization of E. coli bacterium with an atmospheric pressure surface barrier discharge. Chinese Phys. 13(6), 913–917.CrossRefGoogle Scholar
Linkin, V. A.Harri, -M., Lipatov, A., et al. (1998). A sophisticated lander for scientific exploration of Mars: scientific objectives and implementation of the Mars-96 small station. Planet. Space Sci. 46(6/7), 717–737.CrossRefGoogle ScholarPubMed
Lorenz, R. D. (1994). Huygens probe impact dynamics. European Space Agency Journal 18, 93–117.Google Scholar
Lorenz, R. D. (2001). Scaling laws for flight power of airships, airplanes and helicopters: application to planetary exploration. Journal of Aircraft, 38, 208–214.CrossRefGoogle Scholar
Lorenz, R. D. (2002). An artificial meteor on Titan?Astronomy and Geophysics, 43(5), 14–17.CrossRefGoogle Scholar
Lorenz, R. D. (2006). Spinning Flight: Dynamics of Frisbees, Boomerangs, Samaras and Skipping Stones. New York, Springer.Google Scholar
Lorenz, R. D., Moersch, J. E., Stone, J. A., Morgan, R. and Smrekar, S. (2000). Penetration tests on the Deep Space 2 Mars microprobes: penetration depth and impact accelerometry. Planet. Space Sci. 48, 419–436.CrossRefGoogle Scholar
Lorenz, R. D. and Ball, A. J. (2001). Review of impact penetration tests and theories. In Kömle, N. I., Kargl, G., Ball, A. J., Lorenz, R. D. (eds.), Penetrometry in the Solar System. Vienna, Austrian Academy of Sciences Press.Google Scholar
Lorenz, R. D. and Mitton, J. (2002). Lifting Titan's Veil: Exploring the Giant Moon of Saturn. Cambridge, Cambridge University Press.Google Scholar
Lorenz, R. D., Bienstock, B., Couzin, P., Cluzet, G. (2005). Thermal design and performance of probes in thick atmospheres: experience of Pioneer Venus, Venera, Galileo and Huygens. Submitted to 3rd International Planetary Probe Workshop, Athens, Greece, June 2005.
Lorenz, R. D., Witasse, O., Lebreton, J. -P. et al. (2006). Huygens entry emission: observation campaign, results, and lessons learned. J. Geophys. Res.III (E7) E07S11. DOI 10.1029/2005JE002603.CrossRef
Maksimov, G. Yu., Construction and testing of the first Soviet automatic interplanetary stations. In Hunley, J. D. (ed.) (1997). History of Rocketry and Astronautics, AAS History Series, vol. 20, pp. 233–246. American Astronautical Society.Google Scholar
Markov, Yu. (1989). Kurs na Mars, Moscow, (in Russian). Mashinostroenie.Google Scholar
Marov, M. Ya. and Petrov, G. I. (1973). Investigations of Mars from the soviet automatic stations Mars 2 and 3. Icarus, 19, 163–179.CrossRefGoogle Scholar
Marov, M. Ya. and Grinspoon, D. H. (1998). The Planet Venus.New Haven CT, Yale University Press.Google Scholar
Marov, M. Ya., Avduevsky, V. S., Akim, E. L.et al. (2004). Phobos-Grunt: Russian sample return mission. Adv. Space Res. 33(12), 2276–2280.CrossRefGoogle Scholar
Marraffa, L. and Smith, A. (1998). Aerothermodynamic aspects of entry probe heat shield design. Astrophys. and Space Sci. 260, 45–62.CrossRefGoogle Scholar
Martin Marietta Corporation, (1976). Viking Lander “As Built” Performance Capabilities. Martin Marietta Corporation.
McCurdy, H. E. (2001). Faster Better Cheaper, Low-Cost Innovation in the U.S. Space Program. Baltimore MA, Johns Hopkins University Press.Google Scholar
McGehee R., Hathaway M. E. and Vaughan V. L., Jr. (1959). Water-landing characteristics of a reentry capsule. National Aeronautics and Space Administration Memorandum 5–23–59L.
Meissinger, H. F. and Greenstadt, E. W. (1971). Design and science instrumentation of an unmanned vehicle for sample return from the asteroid Eros. In Gehrels, T. (ed.), (1971). Physical Studies of Minor Planets, Proceedings of IAU Colloq. 12, Tucson, AZ, March, 1971. National Aeronautics and Space Administration SP 267, p. 543.Google Scholar
Micheltree, R. A., DiFulvio, M., Horvath, T. J. and Braun, R. D. (1998). Aerothermal heating predictions for Mars microprobe. American Institute of Aeronautics and Astronautics 98–0170, 36th Aerospace Sciences Meeting, January 12–15, 1998, Reno NV.CrossRef
Milos, F. S. (1997). Galileo probe heat shield ablation experiment. J. of Spacecraft and Rockets, 34(6), 705–713.CrossRefGoogle Scholar
Milos, F. S., Chen, Y. -K., Squire, T. H. and Brewer, R. A. (1999a). Analysis of Galileo heatshield ablation and temperature data. J. of Spacecraft and Rockets, 36(3), 298–306.CrossRefGoogle Scholar
Milos, F. S., Chen, Y. -K., Congdon, W. M. and Thornton, J. M. (1999b). Mars pathfinder entry temperature data, aerothermal heating and heatshield material response. J. of Spacecraft and Rockets, 36(3), 380–391.CrossRefGoogle Scholar
Mishkin, A. (2004). Sojourner: An Insider's View of the Mars Pathfinder Mission. New York, Berkley Publishing Group.Google Scholar
Mizutani, H., Fujimura, A., Hayakawa, M., Tanaka, S. and Shiraishi, H. (2001). Lunar-A penetrator: its science and instruments. In Kömle, N. I., Kargl, G., Ball, A. J. and Lorenz, R. D. (eds.), Penetrometry in the Solar System. Vienna. Austrian Academy of Sciences Press. pp. 125–136Google Scholar
Mizutani, H., Fujimura, A., Tanaka, S., Shiraishi, H. and Nakajima, T. (2003). Lunar-A mission: goals and status. Adv. Space Res. 31(11), 2315–2321.CrossRefGoogle Scholar
MNTK (International Scientific and Technical Committee) (1985). Venus–Halley Mission: Experiment Description and Scientific Objectives of the International Project VEGA (1984–1986). MNTK, 1985.
Mogul, R., Bol'shakov, A. A., Chan, S. L., Stevens, R. M., Khare, B. N., Meyyappan, M. and Trent, J. D. (2003). Impact of low-temperature plasmas on deinococcus radiodurans and biomolecules, Biotechnol. Prog. 19, 776–783.CrossRefGoogle ScholarPubMed
Moore, H. J., Hutton, R. E., Scott, R. F., Spitzer, C. R. and Shorthill, R. W. (1977). Surface materials of the Viking landing sites. J. Geophys. Res. 82, 4497–4523.CrossRefGoogle Scholar
Moore, H. J., Bickler, D. B., Crisp, J. A.et al (1999). Soil-like deposits observed by Sojourner, the pathfinder rover. J. Geophys. Res. 104(E4), 8729–8746.CrossRefGoogle Scholar
Morozov, A. A., Smorodinov, M. I., Shvarev, V. V. and Cherkasov, I. I., (1968). Measurement of the lunar surface density by the automatic station “Luna-13”. Doklady Akademii Nauk SSSR, 179(5), 1087–1090, (in Russian). Translation in Soviet Physics – Doklady 13(4), 348–350, 1968.Google Scholar
Murphy, J. P., Reynolds, R. T., Blanchard, M. B. and Clanton, U. S. (1981a). Surface Penetrators for planetary exploration: science rationale and development program. National Aeronautics and Space Administration Thermal Mapper-81251, Ames Research Center.Google Scholar
Murphy, J. P., Cuzzi, J. N., Butts, A. J. and Carroll, P. C. (1981b). Entry and landing probe for Titan. J. Spacecraft and Rockets, 8, 157–163.CrossRefGoogle Scholar
Murrow, H. N. and McFall, J. C., (1968). Summary of Experimental results obtained from the National Aeronautics and Space Administration planetary entry parachute program, American Institute of Aeronautics and Astronautics 68–934, American Institute of Aeronautics and Astronautics 2nd Aerodynamic Deceleration Systems Conference, El Centro, CA, September 1968.Google Scholar
Mutch, T. (ed.) (1978). The Martian landscape. National Aeronautics and Space Administration SP-425.
National Aeronautics and Space Administration (1962). Scientific experiments for Ranger 3, 4, and 5. National Aeronautics and Space Administration Technical Report TN 32–199 (Revised), Jet Propulsion Laboratory.
National Aeronautics and Space Administration (1963). Lunar rough landing capsule development program final technical report. National Aeronautics and Space Administration Contractor Report Cosmic Ray-53814, Newport Beach, CA, Aeronutronic Division, Ford Motor Company.
National Aeronautics and Space Administration (1968). Surveyor project final report, parts 1 and 2. National Aeronautics and Space Administration Technical Report TR 32–1265, Jet Propulsion Laboratory.
National Aeronautics and Space Administration (1969). Surveyor program results. National Aeronautics and Space Administration SP-184.
Neal, M. F. and Wellings, P. J., (1993). Descent control system for the Huygens probe, 12th RAeS/American Institute of Aeronautics and Astronautics Aerodynamic Decelerator Systems Technology Conference, London, May 10–13, 1993 (American Institute of Aeronautics and Astronautics 93–1221).Google Scholar
Neugebauer, M. and Bibring, J. -P. (1998). Champollion. Adv. Space Res. 21(11), 1567–1575.CrossRefGoogle Scholar
Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., Setlow, P. (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Bio Rev. 64(3), 548–572.CrossRefGoogle ScholarPubMed
Northey, D. (2003). The main parachute for the Beagle 2 Mars Lander. 17th American Institute of Aeronautics and Astronautics Aerodynamic Decelerator Systems Technology Conference and Seminar, Monterey, California, May 19–22, 2003.CrossRefGoogle Scholar
Novak, K. S., Phillips, , Sunada, J. and Kinsella, G. M. (2005). Mars exploration rover surface mission flight thermal performance, SAE 2005–01–2827 International Conference on Environmental Systems, July 2005, Rome, Italy.CrossRefGoogle Scholar
O'Neill, W. J. (2002). Galileo spacecraft architecture, in ‘The Three Galileos’. Proceedings of a Conference, Padova, Italy. Dordrecht, Kluwer.Google Scholar
Parks, R. J. (1966). Surveyor 1 Mission Report. Part 1: Mission description and performance. Technical Report No. 32–1023, Jet Propulsion Laboratory, Pasadena, CA, August 31, 1966.Google Scholar
Pellinen, R. and Raudsepp, P. (eds.) (2000). Towards Mars!Helsinki, Oy Raud.Google Scholar
Perminov, V. G., (1990). Dynamics of soft landing of spherically-shaped probes. Kosmich. Issled. 28(4), 539–544, (in Russian). Translation in Cosmic Res. 28(4), 460–465. 1990.Google Scholar
Perminov, V. G. (1999). The Difficult Road to Mars: A Brief History of Mars Exploration in the Soviet Union. Monographs in Aerospace History, Number 15. National Aeronautics and Space Administration.Google Scholar
Philberth, K. (1962). Une Méthode pour mesurer les températures à l'intérieur d'un Inlandsis (a method for measuring temperatures within an ice sheet). Comptes Rendues, 254, 3881.Google Scholar
Pillinger, C. T., (2003). Beagle: From Sailing Ship to Mars Spacecraft. XNP Productions. Republished as Beagle: From Darwin's Epic Voyage to the British Mission To Mars. Faber & Faber, 2003.
Pillinger, C. T., Sims, M. R., Clemmet, J. The Guide To Beagle 2. copyright, C. T. Pillinger, 2003, in association with Faber and Faber.
Venus, Pioneer (1980). Reprinted from J. Geophys. Res. 85(A13).
Pullan, D., Sims, M. R., Wright, I. P., Pillinger, C. T. and Trautner, R. (2004). Beagle 2: the exobiological lander of Mars express. In Wilson, A. (ed.), Mars Express: The Scientific Payload. European Space Agency SP-1240. European Space Agency, Noordwijk.Google Scholar
Richter, L. (1998). Principles for robotic mobility on minor solar system bodies. Robot. & auton. Sys. 23(1/2), 117–124.CrossRefGoogle Scholar
Richter, L., Coste, P., Gromov, V., Kochan, H., Pinna, S. and Richter, H. -E. (2001). Development of the “planetary underground tool” subsurface soil sampler for the Mars express “Beagle 2” lander. Adv. Space Res. 28(8), 1225–1230.CrossRefGoogle Scholar
Riemensnider, D. K., (1968). Quantitative aspects of shedding of micro-organisms by humans. National Aeronautics and Space Administration SP108, pp. 97–103.Google Scholar
Rodier, R. W., Thuss, R. C. and Terhune, J. E.Parachute design for the Galileo entry probe, (1981). American Institute of Aeronautics and Astronautics–81–1951, American Institute of Aeronautics and Astronautics 7th Aerodynamic Decelerator and Balloon Technology Conference, October 21–23, San Diego, CA, 1981.CrossRefGoogle Scholar
Rohatgi, N., Schubert, W., Knight, J., et al., (2001). Development of vapor phase hydrogen peroxide sterilization process for spacecraft applications. International Conference On Environmental Systems, Soc. of Automotive Eng., paper 2001–01–2411.CrossRef
Rummel, J. D. (2001). Planetary exploration in the time of astrobiology: protecting against biological contamination. Proc. Natl. Acad. Sci., 98(5), 2128–2131.CrossRefGoogle ScholarPubMed
Russell, C. T. (ed.) (1992). The Galileo Mission. Reprinted from Space Sci. Rev. 60(1–4). Dordrecht, Kluwer.Google Scholar
Russell, C. T. (ed.) (1998). The Near Earth Asteroid Rendezvous Mission. Reprinted from Space Sci. Rev. 82(1–2), 1997. Kluwer.Google Scholar
Sagdeev, R. Z., Linkin, V. M., Kremnev, R. S., Blamont, J. E., Preston, R. A. and Selivanov, A. S., (1986). The VeGa balloon experiments. Pis'ma Astronom. Zh. 12(1), 10–15, (in Russian). Translation in: Sov. Astronom. Lett. 12(1), 3–5, 1986.Google Scholar
Sagdeev, R. Z., Balebanov, V. M. and Zakharov, A. V. (1988). The Phobos project: scientific objectives and experimental methods. Sov. Sci. Rev. E: Astrophys. Space Phys. Rev. 6, 1–60.Google Scholar
Sainct, H. and Clausen, K., (1983). Technologies new to space in Huygens probe mission to Titan. IAF-93-U.4.564, Presented at 44th IAF Congress, Graz, Austria, October 1993.
Scheeres, D. J. (2004). Close proximity operations at small bodies: orbiting, hovering, and hopping. In Belton, M. J. S., Morgan, T. H., Samarasinha, N. and Yeomans, D. K. (eds.), (2002). Mitigation of Hazardous Comets and Asteroids. Proceedings of the Workshop on Scientific Requirements for Mitigation of Hazardous Comets and Asteroids, Arlington, 3–6 September 2002. Cambridge, Cambridge University Press, pp. 313–336.CrossRefGoogle Scholar
Schmidt, G. R., Wiley, R. L., Richardson, R. L. and Furlong, R. R. (2005). National Aeronautics and Space Administration's program for radioisotope power system research and development. AIP Conference Proceedings, 746, 429–436.CrossRefGoogle Scholar
Schurmeier, H. M., Heacock, R. L. and Wolfe, A. E. (1965). The Ranger missions to the Moon. Scientific American, 214(1), 52–67.CrossRefGoogle Scholar
Schwehm, G. and Hechler, M. (1994). ‘Rosetta’- European Space Agency's planetary cornerstone mission. European Space Agency Bulletin, 77, 7–18.Google Scholar
Scoon, G. E., (1985). Cassini – a concept for a Titan probe. European Space Agency Bulletin, 41, 12–20.Google Scholar
Sears, D., Franzen, M., Moore, S., Nichols, S., Kareev, M. and Benoit, P. (2004). Mission operations in low-gravity regolith and dust. In Belton, M. J. S., Morgan, T. H., Samarasinha, N. and Yeomans, D. K. (Eds.), Mitigation of hazardous comets and asteroids. Proceedings of the Workshop on Scientific Requirements for Mitigation of Hazardous Comets and Asteroids. Arlington, 3–6 September 2002. Cambridge,Cambridge University Press, pp. 337–352.CrossRefGoogle Scholar
Seddon, C. M. and Moatamedi, M. (2006), Review of water entry with applications to aerospace structures. Int. J. Impact Eng. 32(7), 1045–1067.CrossRefGoogle Scholar
Seiff, A. and Kirk, D. B. (1977). Structure of the atmosphere of Mars in summer at mid-latitudes. J. Geophys. Res. 82, 4363–4378.CrossRefGoogle Scholar
Seiff, A., et al. (1980). Measurements of thermal structure and thermal contrast in the atmosphere of Venus and related dynamical observations: results from the four Pioneer Venus probes. J. Geophys. Res. 85, 7903–7933.CrossRefGoogle Scholar
Seiff, A., et al. (1997). The atmosphere structure and meteorological instrument on the Mars Pathfinder lander. J. Geophys. Res. 102(E2), 4045–4056.CrossRefGoogle Scholar
Seiff, A.et al. (1998). Thermal structure of Jupiter's atmosphere near the edge of a 5-μm hot spot in the North Equatorial Belt. J. Geophys. Res. 103(E10), 22857–22889.CrossRefGoogle Scholar
Seiff, A., Stoker, C. R., Young, R. E., Mihalov, J. D., McKay, C. P. and Lorenz, R. D. (2005). Determination of physical properties of a planetary surface by measuring the deceleration of a probe upon impact. Planet. Space Sci. 53(5), 594–600.CrossRefGoogle Scholar
Semenov, Yu. P., (1994). Rocket and Space Corporation Energia: The Legacy of S. P. Korolev. Energia. Translated edition, Burnington; Apogee Books, 2001.Google Scholar
Semenov, Yu. P. (ed.) (1996). RKK Energia im. S. P. Koroleva 1946–1996. Moscow, RKK Energia.Google Scholar
Shaneyfelt, M. R., Winokur, P. S., Meisenheimer, T. L., Sexton, F. W., Roeske, S. B., and Knoll, M. G., (1994). Hardness variability in commercial technologies. IEEE Trans. Nucl. Sci. 41, pp. 2536–2543.CrossRefGoogle Scholar
Sherman M. M., (1971). Entry gasdynamic heating, National Aeronautics and Space Administration SP-8062, Langley Research Centre, National Aeronautics and Space Administration.
Shiraishi, H., Tanaka, S., Hayakawa, M., Fujimura, A. and Mizutani, H. (2000). Dynamical characteristics of planetary penetrator: effect of incidence angle and attack angle at impact. Institute of Space and Astronautical Science Science Report 677, Institute of Space and Aeronautical Science.
Shirley, D., (1998). Managing Martians. New York, Broadway Books.Google Scholar
Siddiqi, A. A. (2000). Challenge to Apollo. National Aeronautics and Space Administration SP–2000–4408. Reprinted in two volumes as Sputnik and the Soviet Space Challenge and The Soviet Race with Apollo, Gainesville FLA, (2003). University Press of Florida.Google Scholar
Siddiqi, A. A., Hendrickx, B. and Varfolomeyev, T. (2000). The tough road travelled: a new look at the second generation lunar probes. J. British Interplanet. Soc. 53(9/10), 319–356.Google Scholar
Siddiqi, A. A. (2002). Deep space chronicle: a chronology of deep space and planetary probes 1958–2000. Monographs in Aerospace History, Volume 24. National Aeronautics and Space Administration SP–2002–4524. Washington National Aeronautics and Space Administration.
Simmons, G. J. (1977). Surface penetrators – a promising new type of planetary lander. J. British Interplanetary Soc. 30(7), 243–256.Google Scholar
Sims, M. R., Pullan, D., Fraser, G. W. et al. (2003). Performance characteristics of the! Position Adjustable Workbench instrumentation on Beagle 2 (the astrobiology lander on European Space Agency's Mars Express mission). In Hoover, R. B., Rozanov, A. Yu. and Paepe, R. R. (eds.), Instruments, Methods, and Missions for Astrobiology V. Proc. SPIE, 4859, 32–44.CrossRef
Sims, M. R. (ed.), (2004a). Beagle 2 Mars Mission Report. Leicester, University of Leicester.Google Scholar
Sims, M. R. (ed.), (2004b). Beagle 2 Mars Lessons Learned. Leicester, University of Leicester.Google Scholar
Smith, P. H. and the Phoenix Science Team (2004). The Phoenix Mission to Mars. 35thLunar and Planetary Science Conference, Houston, 15–19 March 2004, 2050.CrossRefGoogle Scholar
Smrekar, S., Catling, D., Lorenz, R.et al. (1999). Deep Space 2: the Mars microprobe mission. J. Geophys. Res. 104(E11), 27013–27030.CrossRefGoogle Scholar
Smrekar, S., Lorenz, R. D. and Urquhart, M. (2001). The Deep-space-2 penetrator design and its use for accelerometry and estimation of thermal conductivity. In Kömle, N. I., Kargl, G., Ball, A. J. and Lorenz, R. D. (eds), Penetrometry in the Solar System. Vienna, Austrian Academy of Sciences Press. pp. 109–123.Google Scholar
Spencer, D. A., Blanchard, R. C., Braun, R. D., Kallemeyn, P. H. and Thurman, S. W. (1999). Mars Pathfinder entry, descent, and landing reconstruction. J. Spacecraft and Rockets, 36(3), 357–366.CrossRefGoogle Scholar
Sperling, F., Galba, J., (1967). Treatise on the Surveyor lunar landing Dynamics and an Evaluation of pertinent telemetry data returned by surveyor 1. National Aeronautics and Space Administration Technical Report TR 32–1035, Jet Propulsion Laboratory.Google Scholar
Spilker, L. (ed.) (1997) Passage to a Ringed World: The Cassini-Huygens Mission to Saturn and Titan. National Aeronautics and Space Administration SP-523. National Aeronautics and Space Administration, Washington DC.Google Scholar
Spitzer, C. R. (1976). Unlimbering Viking's scoop. IEEE Spectrum, 13, 92–93.CrossRefGoogle Scholar
Squyres, S. W. (2005). Roving Mars: Spirit, Opportunity and the Exploration of the Red Planet. New York, Hyperion.Google Scholar
Steltzner, A., Desai, P., Lee, W., Bruno, R. (2003). The Mars exploration rovers entry descent and landing and the use of aerodynamic decelerators, 17th American Institute of Aeronautics and Astronautics Aerodynamic Decelerator Systems Technology Conference and Seminar, Monterey, CA. American Institute of Aeronautics and Astronautics–2003–2125.Google Scholar
Stooke, P. J. (2005). Lunar laser ranging and the location of Lunokhod 1. 36th Lunar and Planetary Science Conference, Houston, 14–18 March 2005.Google Scholar
Stubbs, S. M. (1967), Dynamic Model Investigation of water pressures and accelerations encountered during landings of the Apollo spacecraft. National Aeronautics and Space Administration TN D-3980.Google Scholar
Surkov, Yu. A. (1997). Exploration of Terrestrial Planets from Spacecraft: Instrument-ation, Investigation, Interpretation. 2nd. edn. Chichester, Wiley-Praxis.Google Scholar
Surkov, Yu. A. and Kremnev, R. S. (1998). Mars-96 mission: Mars exploration with the use of penetrators. Planet. Space Sci. 46(11/12), 1689–1696.CrossRefGoogle Scholar
Surkov, Yu. A., Moskaleva, L. P., Shcheglov, O. P.et al. (1999). Lander and scientific equipment for exploring of volatiles on the Moon. Planet. Space Sci. 47(8/9), 1051–1060.CrossRefGoogle Scholar
Surkov, Yu. A., Kremnev, R. S., Pichkhadze, K. M. and Akulov, Yu. P. (2001). Penetrators for exploring solar system bodies. In Kömle, N. I., Kargl, G., Ball, A. J. and Lorenz, R. D. (eds.), Penetrometry in the Solar System. Vienna, Austrian Academy of Sciences Press, pp. 185–196.Google Scholar
Thiel, M., Stöcker, J., Rohe, C., Hillenmaier, O., Kömle, N. I. and Kargl, G. (2001). The Rosetta lander anchoring harpoon: subsystem and scientific instrument. In Kömle, N. I., Kargl, G., Ball, A. J. and Lorenz, R. D. (eds.). Penetrometry in the Solar System. Vienna, Austrian Academy of Sciences Press, pp. 137–149.Google Scholar
Trainor, J H, (1994). Instrument and spacecraft faults associated with nuclear radiation in space. Advances in Space Research, 14(10), 685–693.CrossRefGoogle ScholarPubMed
TsUP (1985). VeGa (in Russian). TsUP (Spaceflight Control Centre), Moscow.
TsUP (1988). Phobos (in Russian). TsUP (Spaceflight Control Centre)/Informelektro, Moscow.
Tunstel, E., Maimone, M., Trebi-Ollennu, A., Yen, J., Petras, R., Wilson, R., (2005). Mars Exploration Rover mobility and robotic arm operational performance, 2005 IEEE International Conference on Systems, Man, and Cybernetics, Waikoloa, HI, October 10–12, 2005.CrossRefGoogle Scholar
Ulamec, S., Espinasse, S., Feuerbacher, B.et al. (2006) Rosetta Lander–Philae: implications of an alternative mission. Acta Astronautica, 58(8), 435–441.CrossRefGoogle Scholar
Ulrich, J. A., (1966). Spacecraft sterilization techniques, National Aeronautics and Space Administration SP-108, p. 93.Google Scholar
Underwood, J C, (1993). A 12–degree of freedom Parachute/Payload Simulation of the Huygens Probe. 12th RAeS/American Institute of Aeronautics and Astronautics Aerodynamic Decelerator Systems Technology Conference, London, May 10–13, 1993 (American Institute of Aeronautics and Astronautics 93–1251).Google Scholar
Urquhart, M. L. and Smrekar, S. E. (2000). Estimation of soil thermal conductivity from a Mars microprobe-type penetrator. 31st Lunar and Planetary Science Conference, Houston, 13–17 March 2000, 1781.Google Scholar
Varfolomeyev, T. (1998). Soviet rocketry that conquered space. Part 5: the first planetary probe attempts, 1960–1964. Spaceflight, 40(3), 85–88.Google Scholar
Vaughan, V. L. (1961). Landing characteristics and flotation properties of a reentry capsule, National Aeronautics and Space Administration TN D-655.Google Scholar
Vergnolle, J.-F. (1995). Soft landing impact attenuation technologies review. 14thAmerican Institute of Aeronautics and Astronautics Aerodynamic Decelerator Systems Technology Conference. American Institute of Aeronautics and Astronautics–95–1535-CP.
Vesley, D., Ruschmeyer, O. R., and Bond, R. G., (1966). Spacecraft contamination resulting from human contact. National Aeronautics and Space Administration SP108, pp. 275–283.Google Scholar
Vinogradov, A. P. (ed.) (1966). Pervye Panoramy Lunnoi Poverkhnosti (First Panoramas of the Lunar Surface), Moscow, NaUnited Kingdoma.Google Scholar
Vinogradov, A. P. (ed.) (1969). Pervye Panoramy Lunnoi Poverkhnosti Tom 2 (First Panoramas of the Lunar Surface Vol. 2). Moscow, NaUnited Kingdoma.Google Scholar
Vinogradov, A. P. (ed.), (1971). Peredvizhnaya Laboratoriya na Lune Lunokhod-1. Tom 1. Moscow, NaUnited Kingdoma.Google Scholar
Vinogradov, A. P. (ed.), (1974). Lunnyy Grunt iz Morya Izobiliya (Lunar Soil from the Sea of Fertility). Moscow, NaUnited Kingdoma, (in Russian). Translated as National Aeronautics and Space Administration TT-F-15881, 1974.Google Scholar
Vojvodich, N. S., Drean, R. J., Schaupp, R. W. and Farless, D. L. (1983). Galileo atmospheric entry probe mission description, American Institute of Aeronautics and Astronautics–83–0100, American Institute of Aeronautics and Astronautics 21st Aerospace Sciences Meeting, Reno Nevada, January 10–13, 1983.Google Scholar
Karman, T., (1929), The impact of seaplane floats during landing, NACA TN-321, October 1929.Google Scholar
Vorontsov, V. A., Deryugin, V. A., Karyagin, V. P., et al. (1988). Method of investigation of the planet Venus using floating aerostatic stations. Mathematical Model. Kosmich. Issled. 26(3), 430–433, (in Russian). Translation in Cosmic Res. 26(3), 371–374, 1988.Google Scholar
Warwick, R. W. (2003). A low-cost, light-weight Mars landing system. IEEE Aerospace Conference, Big Sky, MT.Google Scholar
Wertz, J. R. and Larson, W. J., (1999). Space Mission Analysis and Design. 3rd edn., Torrence CA, Microcosm/Kluwer.Google Scholar
Wierzbicki, T. and Yue, D. Y., 1986. Impact damage of the Challenger crew compartment. J. Spacecraft and Rockets, 32, pp. 646–654.Google Scholar
Wilcockson, W. H. (1999). Mars pathfinder heatshield design and flight experience. J. of Spacecraft and Rockets, 36(3), 374–379.CrossRefGoogle Scholar
Wilson, A. (ed), (1997). Huygens Spacecraft, payload and mission. European Space Agency SP-1177.Google Scholar
Wilson, J. W., Shinn, J. L., Tripathi, R. K.et al. (2001). Issues in deep space radiation protection. Acta Astronautica, 49, (3–10), 289–312.CrossRefGoogle ScholarPubMed
Wilson, K. T., (1982). Rangers 3–5: America's first lunar landing attempts. JBIS, 36, 265–274.Google Scholar
Withers, P.Towner, M. C., Hathi, B. and Zarnecki, J. C. (2003). Analysis of entry accelerometer data: a case study of Mars Pathfinder. Planet. Space Sci. 51(9–10), 541–561.CrossRefGoogle Scholar
Wright, I. P., Sims, M. R. and Pillinger, C. T. (2003). Scientific objectives of the Beagle 2 lander. Acta Astronautica, 52(2–6), 219–225.CrossRefGoogle Scholar
Yamada, T., Inatani, Y., and Honda, M., and Hirai, K. (2002). Development of thermal protection system of the MU Space Engineering Spacecraft C/BASH Reentry capsule. Acta Astronautica 51(1–9), 63–72.CrossRefGoogle Scholar
Yano, H., Hasegawa, S., Abe, M. and Fujiwara, A. (2002). Asteroidal Surface Sampling by the MU Space Engineering Spacecraft C Spacecraft. In: Warmbein, B. (ed.) Proc. Asteroids, Comets, Meteors ACM 2002, 29 July–2 August 2002, Berlin. European Space Agency SP-500, pp. 103–106.
Yew, C. H. and Stirbis, P. P. (1978). Penetration of projectile into terrestrial target. J. Eng. Mech. Am. Soc. Civ. Engrs. 104(EM2), 273–286.Google Scholar
Yoshida, M., Tanaka, T., Watanabe, S., Takagi, T., Shinohara, M., and Fuji, S. (2003). Experimental study on a new sterilization process using plasma source ion implantation with N2 gas. Journal of Vacuum Science Technology, 21, 4, 1230–1236.CrossRefGoogle Scholar
Yoshimitsu, T., Kubota, T., Nakatani, I. and Kawaguchi, J. (2001). Robotic lander MIcro/Nano Experimental Robot Vehicle for Asteroid, its mobility and surface exploration. In Spaceflight Mechanics 2001, Advances in the Astronautical Sciences. 108(1), 491–501.Google Scholar
Yoshimitsu, T., Kubota, T., Nakatani, I., Adachi, T. and Saito, H. (2003). Micro-hopping robot for asteroid exploration. Acta Astronautica, 52(2–6), 441–446.CrossRefGoogle Scholar
Young, C. W. (1969). Depth prediction for earth-penetrating projectiles. J. Soil Mech. Found. Div. Proc. Am. Soc. Civ. Engrs. 95(SM3), 803–817.Google Scholar
Young, C. W. (1997). Penetration equations. SAND97–2426, Sandia National Laboratories.CrossRefGoogle Scholar
Young, R. E., Smith, M. A. and Sobeck, C. K. (1996). Galileo probe: in-situ observations of Jupiter's atmosphere, Science, 272(5263), 837–838.CrossRefGoogle ScholarPubMed
Young, R. E. (1998). The Galileo probe mission to Jupiter: science overview. J. Geophys. Res. 103(E10), 22775–22790.CrossRefGoogle Scholar
Zarnecki, J. C., Leese, M. R., Hathi, B.et al. (2005). A soft solid surface on Titan as revealed by the Huygens surface science package. Nature, 438(7069), 792–795.CrossRefGoogle ScholarPubMed
Zelenov, I. A., Klishin, A. F., Kovtunenko, V. M., and Nikitin, M. D., (1988a). Characteristics of heat exchange and heat shielding of the Venera automatic interplanetary stations' descent vehicle. Kosmicheskie Issledovaniya, 26(1), 28–32.Google Scholar
Zelenov, I. A., Klishin, A. F., Kovtunenko, V. M. and Shabarchin, A. F. (1988b). Methods of providing for thermal conditions in the Venera automatic interplanetary stations when in the atmosphere of Venus. Kosmicheskie Issledovania, 26, 33–36.Google Scholar
Zimmerman, W. F., Bonitz, R. and Feldman, J. (2001). Cryobot: an ice penetrating robotic vehicle for Mars and Europa. IEEE 2001 Aerospace Conference, Big Sky, Montana.Google Scholar
Zupp, G. A. and Doiron, H. H. (2001). A mathematical procedure for predicting the touchdown dynamics of a soft-landing vehicle. National Aeronautics and Space Administration Technical Note TN D-7045. Houston, Manned Spaceflight Center.Google Scholar
Aamot, H. W. C. (1967). The philberth probe for investigating polar ice caps. CRREL Special Report 119, Cold Regions Research & Engineering Laboratory, Hanover, New Hampshire.
Adamski, D. F. (1962). The lunar seismograph experiment: ranger 3, 4, 5. National Aeronautics and Space Administration TR 32–272, Jet Propulsion Laboratory.
A'Hearn, M., Delamere, A. and Frazier, W. (2000). The deep impact mission: opening a new chapter in cometary science. Paper IAA-00-IAA.11.2.04 at the 51st International Astronautical Congress, Rio de Janeiro, 2–6 October 2000.
Aleksashkin, S. N., Karyagin, V. P., Pichkhadze, K. M., Targamadze, R. Ch. and Terterashvili, A. V. (1988a). Aerodynamic characteristics of the aerostatic probe of Project VeGa. Kosmich. Issled. 26(3), 434–440 (in Russian). Translation in Cosmic Res. 26(3), 375–381.Google Scholar
Aleksashkin, S. N., Zukakishvili, R. I., Pichkhadze, K. M., Targamadze, R. Ch. and Terterashvili, A. V. (1988b). Dynamic characteristics of the sensor of the vertical component of wind speed. Aerostatic Experiment of Project VeGa. Kosmich. Issled. 26(3), 441–447 (in Russian). Translation in Cosmic Res. 26(3), 381–387.Google Scholar
Angrist, S. W. (1982). Direct Energy Conversion, 4th edn. Boston, Allyn and Bacon.Google Scholar
Arakaki, G. and D'Agostino, S. (1999). New millennium DS2 electronic packaging. An advanced electronic packaging. IEEE Aerospace Conference, Snowmass, Colorado, United States of America.CrossRefGoogle Scholar
Atzei, A., Schwehm, G., Coradini, M., Hechler, M., Lafontaine, J. and Eiden, M. (1989). Rosetta/Comet Nucleus Sample Return–European Space Agency's Planetary Cornerstone Mission. European Space Agency Bulletin, 59, 18–29.Google Scholar
Avduevsky, V. S., Marov, M. Ya., Rozhdestvensky, M. K., Borodin, N. F. and Kerzhanovich, V. V. (1971). Landing of the automatic Station Venera 7 on the Venus surface and preliminary results of investigations of the Venus atmosphere. J. Atmos. Sci. 28(2), 263.2.0.CO;2>CrossRefGoogle Scholar
Avduevskii, V. S., Godnev, A. G., Zakharov, Yu. V.et al (1983). An estimate of the physical and mechanical characteristics of the soil of Venus from measurements of the impact overloads during the landings of the Venera 13 and Venera 14 automatic interplanetary stations. Kosmich. Issled. 21(3), 331–339 (in Russian). Translation in Cosmic Res. 21(3), 260–268.Google Scholar
Avotin, E. V., Bolkhovitinov, I. S., Kemurdzhian, A. L., Malenkov, M. I. and Shpak, F. P. (1979) Дυнαмυκα Πлαнемоxо∂а (Dynamics of Planet Rovers) (in Russian). Moscow, Nauka.Google Scholar
Backes, P. G., Tso, K. S., Norris, J. S.et al. (2000). Internet-based operations for the Mars polar lander mission. Proc. 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA.Google Scholar
Barmin, I. V. and Shevchenko, A. A. (1983). Soil-scooping mechanism for the Venera 13 and Venera 14 unmanned interplanetary spacecraft. Kosmich. Issled. 21(2), 171–175 (in Russian). Translation in: Cosmic Res. 21(2), 118–122.Google Scholar
Barsukov, V. L. (ed.), (1978) Peredvizhnaya Laboratoriya na Lune Lunokhod-1. 2. Moscow, Nauka. 1978.Google Scholar
Barsukov, V. L. and Surkov, Yu. A. (eds.), (1979). Grunt iz Materikovogo Raiona Luny (Lunar Highland Soil). Moscow, Nauka (in Russian).Google Scholar
Barsukov, V. L. (ed.), (1980). Lunnyi Grunt iz Moria Krizisov (Lunar Soil from Mare Crisium). Moscow, Nauka (in Russian).Google Scholar
Bartlette, P. W., Carlson, L. E., Chu, P. C., Davis, K. R., Gorevan, S. P., KUnited States of Americack, A. G., Myrick, T. M., and Wilson, J. J. and the Athena Science Team (2005). Summary of rock abrasion tool (Rock Abrasion Tool) results pertinent to the Mars exploration Rover Science data set. Lunar and Planetary Science Conference, XXXVI, abstract 2292.
Bauske, R. (2004). Dependence of the Beagle 2 trajectory on the Mars atmosphere. Presented at the 18th Int. Symposium on Space Flight Dynamics, Munich.
Bazhenov, V. I. and Osin, M. I. (1978) Posadka Kosmicheskikh Apparatov na Planety (The Landing of Spacecraft on the Planets, or Space-vehicle Landings on Planets). Moscow, Mashinostroenie.Google Scholar
Beattie, D. A. (2001). Taking Science to the Moon: Lunar Experiments and the Apollo Program. Baltimore, MD, Johns Hopkins University Press.Google Scholar
Bekker, M. G. (1962). Land locomotion on the surface of planets. ARS Journal, 32(11), 1651–1659.CrossRefGoogle Scholar
Bell, J. and Mitton, J. (eds.) (2002). Asteroid Rendezvous.Cambridge, Cambridge University Press.Google Scholar
Biele, J., Ulamec, S., Feuerbacher, B.et al. (2002). Current status and scientific capabilities of the Rosetta lander payload. Adv. Space Res. 29(8), 1199–1208.CrossRefGoogle Scholar
Biele, J. (2002). The experiments onboard the Rosetta lander. Earth, Moon and Planets, 90(1–4), 445–458.CrossRefGoogle Scholar
Biele, J. and Ulamec, S. (2004). Implications of the new target comet on science operations for the Rosetta lander. In Colangeli, L., Mazzotta Epifani, E. and Palumbo, P. (eds.), The New Rosetta Targets: Observations, Simulations and Instrument Performances. Astrophysics and Space Science Library vol. 311. Dordrecht, Kluwer, pp. 281–288.CrossRefGoogle Scholar
Bienstock, B. J. (2004). Pioneer Venus and Galileo entry probe heritage. In Wilson, A. (ed.), Proc. Int. Workshop on Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science, Lisbon, 6–9 October 2003. European Space Agency SP-544, pp. 37–45.Google Scholar
Bird, M. K., Heyl, M., Allison, M. et al. (1997). The Huygens Doppler Wind Experiment. In Huygens: Science, Payload and Mission, pp. 139–163, Wilson, A. (ed.) European Space Agency SP-1177, Noordwijk.Google Scholar
Bird, M. K., Dutta-Roy, R., Heyl, M., Allison, M., Asmar, S. W., Folkner, W. M., Preston, R. A., Atkinson, D. H., Edenhofer, P., Plettemeier, D., Wohlmuth, R., Iess, L., Tyler, G. L. (2002). The Huygens Doppler wind experiment – Titan winds derived from probe radio frequency measurements. Space Science Reviews, 104(1), 611–638.CrossRefGoogle Scholar
Blagonravov, A. A. (ed.), (1968) USSR Achievements in Space Research (First Decade in Space, 1957–1967), Moscow, Nauka. (In Russian). Translation available as JPRS-47311, (1969) Washington, Joint Publications Research Service.
Blamont, J., Boloh, L., Kerzhanovich, V.et al. (1993). Balloons on planet Venus: final results. Adv. Space Res. 13(2), 145–152.CrossRefGoogle Scholar
Bogdanov, A. V., Nikolaev, A. V., Serbin, V. I., Skuridin, G. A., Khavroshkin, O. B. and Tsyplakov, V. V. (1988). Method for analysing terrestrial planets. Kosmich. Issled. 26(4), 591–603 (in Russian). Translation in Cosmic Res. 26(4), 505–515.Google Scholar
Bonitz, R., Slostad, J., Bon, B.et al. (2001). Mars volatiles and climate surveyor robotic arm. J. Geophys. Res. 106(E8), 623–640.CrossRefGoogle Scholar
Bonnefoy, R., Link, D., Casani, J.et al. (2004). Beagle 2 European Space Agency/UK Commission of Enquiry.Google Scholar
Boynton, W. V. and Reinert, R. P. (1995). The cryo-penetrator: an approach to exploration of icy bodies in the solar system. Acta Astronautica 35(suppl.), 59–68.CrossRefGoogle Scholar
Braun, R. D., Spencer, D. A., Kallemeyn, P. H. and Vaughan, R. M. (1999a). Mars Pathfinder atmospheric entry navigation operations. J. Spacecraft and Rockets 36(3), 348–356.CrossRefGoogle Scholar
Braun, R. D., Micheltree, R. A. and Cheatwood, F. M. (1999b). Mars microprobe entry-to-impact analysis. J. Spacecraft and Rockets 36(3), 412–420.CrossRefGoogle Scholar
Brodsky, P. N., Gromov, V. V., Yudkin, E. N., Kulakova, I. B., Kuzmin, M. M., (1995). Deepening method of the device for borehole creation in soil. Patent no. 2 04 98 53. Bulletin of the Russian Federation Committee on Patents and Trademarks, N34.
Brodsky, R. F. (1979) Pioneer Venus: Case Study in Spacecraft Design. New York, American Institute of Aeronautics and Astronautics Professional Study Series.Google Scholar
Bruch, C. W. (1964). Some biological and physical factors in dry-heat sterilization: a general review. In Floriskin, M. and Dollfus, A. (eds.) Life Sciences and Space Research II. Amsterdam, New Holland.
Burgess, E. (1978). To The Red Planet.New York, Columbia University Press.Google Scholar
Buslaev, S. P. (1987). Predicting the successful landing of an automatic interplanetary station on the surface of a celestial body in the presence of uncertainty. Kosmich. Issled. 25(2), 186–192 (in Russian). Translation in Cosmic Res. 25(2), 149–154.Google Scholar
Buslaev, S. P., Stulov, V. A. and Grigor'ev, E. I., (1983) Mathematical modeling and experimental investigation of the landing of the Venera 9–14 spacecraft on deformable soils. Kosmich. Issled. 21(4), 540–544. (in Russian). Translation in Cosmic Res. 21(4), 439–442, 1983.Google Scholar
Cadogan, D., Sandy, C. and Grahne, M. (2002). Development and evaluation of the Mars Pathfinder inflatable airbag landing system. Acta Astronautica, 50(10), 633–640.CrossRefGoogle Scholar
Carrier III, W. D., Olhoeft, G. and Mendell, W. (1991). Physical properties of the lunar surface: Section 9.1.11 – Trafficability. In Heiken, G., Vaniman, D., French, B. (eds.). Lunar Sourcebook – A User's Guide to the Moon. Cambridge, Cambridge University Press.Google Scholar
Casani, J. et al. (Jet Propulsion Laboratory Special Review Board) (2000). Report on the loss of the Mars polar lander and Deep Space 2 missions. Jet Propulsion Laboratory D-18709.
Cheremukhina, Z. P., et al. (1974). Estimate of temperature of Venus' stratosphere from data on deceleration forces acting on the Venera 8 probe. Kosmich. Issled. 12(2), 264–271 (in Russian). Translation in: Cosmic Res. 12(2), 238–245, 1974.Google Scholar
Cherkasov, I. I., Kemurdzhian, A. L., Mikhailov, L. N.et al. (1967). Determination of the density and mechanical strength of the surface layer of lunar soil at the landing site of the Luna 13 Probe. Kosmich. Issled. 5(5), 746–757 (in Russian). Translation in Cosmic Res. 4, 636–645, 1968a.Google Scholar
Cherkasov, I. I., Gromov, V. V., Zobachev, N. M.et al. (1968a). Soil-density meter-penetrometer of the automatic lunar station Luna-13. Doklady Akademii Nauk SSSR, 179(4), 829–831 (in Russian). Translation in Soviet Physics–Doklady13(4), 336–338.Google Scholar
Cherkasov, I. I., Vakhnin, V. M., Kemurjian, A. L. et al. (1968b). Determination of the Physical and Mechanical Properties of the Lunar Surface Layer by Means of Luna 13 Automatic Station. Moon and Planets 2 (ed. Dollfus, A.). Amsterdam, North-Holland 70–76.Google Scholar
Chertok, B. (1999). Rockets and People. Moscow, Mashinostroenie.Google Scholar
Christensen, P. R., Mehall, G. L., Silverman, S. H., et al. (2003). Miniature thermal emission spectrometer for the Mars Exploration rovers. Journal of Geophysical Research, 108(E12), 8064, DOI 10.1029/2003JE002117CrossRefGoogle Scholar
Centre National d’Études Spatiales (1993). Missions, Technologies and Design of Planetary Mobile Vehicles. Proceedings of the Centre National d’Études Spatiales Conference, Toulouse, September 1992. Cépaduès Editions.
Colombatti, G. et al. (2006). Reconstruction of the trajectory of the Huygens probe using the Huygens Atmospheric Structure Instrument (Huygens Atmospheric Structure Instrument). Planet. Space Sci., submitted.
Cooley, C. G. and Lewis, J. G. (1977). Viking 75 project: Viking lander system primary mission performance report. National Aeronautics and Space Administration Contractor Report CR-145148, National Aeronautics and Space Administration/Martin Marietta.Google Scholar
Corliss, W. R. (1965). Space Probes and Planetary Exploration. Princeton, Van Nostrand.Google Scholar
Corliss, W. R. (1975). The Viking mission To Mars. National Aeronautics and Space Administration SP-334.Google Scholar
Cortright, E. M. (ed.) (1975). Apollo expeditions to the Moon. National Aeronautics and Space Administration SP-350.Google Scholar
Cowart, E. G. (1973). Lunar Roving Vehicle: Spacecraft on Wheels. Proc. Inst. Mech. Engrs. 187(45/73), 463–481CrossRefGoogle Scholar
DeVincenzi, D. L. and Stabekis, P. D., (1984). Revised planetary protection policy for solar system exploration. Adv. Space Res. 4(12), 291–295.CrossRef
Debus, A., Runavot, J., Rogovsky, G., Bogomolov, V., Khamidullina, N., and Trofimov, V., (2002). Landers sterile integration implementations: example of Mars 96 mission. Acta Astronautica, 50(6), 385–392.CrossRefGoogle Scholar
Desai, P. N., and Lyons, D. T. (2005). Entry, descent, and landing operations analysis for the Genesis re-entry capsule. 15th AAS/American Institute of Aeronautics and Astronautics Space Flight Mechanics Conference, paper AAS 05–121.
Doenecke, J. and Elsner, M. (1994). Special heat transfer problems within the Huygens probe. Proceedings, 4th European Symposium on Space Environmental Control Systems, 279–283.Google Scholar
Doiron, H. H. and Zupp, G. A. (2000). Apollo Lunar Module Landing Dynamics. 4th American Institute of Aeronautics and Astronautics/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Atlanta GA, 3–6 April 2000. American Institute of Aeronautics and Astronautics-2000–1678.CrossRefGoogle Scholar
Dornheim, M. (2003), ‘Can $$$ buy time?’. Aviation Week and Space Technology, 158(21), 56–58.Google Scholar
Dunham, D. W., Farquhar, R. W., McAdams, J. V.et al. (2002). Implementation of the First Asteroid Landing. Icarus, 159(2), 433–438.CrossRefGoogle Scholar
Eisen, H. J., Wen L. C., Hickey, G. and Braun, D. F. (1998). Sojourner Mars rover thermal performance, SAE paper 981685, 28th International Conference on Environmental Systems, Danvers, MA, July, 1998.
Ellery, A. (2000). An Introduction to Space Robotics.Chichester, Springer-Praxis.Google Scholar
European Space Agency (1986). Comet nucleus sample return. Proceedings of an European Space Agency Workshop held at the University of Kent at Canterbury, UK, 15–17 July, 1986. European Space Agency SP-249, December 1986.
European Space Agency (1987). Rosetta comet nucleus sample return: report of the science definition team. European Space Agency SCI(87)3, December 1987.
European Space Agency (1988). Vesta: a mission to the small bodies of the solar system. European Space Agency SCI(88)6.
European Space Agency (1991). Rosetta comet-nucleus sample return: Mission and system definition document. European Space Agency SP-1125, June 1991.
European Space Agency (1993). Rosetta Comet Rendezvous Mission, European Space Agency SCI(93)7, September 1993.
Ezell, E. C. and Ezell, L. N., (1984). On Mars: Exploration of the Red Planet 1958–1978, National Aeronautics and Space Administration SP-4212.Google Scholar
Fearn, D. G. and Martin, A. R., (1995). The promise of electric propulsion for low-cost interplanetary missions. Acta Astronautica, 35, 615–624.CrossRefGoogle Scholar
Fimmel, et al., (1983). Pioneer Venus. National Aeronautics and Space Administration SP-461.Google Scholar
Fimmel, et al., (1995). Pioneering Venus.National Aeronautics and Space Administration SP-518.Google Scholar
Forrestal, M. J. and Luk, V. K. (1992). Penetration into soil targets. Int. J. Impact Engng. 12, 427–444.CrossRefGoogle Scholar
Fraser, S. J., Olson, R. L., Leavens, W. M., (1975). Plasma sterilization technology for spacecraft applications. Seattle, WA, Boeing Co., Aerospace Group.Google Scholar
Galimov, E. M., Kulikov, S. D., Kremnev, R. S., Surkov, Yu. A. and Khavroshkin, O. B. (1999). The Russian lunar exploration project. Astronomich. Vestnik. 33(5), 374–385 (in Russian). Translation in: Solar System Res. 33(5), 327–337.Google Scholar
Goldblinth, S. A., (1971) The inhibition and destruction of the microbial cell by radiations. In Inhibition and Destruction of the Microbial Cell, Hugo, W. B. (ed.) San Diego, Academic Press.Google Scholar
Goldstein, D. B., Austin, J. V., Barker, E. S. and Nerem, R. S. (2001). Short-time exosphere evolution following an impulsive vapor release on the Moon. J. Geophys. Res. 106(E12), 32841–32845.CrossRefGoogle Scholar
Gorevan, S. P., Myrick, T., Davis, K.et al., (2003). Rock abrasion tool: Mars exploration rover mission. J. Geophys. Res. 108(E12), 8068.CrossRefGoogle Scholar
Grafov, V. E., Bulekov, V. P., Dryuchenko, D. D.et al., (1971). First experimental boring on the Moon. Kosmich. Issled. 9(4), 580–586 (in Russian). Translation in Cosmic Res. 9(4), 530–535.Google Scholar
Green, M. J. and Davy, W. C. (1981). Galileo Probe Forebody Thermal Protection. American Institute of Aeronautics and Astronautics-81–1073, American Institute of Aeronautics and Astronautics 16th Thermophysics Conference, Palo Alto, CA, June 23–25, 1981.Google Scholar
Grigor'ev, E. I. and Ermakov, S. N., (1983). Physical modeling of the Venera 9 and Venera 14 landing probes. Kosmich. Issled. 21(4), 536–539 (in Russian). Translation in Cosmic Res. 21(4), 435–438, 1983.Google Scholar
Gromov, V. V., Misckevich, A. V., Yudkin, E. N., Kochan, H., Coste, P., and Re, E., (1997). The mobile penetrometer, a“Mole” for sub-surface soil investigation. Proc. 7th European Space Mechanisms & Tribology Symposium. ESTEC, Noordwijk, The Netherlands, 1–3 October 1997. European Space Agency SP-410, pp. 151–156.
Hall, J. L., MacNeal, P. D., Salama, M. A., Jones, J. A. and Heun, M. K. (1999). Thermal and structural test results for a Venus deep-atmosphere instrument enclosure. Journal of Spacecraft and Rockets, 37,(1), 142–144.CrossRefGoogle Scholar
Hall, R. C., (1977). Lunar impact – a history of project ranger. National Aeronautics and Space Administration SP-4210.
Hanson, A. W., (1978). Antenna design for Pioneer venus probes. IEEE International Symposium on Antennas and Propagation, Washington DC, May 1978.Google Scholar
Harland, D. M. (2000). Jupiter Odyssey. Chichester, Springer-Praxis.Google Scholar
Harland, D. M. (2002). Mission To Saturn. Chichester, Springer-Praxis.Google Scholar
Harland, D. M. and Lorenz, R. D. (2005). Space Systems Failures.Chichester, Springer-Praxis.Google Scholar
Hashimoto, T., Kubota, T. and Mizuno, T. (2003). Light weight sensors for the autonomous asteroid landing of MU Space Engineering Spacecraft C mission. Acta Astronautica, 52(2–6), 381–388.CrossRefGoogle Scholar
Hassan, H. and J. C. Jones, The Huygens probe. European Space Agency Bulletin 92, November 1997.
Heiken, G. H., Vaniman, D. T. and French, B. M. (eds), (1991). Lunar Sourcebook – A User's Guide to The Moon. Cambridge, Cambridge University Press.Google Scholar
Hennis, L. A. and Varon, M. N. (1978). Thermal design and development of the pioneer Venus large probe. In: Thermophysics and Thermal Control (R. Visjanta, ed.) Vol.65 of Progress in Astronautics and Aeronautics, American Institute of Aeronautics and Astronautics (Presented as Paper 78–916 at the 2nd American Institute of Aeronautics and Astronautics/ASME Thermophysics and Heat Transfer Conference, Palo Alto, California, May 24–26, 1978).
Hilchenbach, M., Küchemann, O. and Rosenbauer, H. (2000). Impact on a comet: Rosetta lander simulations. Planet. Space Sci. 48(5), 361–369.CrossRefGoogle Scholar
Hilchenbach, M., Rosenbauer, H. and Chares, B. (2004). First contact with a comet surface: Rosetta lander simulations. In: Colangeli, L., Epifani, Mazzotta E. and Palumbo, P. (eds), The New Rosetta Targets: Observations, Simulations and Instrument Performances. Astrophysics and Space Science Library vol. 311. Dordrecht, Kluwer, pp. 289–296.CrossRefGoogle Scholar
Hirano, Y. and Miura, K. (1970). Water impact accelerations of axially symmetric bodies. J. Spacecraft and Rockets 7, 762–764.CrossRefGoogle Scholar
Holmberg, N. A., Faust, R. P. and Holt, H. M. (1980). Viking 75 spacecraft design and test summary. National Aeronautics and Space Administration Reference Publication RP-1027, National Aeronautics and Space Administration Langley Research Center.Google Scholar
Hope, A. S., Kaufman, B., Dasenbrock, R. and Bakeris, D. (1997). A Clementine II mission to the asteroids. In: Wytrzyszczak, I. M., Lieske, J. H. and Feldman, R. A. (eds.), Dynamics and Astrometry of Natural and Artificial Celestial Bodies. Proc. IAU Colloquium 165, Dordrecht, Kluwer, pp. 183–190.Google Scholar
Horneck, G., (1993). Responses of Bacillus subtilis spores to the space environment: results from experiments in space. Origins Life Evol. Biosph., 23, 37–52.CrossRefGoogle ScholarPubMed
Hunten, et al. (eds), (1983). Venus. Tueson, University of Arizona Press.Google Scholar
Hunten, D. M., Colin, L. and Hansen, J. E. (1986). Atmospheric science on the Galileo mission. Space Sci. Rev. 44, 191–240.CrossRefGoogle Scholar
Ivanov, N. M. (1977). Upravlenie Dvizheniem Kosmicheskogo Apparata v Atmosfere Marsa (in Russian). Moscow, Nauka.Google Scholar
Jankovsky, R. S., Jacobson, D. T., Pinero, L. R., Sarmiento C. J., Manzella, D. H., Hofer, R. R. and Peterson, P. Y. (2002). National Aeronautics and Space Administration's Hall Thruster Program 2002. Paper American Institute of Aeronautics and Astronautics-2002–3675 at the 38th American Institute of Aeronautics and Astronautics Joint Propulsion Conference, Indianapolis, 7–10 July 2002.
Jastrow, R. and Rasool, S. I. (eds.) (1969). The Venus Atmosphere.New York, Gordon and Breach.Google Scholar
Johnson, N. L. (1979). Handbook of Soviet Lunar and Planetary Exploration. American Astronautical Society Science and Technology Series, vol. 47. San Dieg., Univelt.Google Scholar
Johnson, N. L. (1995). The Soviet Reach for the Moon: The L-1 and L-3 Manned Lunar Programs and the Story of the N-1 “Moon Rocket”. 2nd edn. Huntsville, Cosmos Books.Google Scholar
Jones, J. C. and Giovagnoli, F. (1997). The Huygens probe system Design. In: Wilson, A. (ed.), Huygens Science, Payload and Mission. European Space Agency SP-1177. European Space Agency.Google Scholar
Jones, R. H., (1971). Lunar surface mechanical properties from surveyor data. J. Geophys. Res. 76(32), 7833–7843.CrossRefGoogle Scholar
Jones, R. M. (2000). The MUSES–CN rover and asteroid exploration mission. In: Arakawa, Y. (ed.), Proc. 22nd International Symposium on Space Technology and Science, Morioka, Japan, 28 May–4 June 2000. pp. 2403–2410.Google Scholar
Kawaguchi, J., Uesugi, K. and Fujiwara, A. (2003). The MU Space Engineering Spacecraft C mission for the sample and return – its technology development status and readiness. Acta Astronautica, 52(2–6), 117–123.CrossRefGoogle Scholar
Keating, G. M. and the rest of the Mars Global Surveyor Aero-braking Team (1998). The structure of the upper atmosphere of Mars: in-situ accelerometer measurements from Mars Global Surveyor. Science, 279, 1672–1676.CrossRefGoogle ScholarPubMed
Keldysh, M. V. (ed.) (1979). Pervye Panoramy Poverkhnosti Venery (in Russian). Moscow, Nauka.Google Scholar
Keldysh, M. V. (ed.) (1980). Tvorcheskoye naslediye Akademika Sergeya Pavlovicha Koroleva: izbrannyye trudy i dokumenty. Moscow, Nauka.Google Scholar
Kelley, T. J. (2001). Moon Lander: How We Developed the Apollo Lunar Module. Washington DC, Smithsonian.Google Scholar
Kemurdzhian, A. L. (ed.) (1986). Πередвижение по Грунтам Луны и Планет(Transport on Lunar and Planetary Soils) (in Russian). Moscow, Mashinostroenie.Google Scholar
Kemurdzhian, A. L., Bogomolov, A. F., Brodskii, P. N.et al. (1988). Study of Phobos' surface with a movable robot. In: Phobos – Scientific and Methodological Aspects of the Phobos Study. Proceedings of the International Workshop, Moscow, 24–28 November 1986. Space Research Institute, USSR Academy of Sciences. pp. 357–367.Google Scholar
Kemurdzhian, A. L., Brodskii, P. N., Gromov, V. V. et al. (1989a). A roving vehicle for studying the surface of Phobos (PROP). In Balebanov, V. M. (ed.), Instrumentation and Methods for Space Exploration (in Russian). Moscow, Nauka.Google Scholar
Kemurdzhian, A. L., Brodskii, P. N., Gromov, V. V. et al. (1989b). Instruments for measuring the physical and mechanical properties of soil, evaluating its electroconductivity, and determining the inclination of angles of the PROP roving vehicle in the framework of the “Phobos” project. In Balebanov, V. M. (ed.), Instrumentation and Methods for Space Exploration (in Russian). Moscow, Nauka.Google Scholar
Kemurdzhian, A. L., Gromov, V. V., Kazhukalo, I. F.et al. (1993). Planetokhody (Planet Rovers) (in Russian). 2nd edn., Moscow, Mashinostroenie.Google Scholar
Kerr, R. A. (2002). Safety versus science on next trips to Mars. Science, 296, 1006–1008.CrossRefGoogle Scholar
Kerzhanovich, V. V. (1977). Mars 6: improved analysis of the descent module measurements. Icarus, 30, 1–25.CrossRefGoogle Scholar
Kieffer, et al. (eds.) (1993). Mars. Tucson, University of Arizona Press.Google Scholar
Klingelhöfer, G., Morris, R. V., de Souza, P. A., Jr., Bernhardt, B., and the Athena Science Team (2003). The miniaturized Mössbauer spectrometer MIMOS II of the Athena payload for the 2003 Mars Exploration Rover missions. Sixth International Conference on Mars, abstract 3132.
Knacke, T., (1992). Parachute Recovery Systems Design Guide. Santa Barbara, CA, Para Publishing (originally published as NWC TP 6575 by the Naval Weapons Center, China Lake); see also H. W. Bixby, E. G. Ewing and T. W. Knacke. Recovery Systems Design Guide. United States of AmericaF, December 1978. (United States of AmericaF Report AFFDL-TR-78–151.)
Koon, W. S., Lo, M. W., Marsden, J. E. and Ross, S. D. (2000). Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos, 10(2), 427–469.CrossRefGoogle Scholar
Koppes, C. R. (1982). Jet Propulsion Laboratory! and the American Space Program. New Haven CT, Yale University Press.CrossRefGoogle Scholar
Kremnev, R. S., Selivanov, A. S., Linkin, V. M.et al. (1986). The VeGa balloons: a tool for studying atmosphere dynamics on Venus. Pis'ma Astronom. Zh. 12(1), 19–24, (in Russian). Translation in: Sov. Astronom. Lett. 12(1), 7–9.Google Scholar
Kubota, T., Hashimoto, T., Sawai, S., et al. (2003). An autonomous navigation and guidance system for MU Space Engineering Spacecraft C asteroid landing. Acta Astronautica, 52(2–6), 125–131.CrossRefGoogle Scholar
Kurt, V. G. (1994), Per aspera… to the planets. Space Bulletin 1(4), 23–25.Google Scholar
Landis, G. A., Kerslake, T. W., Jenkins, P. P. and Scheiman, D. A. (2004). Mars solar power, American Institute of Aeronautics and Astronautics-2004–5555 (National Aeronautics and Space Administration Thermal Mapper-2004–213367).
Lanzerotti, L. J., Rinnert, K., Carlock, D., Sobeck, C. K. and Dehmel, G. (1998). Spin rate of Galileo probe during descent into the atmosphere of Jupiter. Journal of Spacecraft and Rockets, 35(1), 100–102.CrossRefGoogle Scholar
Latham, G. V., Ewing, M., Dorman, J.et al. (1970). Seismic data from man-made impacts on the Moon. Science, 170(3958), 620–626.CrossRefGoogle Scholar
Latham, G. V., Dorman, H. J., Horvath, P., Ibrahim, A. K., Koyama, J. and Nakamura, Y. (1978). Passive seismic experiment: a summary of current status. Proc. 9th Lunar Planet. Sci. Conf., Houston, pp. 3609–3613.
Croissette, D. H., (1969). The scientific instruments on surveyor. IEEE Trans. Aerospace and Electronic Systems, 5(1), 2–21.CrossRefGoogle Scholar
Lebreton, J. -P., Witasse, O., Sollazzo, C.et al. (2005). An overview of the descent and landing of the Huygens probe on Titan. Nature, 438(7069), 758–764.CrossRefGoogle ScholarPubMed
Lei, X., Zhang, R., Peng, L., Li-Li, D. and Ru-Juan, Z., (2004). Sterilization of E. coli bacterium with an atmospheric pressure surface barrier discharge. Chinese Phys. 13(6), 913–917.CrossRefGoogle Scholar
Linkin, V. A.Harri, -M., Lipatov, A., et al. (1998). A sophisticated lander for scientific exploration of Mars: scientific objectives and implementation of the Mars-96 small station. Planet. Space Sci. 46(6/7), 717–737.CrossRefGoogle ScholarPubMed
Lorenz, R. D. (1994). Huygens probe impact dynamics. European Space Agency Journal 18, 93–117.Google Scholar
Lorenz, R. D. (2001). Scaling laws for flight power of airships, airplanes and helicopters: application to planetary exploration. Journal of Aircraft, 38, 208–214.CrossRefGoogle Scholar
Lorenz, R. D. (2002). An artificial meteor on Titan?Astronomy and Geophysics, 43(5), 14–17.CrossRefGoogle Scholar
Lorenz, R. D. (2006). Spinning Flight: Dynamics of Frisbees, Boomerangs, Samaras and Skipping Stones. New York, Springer.Google Scholar
Lorenz, R. D., Moersch, J. E., Stone, J. A., Morgan, R. and Smrekar, S. (2000). Penetration tests on the Deep Space 2 Mars microprobes: penetration depth and impact accelerometry. Planet. Space Sci. 48, 419–436.CrossRefGoogle Scholar
Lorenz, R. D. and Ball, A. J. (2001). Review of impact penetration tests and theories. In Kömle, N. I., Kargl, G., Ball, A. J., Lorenz, R. D. (eds.), Penetrometry in the Solar System. Vienna, Austrian Academy of Sciences Press.Google Scholar
Lorenz, R. D. and Mitton, J. (2002). Lifting Titan's Veil: Exploring the Giant Moon of Saturn. Cambridge, Cambridge University Press.Google Scholar
Lorenz, R. D., Bienstock, B., Couzin, P., Cluzet, G. (2005). Thermal design and performance of probes in thick atmospheres: experience of Pioneer Venus, Venera, Galileo and Huygens. Submitted to 3rd International Planetary Probe Workshop, Athens, Greece, June 2005.
Lorenz, R. D., Witasse, O., Lebreton, J. -P. et al. (2006). Huygens entry emission: observation campaign, results, and lessons learned. J. Geophys. Res.III (E7) E07S11. DOI 10.1029/2005JE002603.CrossRef
Maksimov, G. Yu., Construction and testing of the first Soviet automatic interplanetary stations. In Hunley, J. D. (ed.) (1997). History of Rocketry and Astronautics, AAS History Series, vol. 20, pp. 233–246. American Astronautical Society.Google Scholar
Markov, Yu. (1989). Kurs na Mars, Moscow, (in Russian). Mashinostroenie.Google Scholar
Marov, M. Ya. and Petrov, G. I. (1973). Investigations of Mars from the soviet automatic stations Mars 2 and 3. Icarus, 19, 163–179.CrossRefGoogle Scholar
Marov, M. Ya. and Grinspoon, D. H. (1998). The Planet Venus.New Haven CT, Yale University Press.Google Scholar
Marov, M. Ya., Avduevsky, V. S., Akim, E. L.et al. (2004). Phobos-Grunt: Russian sample return mission. Adv. Space Res. 33(12), 2276–2280.CrossRefGoogle Scholar
Marraffa, L. and Smith, A. (1998). Aerothermodynamic aspects of entry probe heat shield design. Astrophys. and Space Sci. 260, 45–62.CrossRefGoogle Scholar
Martin Marietta Corporation, (1976). Viking Lander “As Built” Performance Capabilities. Martin Marietta Corporation.
McCurdy, H. E. (2001). Faster Better Cheaper, Low-Cost Innovation in the U.S. Space Program. Baltimore MA, Johns Hopkins University Press.Google Scholar
McGehee R., Hathaway M. E. and Vaughan V. L., Jr. (1959). Water-landing characteristics of a reentry capsule. National Aeronautics and Space Administration Memorandum 5–23–59L.
Meissinger, H. F. and Greenstadt, E. W. (1971). Design and science instrumentation of an unmanned vehicle for sample return from the asteroid Eros. In Gehrels, T. (ed.), (1971). Physical Studies of Minor Planets, Proceedings of IAU Colloq. 12, Tucson, AZ, March, 1971. National Aeronautics and Space Administration SP 267, p. 543.Google Scholar
Micheltree, R. A., DiFulvio, M., Horvath, T. J. and Braun, R. D. (1998). Aerothermal heating predictions for Mars microprobe. American Institute of Aeronautics and Astronautics 98–0170, 36th Aerospace Sciences Meeting, January 12–15, 1998, Reno NV.CrossRef
Milos, F. S. (1997). Galileo probe heat shield ablation experiment. J. of Spacecraft and Rockets, 34(6), 705–713.CrossRefGoogle Scholar
Milos, F. S., Chen, Y. -K., Squire, T. H. and Brewer, R. A. (1999a). Analysis of Galileo heatshield ablation and temperature data. J. of Spacecraft and Rockets, 36(3), 298–306.CrossRefGoogle Scholar
Milos, F. S., Chen, Y. -K., Congdon, W. M. and Thornton, J. M. (1999b). Mars pathfinder entry temperature data, aerothermal heating and heatshield material response. J. of Spacecraft and Rockets, 36(3), 380–391.CrossRefGoogle Scholar
Mishkin, A. (2004). Sojourner: An Insider's View of the Mars Pathfinder Mission. New York, Berkley Publishing Group.Google Scholar
Mizutani, H., Fujimura, A., Hayakawa, M., Tanaka, S. and Shiraishi, H. (2001). Lunar-A penetrator: its science and instruments. In Kömle, N. I., Kargl, G., Ball, A. J. and Lorenz, R. D. (eds.), Penetrometry in the Solar System. Vienna. Austrian Academy of Sciences Press. pp. 125–136Google Scholar
Mizutani, H., Fujimura, A., Tanaka, S., Shiraishi, H. and Nakajima, T. (2003). Lunar-A mission: goals and status. Adv. Space Res. 31(11), 2315–2321.CrossRefGoogle Scholar
MNTK (International Scientific and Technical Committee) (1985). Venus–Halley Mission: Experiment Description and Scientific Objectives of the International Project VEGA (1984–1986). MNTK, 1985.
Mogul, R., Bol'shakov, A. A., Chan, S. L., Stevens, R. M., Khare, B. N., Meyyappan, M. and Trent, J. D. (2003). Impact of low-temperature plasmas on deinococcus radiodurans and biomolecules, Biotechnol. Prog. 19, 776–783.CrossRefGoogle ScholarPubMed
Moore, H. J., Hutton, R. E., Scott, R. F., Spitzer, C. R. and Shorthill, R. W. (1977). Surface materials of the Viking landing sites. J. Geophys. Res. 82, 4497–4523.CrossRefGoogle Scholar
Moore, H. J., Bickler, D. B., Crisp, J. A.et al (1999). Soil-like deposits observed by Sojourner, the pathfinder rover. J. Geophys. Res. 104(E4), 8729–8746.CrossRefGoogle Scholar
Morozov, A. A., Smorodinov, M. I., Shvarev, V. V. and Cherkasov, I. I., (1968). Measurement of the lunar surface density by the automatic station “Luna-13”. Doklady Akademii Nauk SSSR, 179(5), 1087–1090, (in Russian). Translation in Soviet Physics – Doklady 13(4), 348–350, 1968.Google Scholar
Murphy, J. P., Reynolds, R. T., Blanchard, M. B. and Clanton, U. S. (1981a). Surface Penetrators for planetary exploration: science rationale and development program. National Aeronautics and Space Administration Thermal Mapper-81251, Ames Research Center.Google Scholar
Murphy, J. P., Cuzzi, J. N., Butts, A. J. and Carroll, P. C. (1981b). Entry and landing probe for Titan. J. Spacecraft and Rockets, 8, 157–163.CrossRefGoogle Scholar
Murrow, H. N. and McFall, J. C., (1968). Summary of Experimental results obtained from the National Aeronautics and Space Administration planetary entry parachute program, American Institute of Aeronautics and Astronautics 68–934, American Institute of Aeronautics and Astronautics 2nd Aerodynamic Deceleration Systems Conference, El Centro, CA, September 1968.Google Scholar
Mutch, T. (ed.) (1978). The Martian landscape. National Aeronautics and Space Administration SP-425.
National Aeronautics and Space Administration (1962). Scientific experiments for Ranger 3, 4, and 5. National Aeronautics and Space Administration Technical Report TN 32–199 (Revised), Jet Propulsion Laboratory.
National Aeronautics and Space Administration (1963). Lunar rough landing capsule development program final technical report. National Aeronautics and Space Administration Contractor Report Cosmic Ray-53814, Newport Beach, CA, Aeronutronic Division, Ford Motor Company.
National Aeronautics and Space Administration (1968). Surveyor project final report, parts 1 and 2. National Aeronautics and Space Administration Technical Report TR 32–1265, Jet Propulsion Laboratory.
National Aeronautics and Space Administration (1969). Surveyor program results. National Aeronautics and Space Administration SP-184.
Neal, M. F. and Wellings, P. J., (1993). Descent control system for the Huygens probe, 12th RAeS/American Institute of Aeronautics and Astronautics Aerodynamic Decelerator Systems Technology Conference, London, May 10–13, 1993 (American Institute of Aeronautics and Astronautics 93–1221).Google Scholar
Neugebauer, M. and Bibring, J. -P. (1998). Champollion. Adv. Space Res. 21(11), 1567–1575.CrossRefGoogle Scholar
Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., Setlow, P. (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Bio Rev. 64(3), 548–572.CrossRefGoogle ScholarPubMed
Northey, D. (2003). The main parachute for the Beagle 2 Mars Lander. 17th American Institute of Aeronautics and Astronautics Aerodynamic Decelerator Systems Technology Conference and Seminar, Monterey, California, May 19–22, 2003.CrossRefGoogle Scholar
Novak, K. S., Phillips, , Sunada, J. and Kinsella, G. M. (2005). Mars exploration rover surface mission flight thermal performance, SAE 2005–01–2827 International Conference on Environmental Systems, July 2005, Rome, Italy.CrossRefGoogle Scholar
O'Neill, W. J. (2002). Galileo spacecraft architecture, in ‘The Three Galileos’. Proceedings of a Conference, Padova, Italy. Dordrecht, Kluwer.Google Scholar
Parks, R. J. (1966). Surveyor 1 Mission Report. Part 1: Mission description and performance. Technical Report No. 32–1023, Jet Propulsion Laboratory, Pasadena, CA, August 31, 1966.Google Scholar
Pellinen, R. and Raudsepp, P. (eds.) (2000). Towards Mars!Helsinki, Oy Raud.Google Scholar
Perminov, V. G., (1990). Dynamics of soft landing of spherically-shaped probes. Kosmich. Issled. 28(4), 539–544, (in Russian). Translation in Cosmic Res. 28(4), 460–465. 1990.Google Scholar
Perminov, V. G. (1999). The Difficult Road to Mars: A Brief History of Mars Exploration in the Soviet Union. Monographs in Aerospace History, Number 15. National Aeronautics and Space Administration.Google Scholar
Philberth, K. (1962). Une Méthode pour mesurer les températures à l'intérieur d'un Inlandsis (a method for measuring temperatures within an ice sheet). Comptes Rendues, 254, 3881.Google Scholar
Pillinger, C. T., (2003). Beagle: From Sailing Ship to Mars Spacecraft. XNP Productions. Republished as Beagle: From Darwin's Epic Voyage to the British Mission To Mars. Faber & Faber, 2003.
Pillinger, C. T., Sims, M. R., Clemmet, J. The Guide To Beagle 2. copyright, C. T. Pillinger, 2003, in association with Faber and Faber.
Venus, Pioneer (1980). Reprinted from J. Geophys. Res. 85(A13).
Pullan, D., Sims, M. R., Wright, I. P., Pillinger, C. T. and Trautner, R. (2004). Beagle 2: the exobiological lander of Mars express. In Wilson, A. (ed.), Mars Express: The Scientific Payload. European Space Agency SP-1240. European Space Agency, Noordwijk.Google Scholar
Richter, L. (1998). Principles for robotic mobility on minor solar system bodies. Robot. & auton. Sys. 23(1/2), 117–124.CrossRefGoogle Scholar
Richter, L., Coste, P., Gromov, V., Kochan, H., Pinna, S. and Richter, H. -E. (2001). Development of the “planetary underground tool” subsurface soil sampler for the Mars express “Beagle 2” lander. Adv. Space Res. 28(8), 1225–1230.CrossRefGoogle Scholar
Riemensnider, D. K., (1968). Quantitative aspects of shedding of micro-organisms by humans. National Aeronautics and Space Administration SP108, pp. 97–103.Google Scholar
Rodier, R. W., Thuss, R. C. and Terhune, J. E.Parachute design for the Galileo entry probe, (1981). American Institute of Aeronautics and Astronautics–81–1951, American Institute of Aeronautics and Astronautics 7th Aerodynamic Decelerator and Balloon Technology Conference, October 21–23, San Diego, CA, 1981.CrossRefGoogle Scholar
Rohatgi, N., Schubert, W., Knight, J., et al., (2001). Development of vapor phase hydrogen peroxide sterilization process for spacecraft applications. International Conference On Environmental Systems, Soc. of Automotive Eng., paper 2001–01–2411.CrossRef
Rummel, J. D. (2001). Planetary exploration in the time of astrobiology: protecting against biological contamination. Proc. Natl. Acad. Sci., 98(5), 2128–2131.CrossRefGoogle ScholarPubMed
Russell, C. T. (ed.) (1992). The Galileo Mission. Reprinted from Space Sci. Rev. 60(1–4). Dordrecht, Kluwer.Google Scholar
Russell, C. T. (ed.) (1998). The Near Earth Asteroid Rendezvous Mission. Reprinted from Space Sci. Rev. 82(1–2), 1997. Kluwer.Google Scholar
Sagdeev, R. Z., Linkin, V. M., Kremnev, R. S., Blamont, J. E., Preston, R. A. and Selivanov, A. S., (1986). The VeGa balloon experiments. Pis'ma Astronom. Zh. 12(1), 10–15, (in Russian). Translation in: Sov. Astronom. Lett. 12(1), 3–5, 1986.Google Scholar
Sagdeev, R. Z., Balebanov, V. M. and Zakharov, A. V. (1988). The Phobos project: scientific objectives and experimental methods. Sov. Sci. Rev. E: Astrophys. Space Phys. Rev. 6, 1–60.Google Scholar
Sainct, H. and Clausen, K., (1983). Technologies new to space in Huygens probe mission to Titan. IAF-93-U.4.564, Presented at 44th IAF Congress, Graz, Austria, October 1993.
Scheeres, D. J. (2004). Close proximity operations at small bodies: orbiting, hovering, and hopping. In Belton, M. J. S., Morgan, T. H., Samarasinha, N. and Yeomans, D. K. (eds.), (2002). Mitigation of Hazardous Comets and Asteroids. Proceedings of the Workshop on Scientific Requirements for Mitigation of Hazardous Comets and Asteroids, Arlington, 3–6 September 2002. Cambridge, Cambridge University Press, pp. 313–336.CrossRefGoogle Scholar
Schmidt, G. R., Wiley, R. L., Richardson, R. L. and Furlong, R. R. (2005). National Aeronautics and Space Administration's program for radioisotope power system research and development. AIP Conference Proceedings, 746, 429–436.CrossRefGoogle Scholar
Schurmeier, H. M., Heacock, R. L. and Wolfe, A. E. (1965). The Ranger missions to the Moon. Scientific American, 214(1), 52–67.CrossRefGoogle Scholar
Schwehm, G. and Hechler, M. (1994). ‘Rosetta’- European Space Agency's planetary cornerstone mission. European Space Agency Bulletin, 77, 7–18.Google Scholar
Scoon, G. E., (1985). Cassini – a concept for a Titan probe. European Space Agency Bulletin, 41, 12–20.Google Scholar
Sears, D., Franzen, M., Moore, S., Nichols, S., Kareev, M. and Benoit, P. (2004). Mission operations in low-gravity regolith and dust. In Belton, M. J. S., Morgan, T. H., Samarasinha, N. and Yeomans, D. K. (Eds.), Mitigation of hazardous comets and asteroids. Proceedings of the Workshop on Scientific Requirements for Mitigation of Hazardous Comets and Asteroids. Arlington, 3–6 September 2002. Cambridge,Cambridge University Press, pp. 337–352.CrossRefGoogle Scholar
Seddon, C. M. and Moatamedi, M. (2006), Review of water entry with applications to aerospace structures. Int. J. Impact Eng. 32(7), 1045–1067.CrossRefGoogle Scholar
Seiff, A. and Kirk, D. B. (1977). Structure of the atmosphere of Mars in summer at mid-latitudes. J. Geophys. Res. 82, 4363–4378.CrossRefGoogle Scholar
Seiff, A., et al. (1980). Measurements of thermal structure and thermal contrast in the atmosphere of Venus and related dynamical observations: results from the four Pioneer Venus probes. J. Geophys. Res. 85, 7903–7933.CrossRefGoogle Scholar
Seiff, A., et al. (1997). The atmosphere structure and meteorological instrument on the Mars Pathfinder lander. J. Geophys. Res. 102(E2), 4045–4056.CrossRefGoogle Scholar
Seiff, A.et al. (1998). Thermal structure of Jupiter's atmosphere near the edge of a 5-μm hot spot in the North Equatorial Belt. J. Geophys. Res. 103(E10), 22857–22889.CrossRefGoogle Scholar
Seiff, A., Stoker, C. R., Young, R. E., Mihalov, J. D., McKay, C. P. and Lorenz, R. D. (2005). Determination of physical properties of a planetary surface by measuring the deceleration of a probe upon impact. Planet. Space Sci. 53(5), 594–600.CrossRefGoogle Scholar
Semenov, Yu. P., (1994). Rocket and Space Corporation Energia: The Legacy of S. P. Korolev. Energia. Translated edition, Burnington; Apogee Books, 2001.Google Scholar
Semenov, Yu. P. (ed.) (1996). RKK Energia im. S. P. Koroleva 1946–1996. Moscow, RKK Energia.Google Scholar
Shaneyfelt, M. R., Winokur, P. S., Meisenheimer, T. L., Sexton, F. W., Roeske, S. B., and Knoll, M. G., (1994). Hardness variability in commercial technologies. IEEE Trans. Nucl. Sci. 41, pp. 2536–2543.CrossRefGoogle Scholar
Sherman M. M., (1971). Entry gasdynamic heating, National Aeronautics and Space Administration SP-8062, Langley Research Centre, National Aeronautics and Space Administration.
Shiraishi, H., Tanaka, S., Hayakawa, M., Fujimura, A. and Mizutani, H. (2000). Dynamical characteristics of planetary penetrator: effect of incidence angle and attack angle at impact. Institute of Space and Astronautical Science Science Report 677, Institute of Space and Aeronautical Science.
Shirley, D., (1998). Managing Martians. New York, Broadway Books.Google Scholar
Siddiqi, A. A. (2000). Challenge to Apollo. National Aeronautics and Space Administration SP–2000–4408. Reprinted in two volumes as Sputnik and the Soviet Space Challenge and The Soviet Race with Apollo, Gainesville FLA, (2003). University Press of Florida.Google Scholar
Siddiqi, A. A., Hendrickx, B. and Varfolomeyev, T. (2000). The tough road travelled: a new look at the second generation lunar probes. J. British Interplanet. Soc. 53(9/10), 319–356.Google Scholar
Siddiqi, A. A. (2002). Deep space chronicle: a chronology of deep space and planetary probes 1958–2000. Monographs in Aerospace History, Volume 24. National Aeronautics and Space Administration SP–2002–4524. Washington National Aeronautics and Space Administration.
Simmons, G. J. (1977). Surface penetrators – a promising new type of planetary lander. J. British Interplanetary Soc. 30(7), 243–256.Google Scholar
Sims, M. R., Pullan, D., Fraser, G. W. et al. (2003). Performance characteristics of the! Position Adjustable Workbench instrumentation on Beagle 2 (the astrobiology lander on European Space Agency's Mars Express mission). In Hoover, R. B., Rozanov, A. Yu. and Paepe, R. R. (eds.), Instruments, Methods, and Missions for Astrobiology V. Proc. SPIE, 4859, 32–44.CrossRef
Sims, M. R. (ed.), (2004a). Beagle 2 Mars Mission Report. Leicester, University of Leicester.Google Scholar
Sims, M. R. (ed.), (2004b). Beagle 2 Mars Lessons Learned. Leicester, University of Leicester.Google Scholar
Smith, P. H. and the Phoenix Science Team (2004). The Phoenix Mission to Mars. 35thLunar and Planetary Science Conference, Houston, 15–19 March 2004, 2050.CrossRefGoogle Scholar
Smrekar, S., Catling, D., Lorenz, R.et al. (1999). Deep Space 2: the Mars microprobe mission. J. Geophys. Res. 104(E11), 27013–27030.CrossRefGoogle Scholar
Smrekar, S., Lorenz, R. D. and Urquhart, M. (2001). The Deep-space-2 penetrator design and its use for accelerometry and estimation of thermal conductivity. In Kömle, N. I., Kargl, G., Ball, A. J. and Lorenz, R. D. (eds), Penetrometry in the Solar System. Vienna, Austrian Academy of Sciences Press. pp. 109–123.Google Scholar
Spencer, D. A., Blanchard, R. C., Braun, R. D., Kallemeyn, P. H. and Thurman, S. W. (1999). Mars Pathfinder entry, descent, and landing reconstruction. J. Spacecraft and Rockets, 36(3), 357–366.CrossRefGoogle Scholar
Sperling, F., Galba, J., (1967). Treatise on the Surveyor lunar landing Dynamics and an Evaluation of pertinent telemetry data returned by surveyor 1. National Aeronautics and Space Administration Technical Report TR 32–1035, Jet Propulsion Laboratory.Google Scholar
Spilker, L. (ed.) (1997) Passage to a Ringed World: The Cassini-Huygens Mission to Saturn and Titan. National Aeronautics and Space Administration SP-523. National Aeronautics and Space Administration, Washington DC.Google Scholar
Spitzer, C. R. (1976). Unlimbering Viking's scoop. IEEE Spectrum, 13, 92–93.CrossRefGoogle Scholar
Squyres, S. W. (2005). Roving Mars: Spirit, Opportunity and the Exploration of the Red Planet. New York, Hyperion.Google Scholar
Steltzner, A., Desai, P., Lee, W., Bruno, R. (2003). The Mars exploration rovers entry descent and landing and the use of aerodynamic decelerators, 17th American Institute of Aeronautics and Astronautics Aerodynamic Decelerator Systems Technology Conference and Seminar, Monterey, CA. American Institute of Aeronautics and Astronautics–2003–2125.Google Scholar
Stooke, P. J. (2005). Lunar laser ranging and the location of Lunokhod 1. 36th Lunar and Planetary Science Conference, Houston, 14–18 March 2005.Google Scholar
Stubbs, S. M. (1967), Dynamic Model Investigation of water pressures and accelerations encountered during landings of the Apollo spacecraft. National Aeronautics and Space Administration TN D-3980.Google Scholar
Surkov, Yu. A. (1997). Exploration of Terrestrial Planets from Spacecraft: Instrument-ation, Investigation, Interpretation. 2nd. edn. Chichester, Wiley-Praxis.Google Scholar
Surkov, Yu. A. and Kremnev, R. S. (1998). Mars-96 mission: Mars exploration with the use of penetrators. Planet. Space Sci. 46(11/12), 1689–1696.CrossRefGoogle Scholar
Surkov, Yu. A., Moskaleva, L. P., Shcheglov, O. P.et al. (1999). Lander and scientific equipment for exploring of volatiles on the Moon. Planet. Space Sci. 47(8/9), 1051–1060.CrossRefGoogle Scholar
Surkov, Yu. A., Kremnev, R. S., Pichkhadze, K. M. and Akulov, Yu. P. (2001). Penetrators for exploring solar system bodies. In Kömle, N. I., Kargl, G., Ball, A. J. and Lorenz, R. D. (eds.), Penetrometry in the Solar System. Vienna, Austrian Academy of Sciences Press, pp. 185–196.Google Scholar
Thiel, M., Stöcker, J., Rohe, C., Hillenmaier, O., Kömle, N. I. and Kargl, G. (2001). The Rosetta lander anchoring harpoon: subsystem and scientific instrument. In Kömle, N. I., Kargl, G., Ball, A. J. and Lorenz, R. D. (eds.). Penetrometry in the Solar System. Vienna, Austrian Academy of Sciences Press, pp. 137–149.Google Scholar
Trainor, J H, (1994). Instrument and spacecraft faults associated with nuclear radiation in space. Advances in Space Research, 14(10), 685–693.CrossRefGoogle ScholarPubMed
TsUP (1985). VeGa (in Russian). TsUP (Spaceflight Control Centre), Moscow.
TsUP (1988). Phobos (in Russian). TsUP (Spaceflight Control Centre)/Informelektro, Moscow.
Tunstel, E., Maimone, M., Trebi-Ollennu, A., Yen, J., Petras, R., Wilson, R., (2005). Mars Exploration Rover mobility and robotic arm operational performance, 2005 IEEE International Conference on Systems, Man, and Cybernetics, Waikoloa, HI, October 10–12, 2005.CrossRefGoogle Scholar
Ulamec, S., Espinasse, S., Feuerbacher, B.et al. (2006) Rosetta Lander–Philae: implications of an alternative mission. Acta Astronautica, 58(8), 435–441.CrossRefGoogle Scholar
Ulrich, J. A., (1966). Spacecraft sterilization techniques, National Aeronautics and Space Administration SP-108, p. 93.Google Scholar
Underwood, J C, (1993). A 12–degree of freedom Parachute/Payload Simulation of the Huygens Probe. 12th RAeS/American Institute of Aeronautics and Astronautics Aerodynamic Decelerator Systems Technology Conference, London, May 10–13, 1993 (American Institute of Aeronautics and Astronautics 93–1251).Google Scholar
Urquhart, M. L. and Smrekar, S. E. (2000). Estimation of soil thermal conductivity from a Mars microprobe-type penetrator. 31st Lunar and Planetary Science Conference, Houston, 13–17 March 2000, 1781.Google Scholar
Varfolomeyev, T. (1998). Soviet rocketry that conquered space. Part 5: the first planetary probe attempts, 1960–1964. Spaceflight, 40(3), 85–88.Google Scholar
Vaughan, V. L. (1961). Landing characteristics and flotation properties of a reentry capsule, National Aeronautics and Space Administration TN D-655.Google Scholar
Vergnolle, J.-F. (1995). Soft landing impact attenuation technologies review. 14thAmerican Institute of Aeronautics and Astronautics Aerodynamic Decelerator Systems Technology Conference. American Institute of Aeronautics and Astronautics–95–1535-CP.
Vesley, D., Ruschmeyer, O. R., and Bond, R. G., (1966). Spacecraft contamination resulting from human contact. National Aeronautics and Space Administration SP108, pp. 275–283.Google Scholar
Vinogradov, A. P. (ed.) (1966). Pervye Panoramy Lunnoi Poverkhnosti (First Panoramas of the Lunar Surface), Moscow, NaUnited Kingdoma.Google Scholar
Vinogradov, A. P. (ed.) (1969). Pervye Panoramy Lunnoi Poverkhnosti Tom 2 (First Panoramas of the Lunar Surface Vol. 2). Moscow, NaUnited Kingdoma.Google Scholar
Vinogradov, A. P. (ed.), (1971). Peredvizhnaya Laboratoriya na Lune Lunokhod-1. Tom 1. Moscow, NaUnited Kingdoma.Google Scholar
Vinogradov, A. P. (ed.), (1974). Lunnyy Grunt iz Morya Izobiliya (Lunar Soil from the Sea of Fertility). Moscow, NaUnited Kingdoma, (in Russian). Translated as National Aeronautics and Space Administration TT-F-15881, 1974.Google Scholar
Vojvodich, N. S., Drean, R. J., Schaupp, R. W. and Farless, D. L. (1983). Galileo atmospheric entry probe mission description, American Institute of Aeronautics and Astronautics–83–0100, American Institute of Aeronautics and Astronautics 21st Aerospace Sciences Meeting, Reno Nevada, January 10–13, 1983.Google Scholar
Karman, T., (1929), The impact of seaplane floats during landing, NACA TN-321, October 1929.Google Scholar
Vorontsov, V. A., Deryugin, V. A., Karyagin, V. P., et al. (1988). Method of investigation of the planet Venus using floating aerostatic stations. Mathematical Model. Kosmich. Issled. 26(3), 430–433, (in Russian). Translation in Cosmic Res. 26(3), 371–374, 1988.Google Scholar
Warwick, R. W. (2003). A low-cost, light-weight Mars landing system. IEEE Aerospace Conference, Big Sky, MT.Google Scholar
Wertz, J. R. and Larson, W. J., (1999). Space Mission Analysis and Design. 3rd edn., Torrence CA, Microcosm/Kluwer.Google Scholar
Wierzbicki, T. and Yue, D. Y., 1986. Impact damage of the Challenger crew compartment. J. Spacecraft and Rockets, 32, pp. 646–654.Google Scholar
Wilcockson, W. H. (1999). Mars pathfinder heatshield design and flight experience. J. of Spacecraft and Rockets, 36(3), 374–379.CrossRefGoogle Scholar
Wilson, A. (ed), (1997). Huygens Spacecraft, payload and mission. European Space Agency SP-1177.Google Scholar
Wilson, J. W., Shinn, J. L., Tripathi, R. K.et al. (2001). Issues in deep space radiation protection. Acta Astronautica, 49, (3–10), 289–312.CrossRefGoogle ScholarPubMed
Wilson, K. T., (1982). Rangers 3–5: America's first lunar landing attempts. JBIS, 36, 265–274.Google Scholar
Withers, P.Towner, M. C., Hathi, B. and Zarnecki, J. C. (2003). Analysis of entry accelerometer data: a case study of Mars Pathfinder. Planet. Space Sci. 51(9–10), 541–561.CrossRefGoogle Scholar
Wright, I. P., Sims, M. R. and Pillinger, C. T. (2003). Scientific objectives of the Beagle 2 lander. Acta Astronautica, 52(2–6), 219–225.CrossRefGoogle Scholar
Yamada, T., Inatani, Y., and Honda, M., and Hirai, K. (2002). Development of thermal protection system of the MU Space Engineering Spacecraft C/BASH Reentry capsule. Acta Astronautica 51(1–9), 63–72.CrossRefGoogle Scholar
Yano, H., Hasegawa, S., Abe, M. and Fujiwara, A. (2002). Asteroidal Surface Sampling by the MU Space Engineering Spacecraft C Spacecraft. In: Warmbein, B. (ed.) Proc. Asteroids, Comets, Meteors ACM 2002, 29 July–2 August 2002, Berlin. European Space Agency SP-500, pp. 103–106.
Yew, C. H. and Stirbis, P. P. (1978). Penetration of projectile into terrestrial target. J. Eng. Mech. Am. Soc. Civ. Engrs. 104(EM2), 273–286.Google Scholar
Yoshida, M., Tanaka, T., Watanabe, S., Takagi, T., Shinohara, M., and Fuji, S. (2003). Experimental study on a new sterilization process using plasma source ion implantation with N2 gas. Journal of Vacuum Science Technology, 21, 4, 1230–1236.CrossRefGoogle Scholar
Yoshimitsu, T., Kubota, T., Nakatani, I. and Kawaguchi, J. (2001). Robotic lander MIcro/Nano Experimental Robot Vehicle for Asteroid, its mobility and surface exploration. In Spaceflight Mechanics 2001, Advances in the Astronautical Sciences. 108(1), 491–501.Google Scholar
Yoshimitsu, T., Kubota, T., Nakatani, I., Adachi, T. and Saito, H. (2003). Micro-hopping robot for asteroid exploration. Acta Astronautica, 52(2–6), 441–446.CrossRefGoogle Scholar
Young, C. W. (1969). Depth prediction for earth-penetrating projectiles. J. Soil Mech. Found. Div. Proc. Am. Soc. Civ. Engrs. 95(SM3), 803–817.Google Scholar
Young, C. W. (1997). Penetration equations. SAND97–2426, Sandia National Laboratories.CrossRefGoogle Scholar
Young, R. E., Smith, M. A. and Sobeck, C. K. (1996). Galileo probe: in-situ observations of Jupiter's atmosphere, Science, 272(5263), 837–838.CrossRefGoogle ScholarPubMed
Young, R. E. (1998). The Galileo probe mission to Jupiter: science overview. J. Geophys. Res. 103(E10), 22775–22790.CrossRefGoogle Scholar
Zarnecki, J. C., Leese, M. R., Hathi, B.et al. (2005). A soft solid surface on Titan as revealed by the Huygens surface science package. Nature, 438(7069), 792–795.CrossRefGoogle ScholarPubMed
Zelenov, I. A., Klishin, A. F., Kovtunenko, V. M., and Nikitin, M. D., (1988a). Characteristics of heat exchange and heat shielding of the Venera automatic interplanetary stations' descent vehicle. Kosmicheskie Issledovaniya, 26(1), 28–32.Google Scholar
Zelenov, I. A., Klishin, A. F., Kovtunenko, V. M. and Shabarchin, A. F. (1988b). Methods of providing for thermal conditions in the Venera automatic interplanetary stations when in the atmosphere of Venus. Kosmicheskie Issledovania, 26, 33–36.Google Scholar
Zimmerman, W. F., Bonitz, R. and Feldman, J. (2001). Cryobot: an ice penetrating robotic vehicle for Mars and Europa. IEEE 2001 Aerospace Conference, Big Sky, Montana.Google Scholar
Zupp, G. A. and Doiron, H. H. (2001). A mathematical procedure for predicting the touchdown dynamics of a soft-landing vehicle. National Aeronautics and Space Administration Technical Note TN D-7045. Houston, Manned Spaceflight Center.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×