Skip to main content
×
Home
Planetesimals
  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Planetesimals
    • Online ISBN: 9781316339794
    • Book DOI: https://doi.org/10.1017/9781316339794
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to? *
    ×
  • Buy the print book

Book description

Processes governing the evolution of planetesimals are critical to understanding how rocky planets are formed, how water is delivered to them, the origin of planetary atmospheres, how cores and magnetic dynamos develop, and ultimately, which planets have the potential to be habitable. Theoretical advances and new data from asteroid and meteorite observations, coupled with spacecraft missions such as Rosetta and Dawn, have led to major advances in this field over the last decade. This transdisciplinary volume presents an authoritative overview of the latest in our understanding of the processes of planet formation. Combining meteorite, asteroid and icy body observations with theory and modelling of accretion and orbital dynamics, this text also provides insights into the exoplanetary system and the search for habitable worlds. This is an essential reference for those interested in planetary formation, solar system dynamics, exoplanets and planetary habitability.

    • Aa
    • Aa
Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send:
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×
W. Benz and E. Asphaug (1999). Catastrophic disruptions revisited. Icarus, 142, 5–20.

A. Bonsor , Z. M. Leinhardt , P. J. Carter , et al. (2015). A collisional origin to Earth's non-chondritic composition? Icarus, 247, 291–300.

W. F. Bottke , D. D. Durda , D. Nesvorný , et al. 2005. The fossilized size distribution of the main asteroid belt. Icarus, 175, 111–140.

J. F. J. Bryson , C. I. O. Nichols , J. Herrero-Albillos , et al. 2015. Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature, 517, 472–475.

T. H. Burbine , A. Meibom , and R. P. Binzel 1996. Mantle material in the main belt: Battered to bits? Meteoritics & Planetary Science, 31, 607–620.

R. M. Canup and E. Asphaug (2001). Origin of the Moon in a giant impact near the end of the Earth's formation. Nature, 412, 708–712.

R. M. Canup 2005. A giant impact origin of Pluto-Charon. Science, 307, 546–50.

J. E. Chambers and G. W. Wetherill 1998. Making the terrestrial planets: N-Body integrations of planetary embryos in three dimensions. Icarus, 136, 304–327.

J. E. Chambers 2013. Late-stage planetary accretion including hit-and-run collisions and fragmentation. Icarus, 224, 43–56.

S. Chandrasekhar 1969. Ellipsoidal Figures of Equilibrium. New Haven, CT: Yale University Press.

H. Clenet , M. Jutzi , J. A. Barrat , et al. 2014. A deep crust–mantle boundary in the asteroid 4 Vesta. Nature, 511, 303–306.

G. J. Consolmagno , G. J. Golabek , D. Turrini , et al. 2015. Is Vesta an intact and pristine protoplanet? Icarus. 254, 190–201.

J. N. Cuzzi , R. C. Hogan , and W. F. Bottke 2010. Towards initial mass functions for asteroids and Kuiper belt objects. Icarus, 208, 518–538.

G. H. Darwin 1879. A tidal theory of the evolution of satellites. Observatory, 3,79–84.

D. R. Davis , C. R. Chapman , S. J. Weidenschilling , and R. Greenberg 1985. Collisional history of asteroids: Evidence from Vesta and the Hirayama families. Icarus, 62, 30–53.

F. E. DeMeo , R. P. Binzel , S. M. Slivan , and S. J. Bus 2009. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160–180.

J. W. Dohnanyi 1969. Collisional models of asteroids and their debris. Journal of Geophysical Research, 74, 2531–2554.

D. D. Durda , R. Greenberg , and R. Jedicke 1998. Collisional models and scaling laws: A new interpretation of the shape of the main-belt asteroid size distribution. Icarus, 135, 431–440.

P. Farinella , P. Paolicchi , and V. Zappala 1982. The asteroids as outcomes of catastrophic collisions. Icarus, 52, 409–433.

R. R. Fu and L. T. Elkins-Tanton 2014. The fate of magmas in planetesimals and the retention of primitive chondritic crusts. Earth and Planetary Science Letters, 390, 128–137.

G. J. Golabek , M. Jutzi , T. V. Gerya , and E. Asphaug 2014. Towards coupled giant impact and long term interior evolution models. European Planetary Science Congress 2014, EPSC Abstracts, 9, EPSC2014-433.

K. A. Holsapple and K. R. Housen 1986. Scaling laws for the catastrophic collisions of asteroids. Memorie della Societa Astronomica Italiana 57, 65–85.

A. P. Jackson and M. C. Wyatt 2012. Debris from terrestrial planet formation: the Moon-forming collision. Monthly Notices of the Royal Astronomical Society, 425, 657–679.

R. R. Jaeger and M. E. Lipschutz 1967. Implications of shock effects in iron meteorites. Geochimica et Cosmochimica Acta, 31, 1811–1832.

M. Jutzi and E. Asphaug 2015. The shape and structure of cometary nuclei as a result of low-velocity accretion. Science, 348, 1355–1358.

H. Haack , E. R. Scott , K. L. Rasmussen , 1996. Thermal and shock history of mesosiderites and their large parent asteroid. Geochimica et Cosmochimica Acta, 60, 2609–2619.

M. Kaasalainen , J. Torppa , and J. Piironen 2002. Models of twenty asteroids from photometric data. Icarus, 159, 369–395.

K. Keil , H. Haack , and E. R. D. Scott 1994. Catastrophic fragmentation of asteroids: Evidence from meteorites. Planetary and Space Science, 42, 1109–1122.

A.N. Krot , Y. Amelin , P. Cassen , and A. Meibom 2005. Young chondrules in CB chondrites from a giant impact in the early solar system. Nature, 436, 989–992.

Z. M. Leinhardt , R. A. Marcus , and S. T. Stewart , 2010. The formation of the collisional family around the dwarf planet Haumea. Astrophysical Journal, 714, 1789–1799.

M. M. Marinova , O. Aharonson , and E. Asphaug 2008. Mega-impact formation of the Mars hemi- spheric dichotomy. Nature, 453, 1216–1219.

H. Y. McSween 1999. Meteorites and Their Parent Planets. Cambridge: Cambridge University Press.

H. J. Melosh 2007. A hydrocode equation of state for SiO2 . Meteoritics & Planetary Science, 42, 2079–2098.

M. A. Morris and S. J. Desch 2010. Thermal histories of chondrules in solar nebula shocks. Astrophysical Journal, 722, 1474.

D.P. O'Brien and R. Greenberg 2003. Steady-state distributions for collisional populations: analytical solution with size-dependent strength, Icarus, 164, 334–345.

D. P. O'Brien , A. Morbidelli , and H. F. Levison 2006. Terrestrial planet formation with strong dynamical friction. Icarus, 184, 39–58.

S. J. Ostro , R. S. Hudson , and M. C. Nolan , et. al. 2000. Radar observations of asteroid (216) Kleopatra. Science, 288, 836–839.

P. N. Peplowski , L. G. Evans , S. A. Hauck 2nd, et al. 2011. Radioactive elements on Mercury's surface from MESSENGER: Implications for the planet's formation and evolution. Science, 333, 1850.

S. N. Raymond , T. Quinn , and J. I. Lunine 2007. High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability. Astrobiology, 7, 66–84.

V. Reddy , L. Le Corre , and D. P. O'Brien et al., 2012. Delivery of dark material to Vesta via carbonaceous chondritic impacts. Icarus, 221, 544–559.

A. Reufer , M. M. M. Meier , W. Benz , and R. Wieler 2012. A hit-and-run giant impact scenario. Icarus, 221, 296–299.

V. N. Rodionov , V. V. Adushkin , V. N. Kostyuchenko , et. al. 1972. Mechanical Effect of an Underground Nuclear Explosion. Los Alamos, New Mexico: United States Atomic Energy Commission. UCRL-Trans-10676.

V. S. Safronov and E. V. Zvjagina 1969. Relative sizes of the largest bodies during the accumulation of planets. Icarus, 10, 109.

S. Sahijpal , P. Soni , and G. Gupta 2007. Numerical simulations of the differentiation of accreting planetesimals with 26Al and 60Fe as the heat sources. Meteoritics & Planetary Science, 42, 1529–1548.

P. M. Schenk , E. Asphaug , W. B. McKinnon , H. J. Melosh , and P. R. Weissman 1996. Cometary nuclei and tidal disruption: The geologic record of crater chains on Callisto and Ganymede. Icarus, 121, 249–274.

E. R. D. Scott and A. N. Krot 2003. Chondrites and their components. Treatise on Geochemistry, 1, 143–200.

E. R. D. Scott , K. Keil , J. I. Goldstein , et al. 2015. Early impact history and dynamical origin of differentiated meteorites and asteroids. In Asteroids IV, ed. P. Michel , F. DeMeo , and W. F. Bottke . Tucson, AZ: University of Arizona Press, 573–596.

T. G. Sharp and P. S. de Carli 2006. Shock effects in meteorites. In Meteorites and the Early Solar System II, ed . D. S. Lauretta and H. Y. McSween . Tucson, AZ: University of Arizona Press, 653–677.

H. Sierks , P. Lamy , C. Barbieri , et al. 2011. Images of asteroid 21 Lutetia: a remnant planetesimal from the early solar system. Science, 334, 487–490.

V. Solomatov and D. J. Stevenson 1993. Suspension in convective layers and style of differentiation in a terrestrial magma ocean. Journal of Geophysical Research, 98, 5375–5390.

H. C. Sorby , 1864. On the microscopic structure of meteorites. Philospohical Magazine, 28, 157–159.

D. J. Stevenson 1989. Spontaneous small-scale melt segregation in partial melts undergoing deformation. Geophysical Research Letters, 16, 1067–1070.

S. T. Stewart and Z. M. Leinhardt 2012. Collisions between gravity-dominated bodies. II. The diversity of impact outcomes during the end stage of planet formation. Astrophysics Journal, 751, 32.

J. Veverka , P. Thomas , A. Harch , et al. 1997. NEAR's flyby of 253 Mathilde: Images of a C asteroid. Science, 278, 2109–2114.

K. J. Walsh , A. Morbidelli , S. N. Raymond , et al., 2011. A low mass for Mars from Jupiter's early gas-driven migration. Nature, 475, 206–209.

J. T. Wasson 1990. Ungrouped iron meteorites in Antarctica: Origin of anomalously high abundance. Science, 249, 900–902.

S. J. Weidenschilling 1977. The distribution of mass in the planetary system and solar nebula. Astrophysics and Space Science, 51, 153–158.

B. P. Weiss , L. T. Elkins-Tanton , M. A. Barucci , et al. 2012. Possible evidence for partial differentiation of asteroid Lutetia from Rosetta. Planetary and Space Science, 66, 137–146.

J. Yang , J. I. Goldstein , and E. R. D. Scott 2007. Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature, 446, 888–891.

E. Anders 1965. Fragmentation history of asteroids. Icarus, 4, 399–408.

W. Benz and E. Asphaug , 1999. Catastrophic disruptions revisited. Icarus, 142, 5–20.

R. P. Binzel , S. J. Bus , T. H. Burbine , and J. M. Sunshine 1996. Spectral properties of near-Earth asteroids: Evidence for sources of ordinary chondrite meteorites. Science, 273, 946–948.

W. F. Bottke , D. D. Durda , D. Nesvorný , et al. 2005b. Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus, 179, 63–94.

W. F. Bottke , D. D. Durda , D. Nesvorný , et al., 2005c, The origin and evolution of stony meteorites. In Dynamics of Populations of Planetary Systems, ed. Z. Kneževi and A. Milani . Cambridge: Cambridge University Press, 357–374.

W. F. Bottke , D. Nesvorný , R. E. Grimm , et al. 2006. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 439, 821–824.

W. F. Bottke , D. Vokrouhlický , D. Minton , et al. 2012. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature, 485, 78–81.

W. F. Bottke , D. Vokrouhlický , S. Marchi , et al. 2015a. Dating the Moon-forming impact event with asteroidal meteorites. Science, 348, 321–323.

W. F. Bottke , M. Broz , D. P. O'Brien , et al., 2015b. The collisional evolution of the asteroid belt. In Asteroids IV, ed. P. Michel , F. DeMeo , and W. F. Bottke . Tucson, AZ: University of Arizona Press, 701–724.

P. G. Brown , J. D. Assink , L. Astiz , et al., 2013. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 503, 238–241.

M. Brož , A. Morbidelli , and W.F. Bottke , et al. 2013. Constraining the cometary flux through the asteroid belt during the Late Heavy Bombardment, Astronomy & Astrophysics, 551, A117.

T. H. Burbine , T. J. McCoy , Meibom , et al. 2002. Meteoritic parent bodies: Their number and identification. In Asteroids III, ed. W. F. Bottke Jr., A. Cellino , P. Paolicchi , and R. P. Binzel . Tucson, AZ: University of Arizona Press, 653–667.

D. L. Buczkowski , D. Y. Wyrick , K. A. Iyer , et al. 2012. Large-scale troughs on Vesta: A signature of planetary tectonics. Geophysical Research Letters, 39, L18205.

S. J. Bus and R. P. Binzel 2002. Phase II of the small main-belt asteroid spectroscopic survey. A feature-based taxonomy. Icarus, 158, 146–177.

J. M. Carvano , P. H. Hasselmann , D. Lazzaro , and T. Mothé-Diniz 2010. SDSS-based taxonomic classification and orbital distribution of main belt asteroids. Astronomy & Astrophysics, 510, A43.

J. E. Chambers and G. W. Wetherill 1998. Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus, 136, 304–327.

H. Cibulková , M. Brož , and P. G. Benavidez 2014. A six-part collisional model of the main asteroid belt. Icarus, 241, 358–372.

J. N. Connelly , M. Bizzarro , A. N. Krot , et al. 2012. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651–654.

G. D'Angelo and F. Marzari 2012. Outward migration of Jupiter and Saturn in evolved gaseous disks. Astrophysical Journal, 757, 50.

T. M. Davison , D. P. O'Brien , F. Ciesla , et al. 2013. The early impact histories of meteorite parent bodies. Meteoritics & Planetary Science, 48, 1894–1918.

D. R. Davis , D. D. Durda , F. Marzari , et al. 2002. Collisional evolution of small body populations. In Asteroids III, ed. W. F. Bottke Jr., A. Cellino , P. Paolicchi , and R. P. Binzel . Tucson, AZ: University of Arizona Press, 545–558.

F. E. DeMeo , R. P. Binzel , S. M. Slivan , and S. J. Bus 2009. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160–180.

D. D. Durda , W. F. Bottke , D. Nesvorný , et al. 2007. Size-frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: Comparison with observed asteroid families, Icarus 186, 498–516.

J. W. Fowler and J. R. Chillemi 1992. IRAS asteroid data processing. In The IRAS Minor Planet Survey, ed. E. F. Tedesco (Technical Report PL-TR-92-2049), Hanscom Air Force Base, MA: Phillips Laboratory, 17–43.

W. C. Fraser , M. E. Brown , A. Morbidelli , et al., 2014. The absolute magnitude distribution of Kuiper belt objects. Astrophysical Journal, 782, 100.

J. Gradie and E. Tedesco 1982. Compositional structure of the asteroid belt. Science, 216, 1405–1407.

C. Güttler , J. Blum , A. Zsom , et al. 2009. The first phase of protoplanetary dust growth: The bouncing barrier. Geochimica et Cosmochimica Acta Supplement, 73, 482.

A. W. Harris and G. D'Abramo 2015. The population of near-Earth asteroids. Icarus, 257, 302–312.

A. W. Harris , M. Boslough C. R. Chapman , et al. 2015. Asteroid impacts and modern civilization: Can we prevent a catastrophe? In Asteroids IV, ed. W. F. Bottke Jr., A. Cellino , P. Paolicchi , and R. P. Binzel . Tucson, AZ: University of Arizona Press, 835–854.

W. K. Hartmann and A. C. Hartmann 1968. Asteroid collisions and evolution of asteroidal mass distribution and meteoritic flux. Icarus, 8, 361–381.

C. Hayashi 1981. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Progress of Theoretical Physics Supplement, 70, 35–53.

T. A. Heppenheimer 1980. Secular resonances and the origin of eccentricities of Mars and the asteroids. Icarus, 41, 76–88.

T. Hiroi , M. E. Zolensky , and C. M. Pieters 2001. The Tagish Lake meteorite: A possible sample from a D-type asteroid. Science, 293, 2234–2236.

B. A. Ivanov , G. Neukum , W. F. Bottke , and W. K. Hartmann 2002. The comparison of size-frequency distributions of impact craters and asteroids and the planetary cratering rate. In Asteroids III, ed. W. F. Bottke Jr., A. Cellino , P. Paolicchi , and R. P. Binzel . Tucson, AZ: University of Arizona Press, 89–101.

A. Izidoro , S. N. Raymond , A. Morbidelli , and O. C. Winter 2015. Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Monthly Notices of the Royal Astronomical Society, 453, 3619–3634.

S. A. Jacobson , A. Morbidelli , S. N. Raymond , et al. 2014. Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact. Nature, 508, 84–87.

S. A. Jacobson and A. Morbidelli 2014. Lunar and terrestrial planet formation in the Grand Tack scenario. Philosophical Transactions of the Royal Society of London A, 372, #174.

R. Jaumann , D. A. Williams , D. L. Buczkowski , et al., 2012. Vesta's shape and morphology. Science 336, 687–690.

A. Johansen , T. Henning , and H. Klahr 2006. Dust sedimentation and self-sustained Kelvin–Helmholtz turbulence in protoplanetary disk midplanes. Astrophysical Journal, 643, 1219–1232.

A. Johansen , J. S. Oishi , M.-M. Mac Low , et al. 2007. Rapid planetesimal formation in turbulent circumstellar disks. Nature, 448, 1022–1025.

M. Lecar and F. Franklin , 1997. The solar nebula, secular resonances, gas drag, and the asteroid belt. Icarus, 129, 134–146.

H. F. Levison , W. F. Bottke , M. Gounelle , et al. 2009. Contamination of the asteroid belt by primordial trans-neptunian objects. Nature, 460, 364–366.

H. F. Levison , K. A. Kretke , and M. J. Duncan 2015a. Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524, 322–324.

H. F. Levison , K. A. Kretke , K. Walsh , and W. F. Bottke 2015b. Growing the terrestrial planets from the gradual accumulation of submeter-sized objects. Proceedings of the National Academy of Sciences of the United States of America, 112, 14180–14185.

K. A. Kretke , D. N. C. Lin , 2007. Grain retention and formation of planetesimals near the snow line in MRI-driven turbulent protoplanetary disks. Astrophysical Journal, 664, L55–L58.

S. Marchi , H. Y. McSween , D. P. O'Brien , et al. 2012. The violent collisional history of asteroid 4 Vesta. Science, 336, 690–693.

S. Marchi , W. F. Bottke , B. A. Cohen , 2013. High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geoscience 6, 303–307.

J. Masiero , A. K. Mainzer , and T. Grav 2011. Main belt asteroids with WISE/NEOWISE I: Preliminary albedos and diameters. Astrophysical Journal, 741, 68.

J. R. Masiero , F. DeMeo , T. Kasuga and A. H. Parker 2015. Asteroid family physical properties. In Asteroids IV, ed. W. F. Bottke Jr., A. Cellino , P. Paolicchi , and R. P. Binzel . Tucson, AZ: University of Arizona Press, 323–340.

A. S. McEwen , J. M. Moore , and E. M. Shoemaker 1997. The Phanerozoic impact cratering rate: Evidence from the far side of the Moon. Journal of Geophysical Research, 102, 9231–9242.

A. Morbidelli and B. Gladman 1998. Orbital and temporal distributions of meteorites originating in the asteroid belt. Meteoritics & Planetary Science, 33, 999–1016.

A. Morbidelli and D. Vokrouhlický ,2003. The Yarkovsky-driven origin of near-Earth asteroids. Icarus, 163, 120–134.

A. Morbidelli and A. Crida , 2007. The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus, 191, 158–171.

A. Morbidelli , W. F. Bottke , D. Nesvorný , and H. F. Levison 2009. Asteroids were born big. Icarus, 204, 558–573.

A. Morbidelli , R. Brasser , R. Gomes , et al., 2010. Evidence from the asteroid belt for a violent past evolution of Jupiter's orbit. Astronomical Journal, 140, 1391–1401.

A. Morbidelli , M. Lambrechts , S. Jacobson , and B. Bitsch , 2015a. The great dichotomy of the solar system: small terrestrial embryos and massive giant planet cores. Icarus, 258, 418–429.

A. Morbidelli , K. J. Walsh , D. P. O'Brien , et al., 2015b. Dynamical evolution of the asteroid belt. In Asteroids IV, ed. P. Michel , F. DeMeo , and W. F. Bottke . Tucson, AZ: University of Arizona Press, 493–508.

T. Mothé-Diniz , J. M. á. Carvano , and D. Lazzaro 2003. Distribution of taxonomic classes in the main belt of asteroids. Icarus, 162, 10–21.

M. Nagasawa , H. Tanaka , and S. Ida 2000. Orbital evolution of asteroids during depletion of the solar nebula. Astronomical Journal, 119, 1480–1497.

M. Nagasawa , S. Ida , and H. Tanaka 2002. Excitation of orbital inclinations of asteroids during depletion of a protoplanetary disk: Dependence on the disk configuration. Icarus, 159, 322–327.

D. Nesvorný , A. N. Youdin , D. C. Richardson , 2010. Formation of Kuiper belt binaries by gravitational collapse. Astronomical Journal, 140, 785–793.

D. Nesvorný , D. Vokrouhlický , W. F. Bottke , et al., 2011. Observed binary fraction sets limits on the extent of collisional grinding in the Kuiper belt. Astronomical Journal, 141, 159.

K. S. Noll , A. H. Parker , and W. M. Grundy 2014. All bright cold classical KBOs are binary. AAS/Division for Planetary Sciences Meeting Abstracts, 46, 507.05.

D. P. O'Brien , A. Morbidelli , and H. F. Levison 2006. Terrestrial planet formation with strong dynamical friction. Icarus, 184, 39–58.

D. P. O'Brien , A. Morbidelli , and W. F. Bottke 2007. The primordial excitation and clearing of the asteroid belt: Revisited. Icarus, 191, 434–452.

M. Ogihara , H. Kobayashi , S.-i. Inutsuka , T. K. Suzuki , 2015. Formation of terrestrial planets in disks evolving via disk winds and implications for the origin of the solar system's terrestrial planets. Astronomy & Astrophysics, 579, A65.

A. Parker , Ž. Ivezi , M. Jurić , et al. 2008. The size distributions of asteroid families in the SDSS Moving Object Catalog 4. Icarus, 198, 138–155.

A. H. Parker , J. J. Kavelaars , J.-M. Petit , et al. 2011. Characterization of seven ultra-wide trans-neptunian binaries. Astrophysical Journal, 743, 1.

J. Petit , A. Morbidelli , and G. B. Valsecchi 1999. Large scattered planetesimals and the excitation of the small body belts. Icarus, 141, 367–387.

J. Petit , A. Morbidelli , and J. Chambers 2001. The primordial excitation and clearing of the asteroid belt. Icarus, 153, 338–347.

J.-M. Petit , O. Mousis , 2004. KBO binaries: How numerous were they? Icarus, 168, 409–419.

A. Pierens and R. P. Nelson 2008. Constraints on resonant-trapping for two planets embedded in a protoplanetary disc. Astronomy & Astrophysics, 482, 333–340.

A. Pierens and S. N. Raymond 2011. Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous solar nebula. Astronomy & Astrophysics, 533, A131.

S. N. Raymond , D. P. O'Brien , A. Morbidelli , and N. A. Kaib 2009. Building the terrestrial planets: Constrained accretion in the inner solar system. Icarus, 203, 644–662.

D. Rabinowitz L. E. Helin , K. Lawrence , and S. Pravdo , 2000. A Reduced estimate of the number of kilometre-sized near-Earth asteroids. Nature 403, 165–166

C. T. Russell , H. Y. McSween , R. Jaumann , and C. A. Raymond . 2015. The Dawn mission to Vesta and Ceres. In Asteroids IV, ed. P. Michel , F. DeMeo , and W. F. Bottke . Tucson, AZ: University of Arizona Press, 419–432.

G. R. Stewart and S. Ida 2000. Velocity evolution of planetesimals: Unified analytical formulas and comparisons with N-body simulations. Icarus, 143, 28–44.

D. Stöffler and G. Ryder 2001. Stratigraphy and isotope ages of lunar geologic units: Chronological standard for the inner solar system. Space Science Reviews, 96, 9–54.

G. H. Stokes , D. K. Yeomans , W. F. Bottke , et al., 2003, Report of the Near-Earth Object Science Definition Team: A Study to Determine the Feasibility of Extending the Search for Near-Earth Objects to Smaller Limiting Diameters. NASA-OSS-Solar System Exploration Division.

H. Tanaka , T. Takeuchi , W. R. Ward , 2002. Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. Astrophysical Journal, 565, 1257–1274.

D. J. Tholen , 1984. Asteroid taxonomy from cluster analysis of photometry. Ph.D. Thesis. University of Arizona, Tucson.

D. Turrini , G. Magni , A. Coradini , 2011. Probing the history of solar system through the cratering records on Vesta and Ceres. Monthly Notices of the Royal Astronomical Society, 413, 2439–2466.

D. Turrini , A. Coradini , and G. Magni 2012. Jovian early bombardment: Planetesimal erosion in the inner asteroid belt. Astrophysical Journal, 750, 8.

D. Vokrouhlický , M. Broz , and W. F. Bottke , et al. 2006. Yarkovsky/YORP chronology of asteroid families. Icarus, 182, 118–142.

D. Vokrouhlický , W. F. Bottke , S. R. Chesley , et al. 2015. The Yarkovsky and YORP effects. In Asteroids IV, ed. P. Michel , F. DeMeo , and W. F. Bottke . Tucson, AZ: University of Arizona Press, 509–532.

K. J. Walsh , A. Morbidelli , S. N. Raymond , et al., 2011. A low mass for Mars from Jupiter's early gas-driven migration. Nature, 475, 206–209.

W. R. Ward , 1981. Solar nebula dispersal and the stability of the planetary system. I: Scanning secular resonance theory. Icarus, 47, 234–264.

W. R. Ward , 2001. Early erosion of the asteroid belt. Abstract presented at Asteroids 2001 meeting, June 2001, Palermo, Italy.

S. J. Weidenschilling 1977b. Aerodynamics of solid bodies in the solar nebula. Monthly Notices of the Royal Astronomical Society, 180, 57–70.

S. J. Weidenschilling , 2011. Initial sizes of planetesimals and accretion of the asteroids. Icarus 214, 671–684.

G. W. Wetherill 1989. Origin of the asteroid belt. Asteroids II, ed. R.P. Binzel , T. Gehrels , and M. F. Matthews . Tucson, AZ: University of Arizona Press, 661–680.

G. W. Wetherill and G. R. Stewart 1993. Formation of planetary embryos: Effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus, 106, 190–209.

D.E. Wilhelms 1987. The geologic history of the Moon. US Geologicak Survey Professional Paper, 1348.

A. N. Youdin and J. Goodman 2005. Streaming instabilities in protoplanetary disks. Astrophysical Journal, 620, 459–469.

A. Youdin and A. Johansen , 2007. Protoplanetary disk turbulence driven by the streaming instability: linear evolution and numerical methods. Astrophysical Journal, 662, 613–626.

J. D. Anderson , G. Columbo , P. B. Esposito , P. B. Lau , and G. B. Trager 1987. The mass, gravity field and ephemeris of Mercury. Icarus, 71, 337–349.

F. A. Bannister 1941. Osbornite, meteoritic titanium nitride. Mineralogical Magazine, 26, 36–44.

W. Benz , W. L. Slattery and A. G. W. Cameron , 1988. Collisional stripping of Mercury's mantle. Icarus, 74, 516–528.

D. T. Blewett , P. G. Lucey , B. R. Hawke , et al. 1997. A comparison of Mercurian reflectance and spectral quantities with those of the Moon. Icarus, 129, 217–231.

D. T. Blewett , B. R. Hawke , P. G. Lucey , 2002. Lunar pure anorthosite as a spectral analog for Mercury. Meteoritics & Planetary Science, 37, 1245–1254.

R. Brett and K. Keil 1986. Enstatite chondrites and enstatite achondrites (aubrites) were not derived from the same parent body. Earth and Planetary Science Letters, 81, 1–6.

T. H. Burbine , T. J. McCoy , A. Meibom , et al. 2002a. Meteoritic parent bodies: Their number and identification. In Asteroids III, ed. W. F. Bottke Jr., A. Cellino , P. Paolicchi , and R. P. Binzel . Tucson, AZ: University of Arizona Press, 653–667.

A. G. W. Cameron , B. Fegley Jr., W. Benz et al., 1988. The strange density of Mercury: Theoretical considerations. In Mercury, ed. F. Vilas , C. R. Chapman , and M. S. Matthews . Tucson, AZ: Univ. of Arizona Press, pp. 692–708.

I. Casanova 1990. Geochemistry of metal segregation in aubrites and the origin of their metallic phases. Ph.D. dissertation, University of New Mexico.

R. N. Clayton , T. K. Mayeda , and A. E. Rubin , 1984. Oxygen-isotopic composition of enstatite chondrites and aubrites. Lunar and Planetary Science Conference, 15, C245–C249.

E. J. Essene and D. C. Fisher 1986. Lightning strike fusion: Extreme reduction and metal–silicate liquid immiscibility. Science, 234, 189–193.

L. G. Evans , P. N. Peplowski , E. Rhodes , et al. 2012. Major-element abundances on the surface of Mercury: Results from the MESSENGER gamma-ray spectrometer. Journal of Geophysical Research, 117, E00L07.

L. G. Evans , P. N. Peplowski , F. M. McCubbin , et al. 2015. Chlorine on the surface of Mercury: MESSENGER gamma-ray measurements and implications for the planet's formation and evolution. Icarus, 257, 417–427.

C. Floss , R. A. Fogel , Y. T. Lin , et al. 2003. Diopside-bearing EL6 EET 90102: Insights from rare earth element distributions. Geochimica et Cosmochimica Acta, 67, 543–555.

R. A. Fogel 1997a. The enstatite chondrite–achondrite link reforged: Solution of the titanium in troilite problem (abstract). Meteoritics & Planetary Science, Supplement, A43.

R. A. Fogel 1997b. On the significance of diopside and oldhamite in enstatite chondrites and aubrites. Meteoritics & Planetary Science, 32, 577–591.

R. A. Fogel 2001. The role of roedderite in the formation of aubrites (abstract). Lunar and Planetary Science Conference, 32, 2177.

R. A. Fogel 2005. Aubrite basalt vitrophyres: The missing basaltic component and high-sulfur silicate melts. Geochimica et Cosmochimica Acta, 69, 1633–1648.

R. A. Fogel , P. C. Hess , and M. J. Rutherford 1988. The enstatite chondrite–achondrite link (abstract). Lunar and Planetary Science Conference, 19, 342–343.

S. A. Hauck II, J.-L. Margot , S. C. Solomon , et al. 2013. The curious case of Merucry's internal structure. Journal of Geophysical Research – Planets, 118, 1204–1220.

K. Keil 1968. Mineralogical and chemical relationships among enstatite chondrites. Journal of Geophysical Research, 73, 6945–6976.

K. Keil 1969. Titanium distribution in enstatite chondrites and achondrites and its bearing on their origin. Earth and Planetary Science Letters, 7, 243–248.

K. Keil 2010. Enstatite achondrite meteorites (aubrites) and the histories of their asteroid parent bodies. Chemie der Erde, 70, 295–317.

K. Keil , T.J. McCoy , L. Wilson , et al. 2011. A composite Fe,Ni–FeS and enstatite–forsterite–glass vitrophyre clast in the Larkman Nunatak 04316 aubrite: Origin by pyroclastic volcanism. Meteoritics & Planetary Science, 46, 1719–1741.

R. Killen , G. Cremonese , H. Lammer , et al. 2007. Processes that promote and deplete the exosphere of Mercury. Space Science Reviews, 132, 433–509.

G. Kurat , E. Zinner , and F. Brandstätter 1992. An ion microprobe study of an unique oldhamite–pyroxenite fragment from the Bustee aubrite (abstract). Meteoritics, 27, 246–247.

J. S. Lewis 1974. Chemistry of the planets. Annual Review of Physical Chemistry, 24, 339–351.

J. L. Margot , S. J. Peale , R. F. Jurgens , et al. 2007. Large longitude libration of Mercury reveals a molten core. Science, 316, 710–714.

T. J. McCoy and L. R. Nittler 2014. Mercury. In Planets, Asteroids, Comets and the Solar System, ed. A. M. Davis . Oxford: Elsevier-Pergamon, pp. 119–126.

T. J. McCoy , T. L. Dickinson , and G. E. Lofgren 1999. Partial melting of the Indarch (EH4) meteorite: A textural, chemical and phase relations view of melting and melt migration. Meteoritics & Planetary Science, 34, 735–746.

F. M. McCubbin , M. A. Riner , K. E. Vander Kaaden , et al. 2012. Is Mercury a volatile-rich planet? Geophysical Research Letters, 39, L09202.

J. W. Morgan and E. Anders 1980. Chemical composition of Earth, Venus, and Mercury. In Proceedings of the National Academy of Sciences, 77, 6973–6977.

L. R. Nittler , R. D. Starr , S. Z. Weider , et al. 2011. The major-element composition of Mercury's surface from MESSENGER X-ray spectrometry. Science, 333, 1847–1850.

A. Okada , K. Keil , G. J. Taylor , et al. 1988. Igenous history of the aubrite parent asteroid: Evidence from the Norton County enstatite achondrite. Meteoritics, 23, 59–74.

P. N. Peplowski , L. G. Evans , S. A. Hauck II, et al. 2011. Radioactive elements on Mercury's surface from MESSENGER: Implications for the planet's formation and evolution. Science, 333, 1850–1852.

P. N. Peplowski , L. G. Evans , K. R. Stockstill-Cahill , et al. 2014. Enhanced sodium abundance in Mercury's north polar regions revealed by the MESSENGER gamma-ray spectrometer. Icarus, 228, 86–95.

A. Potter and T. H. Morgan 1985. Discovery of sodium in the atmosphere of Mercury. Science, 229, 651–653.

E. B. Rosenshein , M. A. Ivanova , T. L. Dickinson , et al. 2006. Oxide-bearing and FeO-rich clasts in aubrites. Meteoritics & Planetary Science, 41, 495–503.

R. O. Sack and D. S. Ebel 2006. Thermochemistry of sulfide mineral solutions. Reviews in Mineralogy and Geochemistry, 61, 265–364.

B. J. Skinner and F. D. Luce 1971. Solid solutions of the type (Ca, Mg, Mn, Fe)S and their use as geothermometers for the enstatite chondrites. American Mineralogist, 56, 1269–1296.

K. R. Stockstill-Cahill , T. J. McCoy , L. R. Nittler et al. 2012. Magnesium-rich crustal compositions on Mercury: Implications for magmatism from petrologic modeling. Journal of Geophysical Research: Planets, 117(E12), E004140.

N. Story-Maskelyne 1870. On the mineral constituents of meteorites: The Busti aerolite of 1852. Philosophical Transactions of the Royal Society of London, 160, 189–214.

G. J. Taylor and E. R. D. Scott 2003. Mercury. In Meteorites, Comets and Planets, ed. A. M. Davis . Oxford: Elsevier-Pergamon, pp. 477–485.

G. J. Taylor , K. Keil , H. Newsom , et al. 1988. Magmatism and impact on the aubrite parent body: Evidence from the Norton County enstatite achondrite (abstract). Lunar and Planetary Science Conference, 19, 1185–1186.

F. Ulff-Møller 1990. Formation of native iron in sediment-contaminated magma: 1. A case study of the Hanekammen Complex on Disko Island, West Greenland. Geochimica et Cosmochimica Acta, 54, 57–70.

K. E. Vander Kaaden and F. M. McCubbin 2015. Sulfur solubility in silicate melts under highly reducing conditions relevant to Mercury. Lunar and Planetary Science Conference, 46, 1040.

J. T. Wasson 1988. The building stones of the planets. In Mercury, ed. F. Vilas , C. R. Chapman , and M. S. Matthews . Tucson, AZ: University of Arizona Press, 622–650.

T. R. Watters and M. Prinz 1979. Aubrites: Their origin and relationship to enstatite chondrites. Lunar and Planetary Science Conference, 10, 1073–1093.

S. Z. Weider , L. R. Nittler , R. D. Starr , et al. 2015. Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER's X-Ray Spectrometer. Earth and Planetary Science Letters, 416, 109–120.

G. W. Wetherill 1988. Accumulation of Mercury from planetesimals. In Mercury, ed. F. Vilas , C. R. Chapman , and M. S. Matthews . Tucson, AZ: University of Arizona Press, pp. 670–691.

M. Wheelock , K. Keil , C. Floss , et al. 1994. REE geochemistry of oldhamite-dominated clasts from the Norton County aubrite: Igneous origin of oldhamite. Geochimica et Cosmochimica Acta, 58, 449–458.

L. Wilson and K. Keil 1991. Consequences of explosive eruptions on small solar system bodies: The case of the missing basalts on the aubrite parent body. Earth and Planetary Science Letters, 104, 505–512.

J. Yang , J. I. Goldstein , and E. R. D. Scott 2007. Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature, 446, 888–891.

P. A. Bland , M. D. Jackson , R. F. Coker , et al. 2009. Why aqueous alteration in asteroids was isochemical: High porosity does not equal permeability. Earth and Planetary Science Letters, 287, 559–568.

P. A. Bland , B. J. Travis , K. A. Dyl , and G. Schubert 2013. Giant convecting mudballs of the early solar system. Lunar and Planetary Science Conference, 44, 1447l.

W. F. Bottke , D. Nesvorny , R. E. Grimm , A. Morbidelli , and D. P. O'Brien 2006. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 439, 821–824.

A. J. Brearley 2006. The action of water. In Meteorites of the Early Solar System II, ed. D. S. Lauretta and H. Y. McSween . Tucson, AZ: University of Arizona Press, 587–624.

D. T. Britt and G. J. Consolmagno 1997. The porosity of meteorites and asteroids: Results from the Vatican collection of meteorites. Lunar and Planetary Science, 28, 159–160.

J. C. Castillo-Rogez 2011. Ceres: Neither a porous nor salty ball. Icarus, 215, 599–602.

R. N. Clayton and T. K. Mayeda 1984. The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth and Planetary Science Letters , 67, 151–161.

R. N. Clayton and T. K. Mayeda 1999. Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 63, 2089–2104.

C. M. Corrigan , M. E. Zolensky , J. Dahl , et. al. 1997. The porosity and permeability of chondritic meteorites and interplanetary dust particles. Meteoritics & Planetary Science, 32, 509–515.

J. N. Cuzzi , R. C. Hogan , and W. F. Bottke 2010. Towards initial mass functions for asteroids and Kuiper belt objects. Icarus, 208, 518–538.

J. De León , N. Pinilla-Alonso , H. Campins , J. Licandro , and G. A. Marzo 2012. Near-infrared spectroscopic survey of B-type asteroids: compositional analysis. Icarus, 218, 196–206.

M. C. De Sanctis , E. Ammannito , A. Raponi , et al. 2015. Ammoniated phyllosilicates with a likely outer solar system origin on (1) Ceres. Nature, 528, 241–244.

K. A. Dyl , C. E. Manning , and E. D. Young 2010. The implications of cronstedtite formation in water-rich planetesimals and asteroids. Astrobiology Science Conference, 5627.

K. A. Dyl , J. W. Boyce , Y. Guan , P. A. Bland , and J. M. Eiler 2014. Characterizing early solar system fluids on the Allende (CV3) parent body: NanoSIMS study of phosphate volatile contents. Paper presented at the 77th Annual Meeting of the Meteoritical Society, September 7–12, Casablanca, Morocco. LPI Contribution No. 1800, id. 5386.

B. L. Ehlmann , D. L. Bish , S. W. Ruff , and J. F. Mustard 2012. Mineralogy and chemistry of altered Icelandic basalts: Application to clay mineral detection and understanding aqueous environments on Mars. Journal of Geophysical Research, 117, E00J16.

S. Engel and J. I. Lunine 1994. Silicate interactions with ammonia–water fluids on early Titan. Journal of Geophysical Research, 99, 3745–3752.

G. J. Flynn , L. B. Moore , and W. Klock 1999. Density and porosity of stone meteorites: Implications for the density, porosity, cratering, and collisional disruption of asteroids. Icarus, 142, 97–105.

M. Gounelle and M. E. Zolensky 2001. A terrestrial origin for sulfate veins in CI1 chondrites. Meteoritics & Planetary Science, 36, 1321–1329.

K. R. Grazier , J. C. Castillo-Rogez , and P. W. Sharp 2014. Dynamical delivery of volatiles to the outer main belt. Icarus, 232, 13–21.

R. T. Gregory and R. E. Criss 1986. Isotopic exchange in open and closed systems. In Stable Isotopes in High Temperature Geological Processes, ed. J. W. Valley , H. P. Taylor , and J. R. O'Neil . Washington DC: Mineralogical Society of America , 91–127.

R. E. Grimm and H. Y. McSween Jr. 1993. Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science, 259, 653–655.

W. Guo and J. M. Eiler 2007. Temperature of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites. Geochimica et Cosmochimica Acta, 71, 5565–5575.

N. Haghighipour 2009. Dynamical constraints on the origin of the main belt comets. Meteorites and Planetary Science, 44, 1863–1869.

K. P. Hand and R. W. Carlson 2015. Europa's surface color indicates an ocean rich with sodium chloride. Geophysical Research Letters, 42, 3174–3178.

J. M. Herndon and M. A. Herndon 1977. Aluminum-26 as a planetoid heat source in the early solar system. Meteoritics, 12, 459–465.

T. Hiroi , 1996. Asteroid surface materials detected from their reflectance spectra. Journal of the Mineralogical Society of Japan, 25, 61–67.

A. Johansen , E. Jacquet , J. N. Cuzzi , A. Morbidelli , and M. Gounelle 2015. New paradigms for asteroid formation, In Asteroids IV, ed. P. Michel , F. DeMeo , and W. F. Bottke . Tucson, AZ: University of Arizona Press, 471–492.

C. L. Jones and A. J. Brearley 2006. Experimental aqueous alteration of the Allende meteorite under oxidizing conditions: Constraints on asteroidal alteration. Geochimica et Cosmochimica Acta, 70, 1040–1058.

T. D. Jones , L. A. Lebosky , J. S. Lewis , and M. S. Marley 1990. The composition and origin of the C, P, and D asteroids: Water as a tracer of thermal evolution in the outer belt, Icarus, 88, 172–192.

G. W. Kallemeyn and J. T. Wasson 1981. The compositional classification of chondrites: I. The carbonaceous chondrite groups. Geochimica et Cosmochimica Acta, 45, 1217–1230.

J. S. Kargel 1991. Brine volcanism and the interior structures of asteroids and icy satellites. Icarus, 94, 368–390.

M. G. Kerekgyarto , C. R. Jeffcoat , T. J. Lapen , et al. 2015. Supra-canonical initial 26Al/27Al from a reprocessed Allende CAI. Lunar and Planetary Science Conference, 46, 2918.

A. N. Krot , K. Makide , and K. Nagashima , et al., 2012. Heterogeneous distribution of 26Al at the birth of the solar system: Evidence from refractory grains and inclusions. Meteoritics & Planetary Science, 47, 1948–1979.

M. Kueppers , L. O'Rourke , D. Bockelee-Morvan , et. al. 2014. Localized sources of water vapour on the dwarf planet (1) Ceres. Nature, 505, 525–527.

T. Lee , D. A. Papanastassiou , and G. J. Wasserburg 1977. Aluminum-26 in the early solar system: fossil or fuel? Astrophysical Journal, 211, L107–L110.

L. A. Leshin , A. E. Rubin and K. D. McKeegan 1997. The oxygen isotopic composition of olivine and pyroxene from CI chondrites. Geochimica et Cosmochimica Acta, 61, 835–845.

K. Makide , K. Nagashima , A. N. Krot , et al., 2012. Heterogeneous distribution of 26Al at the birth of the solar system: Evidence from corundum-bearing refractory inclusions in carbonaceous chondrites. Geochimica et Cosmochimica Acta , 110, 190–215.

M. M. McAdam , J. M. Sunshine , K. T. Howard , and T. J. McCoy 2015. Aqueous alteration on asteroids: Linking the mineralogy and spectroscopy of CM and CI chondrites. Icarus , 245, 320–332.

T. B. McCord and C. Sotin 2005. Ceres: Evolution and current state. Journal of Geophysical Research, 110, E05009.

T. B. McCord , J. C. Castillo-Rogez , and A. S. Rivkin 2011. Ceres: Its origin, evolution and structure and Dawn's potential contribution. Space Science Reviews, 163, 63–76.

W. B. McKinnon 2008. Could Ceres be a refugee from the Kuiper belt? Paper presented at Asteroids, Comets, Meteors 2008, Baltimore, MD, July 14–18, LPI Contribution No. 1405, paper 8389.

W. B. McKinnon 2012. Where did ceres accrete - in situ in the asteroid belt, among the giant planets, or in the primordial trans-neptunian belt? Paper presented at the American Astronomical Society, Division for Planetary Sciences 44th meeting, Reno, NV, October 14–19, paper 111.14.

W. B. McKinnon and M. E. Zolensky 2003. Sulfate content of Europa's ocean and shell: Evolutionary considerations and some geological and astrobiological implications. Astrobiology, 3, 879–897.

A. Morbidelli , W. F. Bottke , D. Nesvorny , H. F. Levison , 2009. Asteroids were born big. Icarus, 204, 558–575.

O. Mousis and Y. Alibert 2005. On the composition of ices incorporated in Ceres. Monthly Notices of the Royal Astronomical Society, 358, 188–192.

M. Neveu , S. Desch , and J. C. Castillo-Rogez 2015. Core cracking and hydrothermal circulation can profoundly affect Ceres’ geophysical evolution. Journal of Geophysical Research, 120, 123–154.

M. Neveu and S. Desch ,2015. Geochemistry, thermal evolution, and cryovolcanism on Ceres with a muddy ice mantle. Geophysical Research Letters, 42, 10197–10206.

J. A. Nuth , N. M. Johnson , and H. G. M. Hill , 2014. CO Self-shielding as a mechanism to make 16O-enriched solids in the solar nebula. Challenges, 5, 152–158.

N. Ouellette , S. J. Desch , J. J. Hester , 2007. Interaction of supernova ejecta with nearby protoplanetary disks. Astrophysical Journal, 662, 1268–1281.

J. Palguta , G. Schubert , and B. J. Travis 2010. Fluid flow and chemical alteration in carbonaceous chondrite parent bodies. Earth and Planetary Science Letters, 296, 235–243.

S. Pizzarello , L. B. Williams , J. Lehman , G. P. Holland , and J. L. Yarger 2011. Abundant ammonia in primitive asteroids and the case for a possible exobiology. Proceedings of the National Academy of Sciences of the United States of America, 108, 4303–4306.

F. Postberg , S. Kempf , J. Schmidt , et. al., 2009. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature, 459, 1098–1101.

N. Rambaux , F. Chambat , J. C. Castillo-Rogez 2015. Third-order development of shape, gravity, and moment of inertia for highly flattened celestial bodies: Application to Ceres. Astronomy & Astrophysics, 584, A127.

A. S. Rivkin and J. P. Emery 2010. Detection of ice and organics on an asteroidal surface. Nature, 464, 1322–1323.

N. D. Rosenberg , L. Browning , and W. L. Bourcier 2001. Modeling aqueous alteration of CM carbonaceous chondrites. Meteoritics & Planetary Science, 36, 239–244.

H. P. Scott , Q. Williams , and F. J. Ryerson 2002. Experimental constraints on the chemical evolution of large icy satellites. Earth and Planetary Science Letters, 203, 399–412.

E. Shock , D. C. Sassani , and H. Betz 1997. Uranium in geologic fluids: Estimates of standard partial molal properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures. Geochimica et Cosmochimica Acta, 61, 4245–4266.

S. Sonnett , J. Kleyna , R. Jedicke , J. Masiero , 2011. Limits on the size and orbit distribution of main belt comets. Icarus, 215, 534–546.

N. Sugiura , N. S. Brar , and D. W. Strangway 1984. Degassing of meteorite parent bodies. Journal of Geophysical Research, 89, B651–B644.

D. Takir , J. P. Emery , and H. Y. McSween Jr. 2015. Toward an understanding of phyllosilicate mineralogy in the outer main asteroid belt. Icarus, 257, 185–193.

P. C. Thomas , J. Wm. Parker , L. A. McFadden , et. al., 2005. Differentiation of the asteroid Ceres as revealed by its shape. Nature, 437, 224–226.

P. Vernazza , M. Marsset , P. Beck , et. al. 2015. Interplanetary dust particles as samples of icy satellites. Astrophysical Journal, 806, 204.

K. J. Walsh , A. Morbidelli , S. N. Raymond , D. P. O'Brien , and A. M. Mandell 2011. A low mass for Mars from Jupiter's early gas-driven migration. Nature, 475, 206–209.

K. J. Walsh , A. Morbidelli , S. N. Raymond , D. P. O'Brien , and A. M. Mandell 2012. Populating the asteroid belt from two parent source regions due to the migration of giant planets – “The Grand Tack.” Meteoritics & Planetary Science, 47, 1941–1947.

S. J. Weidenschilling 2011. Initial sizes of planetesimals and accretion of the asteroids. Icarus, 214, 671–684, 2011.

E. D. Young , 2001. The hydrology of carbonaceous chondrite parent bodies and the evolution of planet progenitors. Philosophical Transactions of the Royal Society of London A , 359, 2095–2110.

E. D. Young , J. I. Simon , A. Galy , et. al. 2005. Supra-canonical 26Al/27Al and the residence time of CAIs in the solar protoplanetary disk. Science, 308, 223–227.

E. D. Young 2014. Inheritance of solar short- and long-lived radionuclides from molecular clouds and the unexceptional nature of the solar system. Earth and Planetary Science Letters, 392, 16027.

E. D. Young , R. D. Ash , P. England , and D. Rumble III, 1999. Fluid flow in chondrite parent bodies: deciphering the compositions of planetesimals. Science, 286, 1331–1335.

E. D. Young , K. K. Zhang , and G. Schubert , 2003. Conditions for pore water convection within carbonaceous chondrite parent bodies: Implications for planetesimal size and heat production. Earth and Planetary Science Letters, 213, 249–259.

Q. Zhou , Q.-Z. Yin , E. D. Young , et. al. 2013. SIMS Pb–Pb and U–Pb age determination of eucrite zircons at < 5 μm scale and the first 50 Ma of thermal history of Vesta. Geochemica et Cosmochimica Acta, 110, 152–175.

M. E. Zolensky , R. J. Bodnar , E. K. Gibson Jr., et. al, 1999. Asteroidal water within fluid inclusion-bearing halite in an H4 chondrite, Monahans (1998). Science, 285, 1377–1379.

M. E. Zolensky , W. L. Bourcier , and J. L. Gooding 1989. Aqueous alteration on the hydrous asteroids: Results of EQ3/6 computer simulations. Icarus, 78, 411–425.

M. Y. Zolotov and E. L. Shock 2001. Composition and stability of salts on the surface of Europa and their oceanic origin. Journal of Geophysical Research, 106, 32815–32828.

M. Y. Zolotov 2012. Aqueous fluid composition in CI chondritic materials: Chemical equilibrium assessment in closed systems. Icarus, 220, 713–729.

C. B. Agee , J. Li , M. C. Shannon , et al. 1995. Pressure–temperature phase diagram for the Allende meteorite. Journal of Geophysical Research, 100, 17725–17740.

J. Akai 1992. T–T–T diagram of serpentine and saponite, and estimation of metamorphic heating degree of Antarctic carbonaceous chondrites. Proceedings of the NIPR Symposium on Antarctic Meteorites, 5, 120–135.

C. M. O. Alexander , D. J. Barber , and R. Hutchison 1989. The microstructure of Semarkona and Bishunpur. Geochimica et Cosmochimica Acta, 53, 3045–3057.

E. Asphaug , M. Jutzi , and N. Movshovitz 2011. Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters, 308, 369–379.

Q. Bai and D. L. Kohlstedt 1993. Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine. Physics and Chemistry of Minerals, 19, 460–471.

G. Benedix , L. A. Leshin , J. Farquhar , et al. 2003. Carbonates in CM2 chondrites: Constraints on alteration conditions from oxygen isotopic compositions and petrographic observations. Geochimica et Cosmochimica Acta, 67, 1577–1588.

P. A. Bland , B. J. Travis , K. A. Dyl , et al. 2013. Giant convecting mudballs of the early solar system. Lunar and Planetary Science Conference, 45, 1447.

P. A. Bland , M. D. Jackson , R. F. Coker , et al. 2009. Why aqueous alteration in asteroids was isochemical: High porosity ≠ high permeability. Earth and Planetary Science Letters, 287, 559–568.

P. A. Bland and F. J. Ciesla 2010. The impact of nebular evolution on volatile depletion trends observed in differentiated objects. In Lunar and Planetary Science Conference, 41, 1817.

A. J. Brearley and A. N. Krot 2012. Metasomatism in the early solar system: The record from chondritic meteorites. In Metasomatism and the Chemical Transformation of Rock, ed. D. E. Harlov and H. Austrheim . Berlin: Springer-Verlag, 659–789.

F. E. Brenker and A. N. Krot 2004. Late-stage, high-temperature processing in the Allende meteorite: Record from Ca,Fe-rich silicate rims around dark inclusions. American Mineralologist, 89, 1280–1289.

D. Britt and G. J. Consolmagno 2003. Stony meteorite porosities and densities: A review of the data through 2001. Meteoritics & Planetary Science, 38, 1161–1180.

R. M. Canup 2012. Forming the Moon with Earth-like composition via a giant impact. Science, 338, 1052–1055.

L. Carporzen , B. P. Weiss , L. T. Elkins-Tanton , et al. 2011. Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proceedings of the National Academy of Sciences of the United States of America, 108, 6386–6389.

J. C. Castillo-Rogez 2011. Ceres: Neither a porous nor salty ball. Icarus, 215, 599–602.

J. C. Castillo-Rogez and B. E. Schmidt 2010. Geophysical evolution of the Themis family parent body. Geophysical Research Letters, 37, L10202.

B.-G. Choi , K. D. McKeegan , A. N. Krot , et al. 1998. Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites. Nature, 392, 577–579.

F. J. Ciesla 2008. Radial transport in the solar nebula: Implications for moderately volatile element depletions in chondritic meteorites. Meteoritics & Planetary Science, 43, 639–655.

C. Clauser 1992. Permeability of crystalline rocks. Eos Transactions of the AGU, 73, 233–238.

R. N. Clayton and T. K. Mayeda 1984. The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth and Planetary Science Letters, 67, 151–161.

R. N. Clayton , N. Onuma , and L. Grossman et al. 1977. Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth and Planetary Science Letters, 34, 209–224.

C. Cournede , M. E. Zolensky , J. Dahl , et al. 2015. An early solar system magnetic field recorded in CM chondrites. Earth and Planetary Science Letters, 410, 62–74.

K. A. Dyl , A. Bischoff , K. Ziegler , et al. 2012. Early solar system hydrothermal activity in chondritic asteroids on 1–10-year timescales. Proceedings of the National Academy of Sciences of the United States of America, 109, 18306–18311.

L. T. Elkins-Tanton , B. P. Weiss , and M.T. Zuber 2011. Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters, 305, 1–10.

R. R. Fu , B. H. Hager , A. I. Ermakov et al. 2014. Efficient early global relaxation of asteroid Vesta. Icarus, 240, 133–145.

R. R. Fu and L.T. Elkins-Tanton 2014. The fate of magmas in planetesimals and the retention of primitive chondritic crusts. Earth and Planetary Science Letters, 390, 128–137.

M. J. Gaffey , K.L. Reed , and M. S. Kelley 1992. Relationship of E-type Apollo asteroid 3103 (1982 BB) to the enstatite achondrite meteorites and the Hungaria asteroids. Icarus, 100, 95–109.

R. T. Gregory and R. E. Criss 1986. Isotopic exchange in open and closed systems. Reviews in Mineralology and Geochemistry, 16, 91–127.

R. E. Grimm and H. Y. McSween 1989. Water and the thermal evolution of carbonaceous chondrite parent bodies. Icarus, 82, 244–280.

E. H. Hauri , G. A. Gaetani , and T. H. Green 2006. Partitioning of water during melting of the Earth's upper mantle at H2O-undersaturated conditions. Earth and Planetary Science Letters, 248, 715–734.

S. Henke , H.-P. Gail , M. Trieloff , et al. 2012. Thermal history modelling of the H chondrite parent body. Astronomy & Astrophysics, 545, p.A135.

E. Huenges , J. Erzinger , J. Kück , et al. 1997. The permeable crust: Geohydraulic properties down to 9101 m depth. Journal of Geophysical Research, 102, 18,255–18,265.

M. Humayun and R.N. Clayton 1995. Potassium isotope cosmochemistry: Genetic implications of volatile element depletion. Geochimica et Cosmochimica Acta, 59, 2131–2148.

B. Jacobsen , Q.-Z. Yin , F. Moynier , et al. 2008. 26Al–26Mg and 207Pb–206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth and Planetary Science Letters, 272, 353–364.

E. Jarosewich 1990. Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics, 25, 323–337.

P. Jenniskens , M. D. Fries , Q-Z. Yin et al. 2012. Radar-enabled recovery of the Sutter's Mill meteorite, a carbonaceous chondrite regolith breccia. Science, 1583, 1583–1587.

C. A. Johnson , M. Prinz , M. K. Weisberg , et al. 1990. Dark inclusions in Allende, Leoville, and Vigarano: Evidence for nebular oxidation of CV3 constituents. Geochimica et Cosmochimica Acta, 54, 819–830.

G. W. Kallemeyn and J. T. Wasson 1981. The compostional classification of chondrites – I. The carbonaceous chondrite groups. Geochimica et Cosmochimica Acta, 45, 1217–1230.

K. Keil 2010. Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chemie der Erde, 70, 295–317.

A. N. Krot , M. I. Petaev , E. R. D. Scott , et al. 1998. Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration. Meteoritics & Planetary Science, 33, 1065–1085.

T. Lee , D. A. Papanastassiou , and G.J. Wasserburg 1976. Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophysical Research Letters, 3, 41–44.

L. A. Leshin , J. Farquhar , Y. Guan , et. al. 2001. Oxygen isotopic anatomy of Tagish Lake: relationship to primary and secondary minerals in CI and CM chondrites. Lunar and Planetary Science Conference, 32, 1843.

T. J. McCoy , K. Keil , D. W. Muenow , et al. 1997. Partial melting and melt migration in the acapulcoite–lodranite parent body. Geochimica et Cosmochimica Acta, 61, 639–650.

T. J. McCoy , R. A. Ketcham , L. Wilson , et al. 2006. Formation of vesicles in asteroidal basaltic meteorites. Earth and Planetary Science Letters, 246, 102–108.

D. W. Muenow , K. Keil , and L. Wilson 1992. High-temperature mass spectrometric degassing of enstatite chondrites: Implications for pyroclastic volcanism on the aubrite parent body. Geochimica et Cosmochimica Acta, 56, 4267–4280.

D. W. Muenow , K. Keil , and T. J. McCoy 1995. Volatiles in unequilibrated ordinary chondrites: Abundances, sources and implications for explosive volcanism on differentiated asteroids. Meteoritics & Planetary Science, 30, 639–645.

W. Neumann , D. Breuer , and T. Spohn 2013. The thermo-chemical evolution of Asteroid 21 Lutetia. Icarus, 224, 126–143.

W. Neumann , D. Breuer , and T. Spohn 2014. Differentiation of Vesta: Implications for a shallow magma ocean. Earth and Planetary Science Letters, 395, 267–280.

K. Öberg , R. Murray-Clay , and E. A. Bergin 2011. The effects of snowlines on C/O in planetary atmospheres. Astrophysical Journal Letters, 743, L16.

T. Ootsubo , H. Kawakita , and S. Hamada , et al. 2012. AKARI near-infrared spectroscopic survey for CO2 in 18 comets. Astrophysical Journal, 752, 1–12.

P. Papale 1997. Modeling of the solubility of a one-component H2O or CO2 fluid in silicate liquids. Contributions to Mineralology and Petrology, 126, 237–251.

N. D. Rosenberg , L. Browning , and W. L. Bourcier 2001. Modeling aqueous alteration of CM carbonaceous chondrites. Meteoritics & Planetary Science, 36, 239–244.

N. Sakamoto , Y. Seto , S. Itoh , et al. 2007. Remnants of the early solar system water enriched in heavy oxygen isotopes. Science, 317, 231–233.

A. R. Sarafian , M. F. Roden , and A. E. Patiño-Douce 2013. The volatile content of Vesta: Clues from apatite in eucrites. Meteoritics & Planetary Science, 48, 2135–2154.

A. R. Sarafian , S. G. Nielson , E. L. Berger , et al. 2015. Wet angrites? A D/H and Pb–Pb study of silicates and phosphates. Lunar and Planetary Science Conference, 46, 1542.

R. A. Schultz , 1993. Brittle strength of basaltic rock masses with applications to Venus. Journal of Geophysical Research, 98, 10,810–883,895.

O. Šrámek , L. Milelli , Y. Ricard , et al. 2012. Thermal evolution and differentiation of planetesimals and planetary embryos. Icarus, 217, 339–354.

N. Sugiura , N. S. Brar , and D. W. Strangway 1984. Degassing of meteorite parent bodies. Journal of Geophysical Research, 89, B641–B644.

N. Sugiura and D.W. Strangway 1985. NRM directions around a centimeter-sized dark inclusion in Allende. Lunar and Planetary Science Conference, 15, C729–C738.

H. Tang and N. Dauphas 2012. Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth and Planetary Science Letters, 359–360, pp.248–263.

D. L. Turcotte and G. Schubert 2002. Geodynamics. New York: Cambridge University Press.

H. C. Urey 1955. The cosmic abundances of potassium, uranium, and thorium and the heat balances of the Earth, the Moon, and Mars. Proceedings of the National Academy of Sciences of the United States of America, 41, 127–144.

D. Walker and T. L. Grove 1993. Ureilite smelting. Meteoritics, 28, 629–636.

J. D. Webster 1997. Chloride solubility in felsic melts and the role of chloride in magmatic degassing. Journal of Petrology, 38, 1793–1807.

B. P. Weiss , L. T. Elkins-Tanton , M. A. Barucci , et al., 2012. Possible evidence for partial differentiation of asteroid Lutetia from Rosetta. Planetary and Space Science, 66, 137–146.

L. Wilson and K. Keil 1991. Consequences of explosive eruptions on small solar system bodies: The case of the missing basalts on the aubrite parent body. Earth and Planetary Science Letters, 104, 505–512.

L. Wilson and K. Keil 2012. Volcanic activity on differentiated asteroids: A review and analysis. Chemie der Erde, 72, 289–321.

J. A. Wood 1964. The cooling rates and parent bodies of several iron meteorites. Icarus, 3, 429–459.

T. Xu , E. Sonnenthal , N. Spycher , et al. 2004. TOUGHREACT – A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration. Compututers & Geosciences, 32, 145–165.

E. D. Young 2001. The hydrology of carbonaceous chondrite parent bodies and the evolution of planet progenitors. Philosphical Transactions of the Royal Soc iety of London A, 359, 2095–2110.

E. D. Young and S. S. Russell , 1998. Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science, 282, 452–455.

E. D. Young , R. D. Ash , P. England , and D. Rumble III. 1999. Fluid flow in chondritic parent bodies: Deciphering the compositions of planetesimals. Science, 286, 1331–1335.

M. E. Zolensky , W. L. Bourcier , and J. L. Gooding 1989. Aqueous alteration on the hydrous asteroids: Results of EQ3/6 computer simulations. Icarus, 78, 411–425.

F. Albarède , R. A. Bouchet , and J. Blichert-Toft 2013. Siderophile elements in IVA irons and the compaction of their parent asteroidal core. Earth and Planetary Science Letters, 362, 122–129.

E. Asphaug , C.B. Agnor , Q. Williams , 2006. Hit-and-run planetary collisions. Nature 439, 155-160.

J. Baker , M. Bizzarro , N. Wittig , J. Connelly , H. Haack , 2005. Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites. Nature, 436, 1127-1131.

J.A. Baker , M. Schiller , M. Bizzarro , 2012. 26Al–26Mg deficit dating ultramafic meteorites and silicate planetesimal differentiation in the early Solar System? Geochimica et Cosmochimica Acta, 77, 415-431.

G. K. Benedix , T. J. McCoy , K. Keil , and S. G. Love 2000. A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB-Winonaite parent body. Meteoritics & Planetary Science, 35, 1127–1141.

J. S. Boesenberg , A. M. Davis , M. Prinz et. al. 2000. The pyroxene pallasites, Vermillion and Yamato 8451: Not quite a couple. Meteoritics & Planetary Science, 35, 757–769.

J. S. Boesenberg , J. S. Delaney , R. H. Hewins , 2012. A petrological and chemical reexamination of main group pallasite formation. Geochimica et Cosmochimica Acta, 89, 134–158.

D.D. Bogard and D.H. Garrison 1998. 39Ar–40Ar ages and thermal history of mesosiderites. Geochimica et Cosmochimica Acta, 62, 1459–1468.

V. F. Buchwald 1975. Handbook of Iron Meteorites, Their History, Distribution, Composition, and Structure. Center for Meteorite Studies, Arizona State University. For digital version see http://evols.library.manoa.hawaii.edu/handle/10524/33750

P.R. Buseck 1977. Pallasite meteorites – mineralogy, petrology and geochemistry. Geochimica et Cosmochimica Acta, 41, 711–721.

A. J. Campbell and M. Humayun 2005. Compositions of group IVB iron meteorites and their parent melt. Geochimica et Cosmochimica Acta, 69, 4733–4744.

N. L. Chabot 2004. Sulfur contents of the parental metallic cores of magmatic iron meteorites. Geochimica et Cosmochimica Acta, 68, 3607–3618.

N. L. Chabot and M. J. Drake 2000. Crystallization of magmatic iron meteorites: The effects of phosphorus and liquid immiscibility. Meteoritics & Planetary Science, 35, 807–816.

N. L. Chabot and J. H. Jones 2003. The parameterization of solid metal–liquid metal partitioning of siderophile elements. Meteoritics & Planetary Science, 38, 1425–1436.

N. L. Chabot , A. J. Campbell , J. H. Jones , M. Humayun , and H. V. Lauer 2006. The influence of carbon on partitioning behavior during planetary evolution. Geochimica et Cosmochimica Acta, 70, 1322–1335.

N. L. Chabot , E. A. Wollack , W. F. McDonough , and R. Ash 2014.The effect of light elements in metallic liquids on partitioning behavior. Lunar and Planetary Science Conference, 45, 1165.

R. N. Clayton and T. K. Mayeda 1978. Genetic relations between iron and stony meteorites. Earth and Planetary Science Letters, 40, 168–174.

R. N. Clayton and T. K. Mayeda 1996. Oxygen isotope studies of achondrites. Geochimica et Cosmochimica Acta, 60, 1999–2017.

R.N. Clayton , T. K. Mayeda , E. J. Olsen , and M. Prinz 1983. Oxygen isotope relationships in iron meteorites. Earth and Planetary Science Letters, 65, 229–232.

C. M. Corrigan , N. L. Chabot , T. J. McCoy et. al. 2009. The iron–nickel–phosphorus system: Effects on the distribution of trace elements during the evolution of iron meteorites. Geochimica et Cosmochimica Acta, 73, 2674–2691.

A. M. Davis and E. J. Olsen 1991. Phosphates in pallasite meteorites as probes of mantle processes in small planetary bodies. Nature, 353, 637–640.

I. A. Franchi 2008. Oxygen isotopes in asteroidal materials. Reviews in Mineralogy and Geochemistry, 68, 345–397.

J. I. Goldstein , E. R. D. Scott , and N. L. Chabot 2009. Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Chemie der Erde, 69, 293–325.

J. I. Goldstein , J. Yang , and E. R. D. Scott 2014. Determining cooling rates of iron and stony-iron meteorites from measurements of Ni and Co at kamacite–taenite interfaces. Geochimica et Cosmochimica Acta, 140, 297–320.

R. C. Greenwood , I. A. Franchi , A. Jambon , J. A. Barrat , and T. H. Burbine 2006. Oxygen isotope variation in stony-iron meteorites. Science, 313, 1763–1765.

R.C. Greenwood , J.A. Barrat , E.R.D. Scott , et. al. 2015. Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites: Implications for the “Great Dunite Shortage” and HED-mesosiderite connection. Geochimica et Cosmochimica Acta, 169, 115–136.

H. Haack and E. R. D. Scott 1993. Chemical fractionations in group IIIAB iron meteorites: Origin by dendritic crystallization of an asteroidal core. Geochimica et Cosmochimica Acta, 57, 3457–3472.

H. Haack , E. R. D. Scott , and K. L. Rasmussen 1996. Thermal and shock history of mesosiderites and their large parent asteroid. Geochimica et Cosmochimica Acta, 60, 2609–2619.

P. J. Hevey and I. A. Sanders 2006. A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95–106.

R. H. Hewins 1983. Impact versus internal origins for mesosiderites. Journal of Geophysical Research, 88, Suppl., B257–B266.

W. D. Hopfe and J. I. Goldstein 2001. The metallographic cooling rate method revised: Application to iron meteorites and mesosiderites. Meteoritics & Planetary Science, 36, 135–154.

J. H. Jones and M. J. Drake 1983. Experimental investigations of trace element fractionation in iron meteorites, II: The influence of sulfur. Geochimica et Cosmochimica Acta, 47, 1199–1209.

J. H. Jones and D. J. Malvin 1990. A nonmetal interaction-model for the segregation of trace-metals during solidification of Fe–Ni–S, Fe–Ni–P, and Fe–Ni–S–P alloys. Metallurgical Materials Transactions B, 21, 697–706.

R. Hutchison 2004. Meteorites: A Petrologic, Chemical and Isotopic Synthesis. Cambridge: Cambridge University Press.

T. Kleine , M. Touboul , B. Bourdon , et. al. 2009. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 5150–5188.

K.K. Larsen , A. Trinquier , C. Paton , et. al. 2011. Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophysical Journal Letters, 735, L37.

K.K. Larsen , M. Schiller , and M. Bizzarro , 2016. Accretion timescales and style of asteroidal differentiation in an 26Al-poor protoplanetary disk. Geochimica et Cosmochimica Acta, 176, 295–315.

G.W. Lugmair and A. Shukolyukov 1998. Early solar system timescales according to 53Mn–53Cr systematics. Geochimica et Cosmochimica Acta, 62, 2863–2886.

MBD 2015. Meteoritical Bulletin Database. http://www.lpi.usra.edu/meteor/metbull.php. Accessed July 7, 2015.

K.H. McDermott , R.C. Greenwood , I.A. Franchi , M. Anand , E.R.D. Scott , 2015. A petrological, geochemical and oxygen isotope study of silicate inclusions in IIE iron meteorites and their relationship with the H chondrites. Geochimica et Cosmochimica Acta, 173, 97–113.

D. W. Mittlefehldt T. J. McCoy , C. A. Goodrich , and A. Kracher 1998. Non-chondritic meteorites from asteroidal bodies. In Planetary Materials (Reviews in Mineralogy, Volume 36), ed. J. J. Papike . Washington, DC: Mineralogical Society of America, ch. 4.

L. V. Moroz , V. I. Ustinov , N. N. Kononkova , N. I. Zaslavskaya , and Y. A. Shukolyukov 1988. Oxygen isotopes of chromite and chemical composition of the minerals from polymineral nodules in Sikhote-Alin meteorite. Lunar and Planetary Science Conference, 19, 809.

M. I. Petaev , R. S. Clarke Jr., E. Jarosewich et. al. 2000. The Chaunskij anomalous mesosiderite: petrology, chemistry, oxygen isotopes, classification and origin. Geochemistry International, 38, S322–S350.

B. N. Powell 1969. Petrology and chemistry of mesosiderites – I. Textures and composition of nickel–iron. Geochimica et Cosmochimica Acta, 33, 789–810.

B. N. Powell 1971. Petrology and chemistry of mesosiderites – II. Silicate textures and compositions and metal–silicate relationships. Geochimica et Cosmochimica Acta, 35, 5–34.

G. Quitté and J. L. Birck 2004. Tungsten isotopes in eucrites revisited and the initial 182Hf/180Hf of the solar system based on iron meteorite data. Earth and Planetary Science Letters, 219, 201–207.

G. Quitté , J-L. Birck , and C. J. Allègre 2005. Stony-iron meteorites: History of the metal phase according to tungsten isotopes. Geochimica et Cosmochimica Acta, 69, 1321–1332.

K.L. Rasmussen 1989b. Cooling rates of IIIAB iron meteorites. Icarus, 80, 315–325.

A. E. Rubin and D. W. Mittlefehldt , 1993. Evolutionary history of the mesosiderite asteroid: A chronologic and petrologic synthesis. Icarus, 101, 201–212.

A. Ruzicka 2014. Silicate-bearing iron meteorites and their implications for the origin of asteroidal parent bodies. Chemie der Erde, 74, 3–48.

A. Ruzicka and M. Hutson 2006. Differentiation and evolution of the IVA meteorite parent body: Clues from pyroxene geochemistry in the Steinbach stony-iron meteorite. Meteoritics & Planetary Science, 41, 1959–1987.

A. Ruzicka , W.V. Boynton , J. Ganguly , 1994. Olivine coronas, metamorphism, and the thermal history of the Morristown and Emery mesosiderites. Geochimica et Cosmochimica Acta, 58, 2725–2741.

E. R. D. Scott , H. Haack , and S. G. Love 2001. Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid. Meteoritics & Planetary Science, 36, 869–881.

B. W. Stewart , D. A. Papanastassiou and G. J. Wasserburg 1994. Sm–Nd chronology and petrogenesis of mesosiderites. Geochimica et Cosmochimica Acta, 58, 3487–3509.

J. A. Tarduno , R. D. Cottrell , F. Nimmo , et. al. 2012. Evidence for a dynamo in the main group pallasite parent body. Science, 338, 939–942.

F. Ulff-Møller 1998. Effects of liquid immiscibility on trace element fractionation in magmatic iron meteorites: A case study of group IIIAB. Meteoritics & Planetary Science, 33, 207–220.

D. van Niekerk 2005. Zinder: A new pyroxene-bearing pallasite. Meteoritics & Planetary Science, 40, 5328.

N. Vogel and P. R. Renne 2008. 40Ar–39Ar dating of plagioclase grain size separates from silicate inclusions in IAB iron meteorites and implications for the thermochronological evolution of the IAB parent body. Geochimica et Cosmochimica Acta, 72, 1231–1255.

M. Wadhwa , A. Shukolyukov , A. M. Davis , G. W. Lugmair , and D.W. Mittlefehldt 2003. Differentiation history of the mesosiderite parent body: Constraints from trace elements and manganese–chromium isotope systematics in Vaca Muerta silicate clasts. Geochimica et Cosmochimica Acta, 67, 5047–5069.

P. L. Wang , D. Rumble , and T. J. McCoy 2004. Oxygen isotopic compositions of IVA iron meteorites: implications for the thermal evolution derived from in situ ultraviolet laser microprobe analyses. Geochimica et Cosmochimica Acta, 68, 1159–1171.

P. H. Warren 2011. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters, 311, 93–100.

J. T. Wasson 1999. Trapped melt in IIIAB irons; solid/liquid elemental partitioning during the fractionation of the IIIAB magma. Geochimica et Cosmochimica Acta, 63, 2875–2889.

J. T. Wasson and J. Wang 1986. A nonmagmatic origin of group-IIE iron meteorites. Geochimica et Cosmochimica Acta, 50, 725–732.

J. T. Wasson and J. W. Richardson 2001. Fractionation trends among IVA iron meteorites: Contrasts with IIIAB trends. Geochimica et Cosmochimica Acta, 65, 951–970.

J. T. Wasson and G. W. Kallemeyn 2002. The IAB iron-meteorite complex: a group, five subgroups, numerous grouplets, closely related, mainly formed by crystal segregation in rapidly cooling melts. Geochimica et Cosmochimica Acta, 66, 2445–2473.

J. T. Wasson and B.-G. Choi 2003. Main-group pallasites – chemical composition, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 67, 3079–3096.

J.T. Wasson and P. Hoppe 2012. Co/Ni ratios at taenite/kamacite interfaces and relative cooling rates in iron meteorites. Geochimica et Cosmochimica Acta, 84, 508–524.

J. T. Wasson , B. G. Choi , E. A. Jerde , and F. Ulff-Møller 1998. Chemical classification of iron meteorites: XII. New members of the magmatic groups. Geochimica et Cosmochimica Acta, 62, 715–724.

J. T. Wasson , H. Huber , and D. J. Malvin 2007. Formation of IIAB iron meteorites. Geochimica et Cosmochimica Acta, 71, 760–781.

J. Willis and J. I. Goldstein 1982. The effects of C, P, and S on trace element partitioning during solidification in Fe–Ni alloys. Journal of Geophysical Research, 87, Supplement, 435–445.

J. Yang and J. I. Goldstein 2006. Metallographic cooling rates of the IIIAB iron meteorites. Geochimica et Cosmochimica Acta, 70, 3197–3215.

J. Yang , J. I. Goldstein , and E. R.D. Scott 2008. Metallographic cooling rates of IVA iron meteorites. Geochimica et Cosmochimica Acta, 72, 3043–3061.

J. Yang , J.I. Goldstein , E. R. D. Scott , 2010a. Main-group pallasites: thermal history, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 74, 4471–4492.

J. Yang , J. I. Goldstein , J. R. Michael , P. G. Kotula , and E. R. D. Scott 2010b. Thermal history and origin of the IVB iron meteorites and their parent body. Geochimica et Cosmochimica Acta, 74, 4493–4506.

C. B. Agee , J. Longhi , eds. 1992. Workshop of the Physics and Chemistry of Magma Oceans from 1 bar to 4 Mbar (LPI Technical Report 92-03). Houston, TX: Lunar and Planetary Institute.

J. Akai 1992. T–T–T diagram of serpentine and saponite, and estimation of metamorphic heating degree of Antarctic carbonaceous chondrites. Proceedings of the NIPR Symposium on Antarctic Meteorites, 5, 120–135.

E. Asphaug 2014. Impact origin of the Moon? Annual Review of Earth and Planetary Science, 42, 551–78.

G. K. Benedix , T. J. McCoy , K. Keil , D. D. Bogard , and D.H. Garrison 1998. A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism. Geochimica et Cosmochimica Acta, 62, 2535–2553.

G. K. Benedix , T. J. McCoy , K. Keil , and S. G. Love 2000. A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB–winonaite parent body. Meteoritics & Planetary Science, 35, 1127–1141.

R. P. Binzel and S. Xu 1993. Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186–191.

D. T. Britt and G. J. Consolmagno 2003. Stony meteorite porosities and densities: a review of the data through 2001. Meteoritics & Planetary Science, 38, 1161–1180.

M. Brown 2004. The mechanisms of melt extraction from lower continental crust of orogens: is it a selforganized critical phenomenon? Transactions of the Royal Society of Edinburgh, Earth Sciences, 95, 35–48.

D. Bruhn , N. Groebner , and D. L. Kohlstedt 2000. An interconnected network of coreforming melts produced by shear deformation. Nature, 403, 883–886.

R. Canup 2004. Dynamics of lunar formation. Annual Review of Astronomy & Astrophysics, 42, 441–475.

J. Castillo-Rogez , T. V. Johnson , and M. H. Lee , et al. 2009. 26Al decay: heat production and a revised age for Iapetus. Icarus, 204, 658–662.

J. C. Castillo-Rogez and T. B. McCord 2010. Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443–459.

G. J. Consolmagno , and M. J. Drake 1977. Composition and evolution of the eucrite parent body: Evidence from rare earth elements. Geochimica et Cosmochimica Acta, 41, 1271–1282.

G. J. Consolmagno , D. T. Britt , and R. J. Macke 2008. The significance of meteorite density and porosity. Chemie der Erde, 68, 1–29.

T. M. Davison , F. J. Ciesla , G. S. Collins , 2010. Post-impact thermal evolution of porous planetesimals. Geochimica et Cosmochimica Acta, 95, 252–269.

T. M. Davison , G. S. Collins , F. J. Ciesla , 2012. Numerical modeling of heating in porous planetesimal collisions. Icarus 208, 468–481.

A. I. Ermakov , M. T. Zuber , D. E. Smith , et al. 2014. Constraints on Vesta's interior structure using gravity and shape models from the Dawn mission. Icarus, 240, 146–160.

R. R. Fu and L. T. Elkins-Tanton 2014. The fate of magmas in planetesimals and the retention of primitive chondritic crusts. Earth and Planetary Science Letters, 390, 128–137.

G. A. Gaetani and T. L. Grove 1999. Wetting of mantle olivine by coreforming melts: The influence of variable fO2/fS2 conditions. Earth and Planetary Science Letters, 169, 147–163.

A. Ghosh and H. Y. McSween 1998. A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus, 134, 187–206.

C. A. Goodrich , J. Van Orman , and L. Wilson 2007. Fractional melting and smelting on the Ureilite parent body. Geochimica et Cosmochimica Acta, 71, 2876–2895.

R. C. Greenwood , I. A. Franchi , A. Jambon , and P. Buchanan 2005. Widespread magma oceans on asteroidal bodies in the early solar system. Nature, 435, 916–918.

R. C. Greenwood , J.-A. Barrat , E. R. D. Scott , et al. 2012a. Has Dawn gone to the wrong asteroid? Oxygen constraints on the nature and composition of the HED parent body. Lunar and Planetary Science Conference, 43, 2711.

R. C. Greenwood , I. A. Franchi , J. M. Gibson , and G. K. Benedix , 2012b. Oxygen isotope variation in primitive achondrites: The influence of primordial, asteroidal and terrestrial processes. Geochimica et Cosmochimica Acta, 94, 146–163.

R. C. Greenwood , J.-A. Barrat , A. Yamaguchi , et al. 2014. The oxygen isotope composition of diogenites: Evidence for early global melting on a single, compositionally diverse, HED parent body. Earth and Planetary Science Letters, 390, 165–174.

P. J. Hevey and I. S. Sanders 2006. A model for planetesimal melt down by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95–106.

Y. Ikeda and H. Takeda , 1985. A model for the origin of basaltic achondrites based on the Yamato 7308 howardite. Journal of Geophysical Research, 90, C649–C663.

E. Janots , E. Gnos , B. Hofmann , et al. 2012. Jiddat al Harasis 556: A howardite impact breccia with an H chondrite component. Meteoritics & Planetary Science, 47, 1558–1574.

A. J. G. Jurewicz , D. W. Mittlefehldt , and J. H. Jones 1993. Experimental partial melting of the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalts. Geochimica et Cosmochimica Acta, 57, 2123–2139.

A. J. G. Jurewicz , J. H. Jones , D. W. Mittlefehldt , and J. Longhi 2004. Devolatilized-Allende partial melts as an analog for primitive angrite magmas. Lunar and Planetary Science Conference, 35, 1417.

K. Keil 2002. Geological history of asteroid 4 Vesta: The “smallest terrestrial planet”. In Asteroids III, ed. W. F. Bottke Jr., A. Cellino , P. Paolicchi , and R. P. Binzel . Tucson, AZ: University of Arizona Press, 573–584.

K. Keil 2010. Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chemie der Erde, 70, 295–317.

K. Keil 2012. Angrites, a small but diverse suite of ancient, silica-undersaturated asteroidal volcanic-plutonic meteorites, and the history of their parent asteroid. Chemie der Erde, 72, 191–218.

K. Keil and A. Bischoff 2008. Northwest Africa 2526: a partial melt residue of enstatite chondrite parentage. Meteoritics & Planetary Science, 43, 1233–1240.

K. Keil and L. Wilson 1993. Explosive volcanism and the compositions of cores of differentiated asteroids. Earth and Planetary Science Letters, 117, 111–124.

K. Keil , T. Ntaflos , G. J. Taylor , et al. 1989. The Shallowater aubrite: Evidence for origin by planetesimal impacts. Geochimica et Cosmochimica Acta, 53, 3291–3307.

K. Keil , D. Stöffler , S. G. Love , E. R. D. Scott , 1997. Constraints on the role of impact heating and melting in asteroids. Meteoritics & Planetary Science, 32 349–363.

T. Kleine , U. Hans , A. J. Irving , and B. Bourdon 2012. Chronology of the angrite parent body and implications for core formation in protoplanets. Geochimica et Cosmochimica Acta, 84, 186–203.

O. Kubaschewski 1982. Iron–Binary Phase Diagrams. New York: Springer.

N. G. Lunning , H. Y. McSween , T. J. Tenner , N. T. Kita , and R. J. Bodnar 2015. Olivine and pyroxene from the mantle of asteroid 4 Vesta. Earth and Planetary Science Letters, 418, 126–135.

S. Maaloe 2003. Melt dynamics of a partially molten mantle with randomly oriented veins. Joural of Petrology, 44, 1193–1210.

B. E. Mandler and L.T. Elkins-Tanton 2013. The origin of eucrites, diogenites, and olivine diogenites: magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 2333–2349.

E. R. Mare , A. G. Tomkins , and B. M. Godel 2014. Restriction of parent body heating by metal–troilite melting: Thermal models for the ordinary chondrites. Meteoritics & Planetary Science, 49, 636–651.

T. J. McCoy , K. Keil , R. N. Clayton , et al. 1997a. A petrologic and isotopic study of lodranites: Evidence for early formation as partial melt residues from heterogeneous precursors. Geochimica et Cosmochimica Acta, 61, 623–637.

T. McCoy , K. Keil , D. W. Muenow , and L. Wilson 1997b. Partial melting and melt migration in the acapulcoite–lodranite parent body. Geochimica et Cosmochimica Acta, 61, 639–650.

T. J. McCoy , T. L. Dickinson , and G. E. Lofgren 1999. Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration. Meteoritics & Planetary Science, 34, 735–746.

T. J. McCoy , D. W. Mittlefehldt , and L. Wilson 2006a. Asteroid differentiation. In Meteorites and the Early Solar System II, ed. D. S. Lauretta and H. Y. McSween Jr. Tucson, AZ: University of Arizona Press, 733–745,

T. J. McCoy , R. A. Ketcham , and L. Wilson et al., 2006b. Formation of vesicles in asteroidal basaltic meteorites. Earth and Planetary Science Letters, 246, 102–108.

R. Merk , D. Breuer , and T. Spohn 2002. Numerical modeling of Al-26-induced radioactive melting of asteroids considering accretion. Icarus, 159, 183–191.

W. G. Minarik , F. J. Ryerson , and E. B. Watson 1996. Textural entrapment of core-forming melts. Science, 272, 530–533.

D. M. Muenow , K. Keil , and L. Wilson 1992. High-temperature mass spectrometric degassing of enstatite chondrites: implications for pyroclastic volcanism on the aubrite parent body. Geochimica et Cosmochimica Acta, 56, 4267–4280.

A. Nicolas , 1986. A melt extraction model based on structural studies in mantle peridotites. Journal of Petrology, 27, 999–1022.

K. Righter and M. J. Drake 1997. A magma ocean on Vesta: core formation and petrogenesis of eucrites and diogenites. Meteoritics & Planetary Science, 32, 929–944.

D. C. Rubie , S. A. Jacobson , A. Morbidelli , et al. 2015. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed solar system bodies and accretion of water. Icarus, 248, 89–108.

T. Rushmer , W. G. Minarik , and G. J. Taylor 2000. Physical processes of core formation. In Origin of the Earth and Moon, ed. R. M. Canup and K. Righter . Tucson, AZ: University of Arizona Press, 227–245.

T. Rushmer , N. Petford , M. Humayun , and A. J. Campbell 2005. Fe–liquid segregation in deforming planetesimals: coupling core-forming compositions with transport phenomena. Earth and Planetary Science Letters, 239, 185–202.

A. Ruzicka 2014. Silicate-bearing iron meteorites and their implications for the evolution of asteroidal parent bodies. Chemie der Erde, 74, 3–48.

A. Ruzicka , G. A. Snyder , and L. A. Taylor 1997. Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of a core and for large-scale differentiation. Meteoritics & Planetary Science, 32, 825–840.

M. Schiller , J. A. Baker , and M. Bizzarro 2010. 26Al–26Mg dating of asteroidal magmatism in the young solar system. Geochimica et Cosmochimica Acta, 74, 4844–4864.

E. R. D. Scott , R. C. Greenwood , J. A. Franchi , and I. S. Sanders 2009. Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochimica et Cosmochimica Acta, 73, 5835–5853.

N. H. Sleep 1988. Tapping of melt by veins and dikes. Journal of Geophysical Research, 93, 10255–10272.

O. Šrámek , L Milelli , Y. Ricard , and S. Labrosse 2012. Thermal evolution and differentiation of planetesimals and planetary embryos. Icarus, 217, 339–354.

D. J. Stevenson 1990. Fluid dynamics of core formation. In Origin of the Earth, ed. H. E. Newsom , and J. H. Jones . New York: Oxford University Press, pp. 231–249.

J. M. Schwartz and I. S. McCallum 2005. Comparative study of equilibrated and unequilibrated eucrites; subsolidus thermal histories of Haraiya and Pasamonte. American Mineralogist, 90, 1871–1886.

J. A. Tarduno , R. D. Cottrell , F. Nimmo , et al. 2012. Evidence for a dynamo in the main group pallasite parent body. Science, 338, 939–942.

G. J. Taylor 1992. Core formation on asteroids. Journal of Geophysical Research, 97, 14,717–14,726.

G. J. Taylor and M. D. Norman 1991. Evidence of magma oceans on asteroids, the Moon and Earth. In Workshop of the Physics and Chemistry of Magma Oceans from 1 bar to 4 Mbar (LPI Technical Report 92-03), ed. C.B. Agee and J. Longhi . Houston, TX: Lunar and Planetary Institute, 58–65.

G. J. Taylor , K. Keil , T. McCoy , H. Haack , and E. R. D. Scott 1993. Asteroid differentiation: Pyroclastic volcanism to magma oceans. Meteoritics, 28, 34–52.

M. Wadhwa , G. Srinivasan , and R. W. Carlson 2006. Timescales of planetesimal differentiation in the early Solar System. In Meteorites and the Early Solar System II, ed. D. S. Lauretta and H. Y. McSween Jr. Tucson, AZ: University of Arizona Press, 715–731.

N. P. Walte , D. C. Rubie , P. D. Bons , and D. J. Frost 2011. Deformation of a crystalline aggregate with a small percentage of high-dihedral-angle liquid: implications for core–mantle differentiation during planetary formation. Earth and Planetary Science Letters, 305, 124–134.

M. J. Walter 2000. A shear pathway to the core. Nature, 403, 839–840.

P. H. Warren 1985. The magma ocean concept and lunar evolution. Annual Reviews Earth and Planetary Science, 13, 201–240.

P. H. Warren 2011. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters, 311, 93–100.

J. T. Wasson 2013. No magma ocean on Vesta (or elsewhere in the astereoid belt: Volatile loss from HEDs (abstract). Lunar and Planetary Science Conference, 44, 2836.

A. G. Whittington , A. M. Hofmeister , and P. I. Nabelek 2009. Temperature-dependent thermal diffusivity of the Earth's crust and implications for magmatism. Nature, 458, 319–321.

U. H. Wiechert , A. H. Halliday , H. Palme , and D. Rumble 2004. Oxygen isotopic evidence for rapid mixing of the HED parent body. Earth and Planetary Science Letters, 221, 373–382.

L. Wilson and K. Keil 1991. Consequences of explosive eruptions on small solar system bodies: The case of the missing basalts on the aubrite parent body. Earth and Planetary Science Letters, 104, 505–512.

L. Wilson and K. Keil , 1996a. Volcanic eruptions and intrusions on the asteroid 4 Vesta. Journal of Geophysical Research – Planets, 101, 18,927–18,940.

L. Wilson and K. Keil , 1996b. Clast sizes of ejecta from explosive eruptions on asteroids: implications for the fate of the basaltic products of differentiation. Earth and Planetary Science Letters, 140, 191–200.

L. Wilson and K. Keil , 1997. The fate of pyroclasts produced in explosive eruptions on the asteroid Vesta. Meteoritics & Planetary Science 32, 813–823.

L. Wilson , C. A. Goodrich , and J. A. Van Orman 2008. Thermal evolution and physics of melt extraction on the ureilite parent body. Geochimica et Cosmochimica Acta, 72, 6154–6176.

L. Wilson , P. Bland , D. Buczkowski , K. Keil , and S. Krot 2015. Hydrothermal and magmatic fluid flow in asteroids. In Asteroids IV, ed. P. Michel , F. DeMeo , and W. F. Bottke . Tucson, AZ: University of Arizona Press, 553–572.

A Yamaguchi , J. A. Barrat , M. Ito , and M. Bohn 2011. Posteucritic magmatism on Vesta: Evidence from the petrology and thermal history of diogenites. Journal of Geophysical Research – Planets, 116, E08009.

J. Yang , J. I. Goldstein , and E. R. D. Scott , 2010. Main-group pallasites: thermal history, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 74, 4471–4492.

T. Yoshino , M. J. Walter , and T. Katsura 2003. Core formation in planetesimals triggered by permeable flow. Nature, 422, 154–157.

J. Zhang , N. Dauphas , A. M. Davis , et al. 2012. The proto-Earth as a significant source of lunar material. Nature Geoscience, 5, 251–255.

M. H. Acuña , B. J. Anderson , C.T. Russell , et al. 2002. NEAR magnetic field observations at 433 Eros: First measurements from the surface of an asteroid. Icarus, 155, 220–228.

B. J. Anderson , C. L. Johnson , H. Korth , et al. 2011. The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333, 1859–1862.

E. Asphaug 2010. Similar-sized collisions and the diversity of planets. Chemie der Erde, 70, 199–219.

H. U. Auster , I. Richter , K.-H. Glassmeier , et al. 2010. Magnetic field investigations during Rosetta's 2867 Šteins flyby. Planetary and Space Science, 58, 1124–1128.

H. U. Auster , I. Apathy , G. Berghofer , et al. 2015. The nonmagnetic nucleus of comet 67P/Churyumov–Gerasimenko. Science, 349, aaa5102-1.

X.-N. Bai and J. M. Stone 2013. Wind-driven accretion in protoplanetary disks. I. Suppression of the magnetorotational instability and launching of the magnetocentrifugal wind. Astrophysical Journal, 769, 76.

P. A. Bland , G. S. Collins , T. M. Davison , et al. 2014. Pressure–temperature evolution of primordial solar system solids during impact-induced compaction. Nature Communications, 5, 5451.

J. F. J. Bryson , C. I. O. Nichols , J. Herrero-Albillos , et al., 2015. Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature, 517, 472–475.

B. F. Burke and K. L. Franklin 1955. Observations of a variable radio source associated with the planet Jupiter. Journal of Geophysical Research, 60, 213–217.

R. F. Butler 1972. Natural remanent magnetization and thermomagnetic properties of Allende meteorite. Earth and Planetary Science Letters, 17, 120–128.

L. Carporzen , B. P. Weiss , L. T. Elkins-Tanton et al. 2011. Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proceedings of the National Academy of Sciences of the United States of America, 108, 6386–6389.

V. Cerantola , N. P. Walte , and D. C. Rubie 2015. Deformation of a crystalline olivine aggregate containing two immiscible liquids: Implications for early core–mantle differentiation. Earth and Planetary Science Letters, 417, 67–77.

N. L. Chabot and H. Haack 2006. Evolution of asteroidal cores. In Meteorites and the Early Solar System II, ed. D. S. Lauretta and H. Y. McSween Jr. Tucson, AZ: University of Arizona Press, 747–771.

K. H. Chan , K. Zhang , L. Li , and X. Liao 2007. A new generation of convection-driven spherical dynamos using EBE finite element method. Physics of the Earth and Planetary Interiors, 163, 1–4.

U. R. Christensen , 2010. Dynamo scaling laws and applications to the planets. Space Science Reviews, 152, 565–590.

U. R. Christensen 2014. Iron snow dynamo models for Ganymede. Icarus, 247, 248–259.

U. R. Christensen and J. Wicht 2007. Numerical dynamo simulations. In Treatise on Geophysics, ed. P. L. Olson . Amsterdam: Elsevier, 245–282.

U. R. Christensen , P. Olson , and G. Glatzmaier 1999. Numerical modeling of the geodynamo: A systematic parameter study. Geophysical Journal International , 138, 393–409.

U. R. Christensen , V. Holzwarth , and A. Reiners 2009. Energy flux determines magnetic field strength of planets and stars. Nature, 457, 167–169.

S. M. Cisowski 1991. Remanent magnetic properties of unbrecciated eucrites. Earth and Planetary Science Letters, 107, 173–181.

D. W. Collinson and S. J. Morden 1994. Magnetic-properties of howardite, eucrite and diogenite (HED) meteorites: Ancient mgnetizing fields and meteorite evolution. Earth and Planetary Science Letters, 126, 421–434.

C. Cournède , J. Gattacceca , and P. Rochette 2014. Partial asteroid differentiation revealed by paleomagnetism of R-chondrite meteorites. EGU General Assembly. Vienna, April 27–May 2, paper no. 4155.

C. Cournède , J. Gattacceca , M. Gounelle , et al. 2015. An early solar system magnetic field recorded in CM chondrites. Earth and Planetary Science Letters, 410, 62–74.

T. G. Cowling 1934. The magnetic field of sunspots. Monthly Notices of the Royal Astronomical Society, 34, 39–48.

L. T. Elkins-Tanton , B. P. Weiss , and M. T. Zuber 2011. Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters, 305, 1–10.

S. Emmerton , A. R. Muxworthy , D. C. Hezel , and P. A. Bland 2011. Magnetic characteristics of CV chondrules with paleointensity implications. Journal of Geophysical Research, 116, E12007.

Y. Fei , C. M. Bertka , and L. W. Finger 1997. High-pressure iron-sulfur compound, Fe3S2, and melting relations in the Fe–FeS system. Science, 275, 1621–1623.

R. R. Fu and L. T. Elkins-Tanton 2014. The fate of magmas in planetesimals and the retention of primitive chondritic crusts. Earth and Planetary Science Letters, 390, 128–137.

R. R. Fu and B. P. Weiss 2012. Detrital remanent magnetization in the solar nebula. Journal of Geophysical Research, 117, E02003.

R. R. Fu , B. P. Weiss , D. L. Shuster , et al. 2012. An ancient core dynamo in asteroid Vesta. Science, 338, 238–241.

R. R. Fu , E. A. Lima , and B. P. Weiss 2014a. No nebular magnetization in the Allende CV carbonaceous chondrite. Earth and Planetary Science Letters, 404, 54–66.

R. R. Fu , B. P. Weiss , E. A. Lima , et al. 2014b. Solar nebula magnetic fields recorded in the Semarkona meteorite. Science, 346, 1089–1092.

J. Gattacceca , P. Rochette , and M. Bourot-Denise 2003. Magnetic properties of a freshly fallen LL ordinary chondrite: the Bensour meteorite. Physics of the Earth and Planetary Interiors, 140, 343–358.

J. Gattacceca and P. Rochette 2004. Toward a robust normalized magnetic paleointensity method applied to meteorites. Earth and Planetary Science Letters, 227, 377–393.

J. Gattacceca L. Berthe M. Boustie , et al. 2008. On the efficiency of shock magnetization processes. Physics of the Earth and Planetary Interiors, 166, 1–10.

T. L. Grove 1982. Use of exsolution lamellae in lunar clinopyroxenes as cooling rate speedometers: An experimental calibration. American Mineralologist, 67, 251–268.

H. Haack and E. R. D. Scott 1992. Asteroid core crystallization by inward dendritic growth. Journal of Geophysical Research, 97, 14727–14734.

K. E. Haisch , E. A. Lada , and C. J. Lada 2001. Disk frequencies and lifetimes in young clusters. Astrophysical Journal Letters, 553, L153–L156.

S. A. Hauck , J. M. Aurnou , and A. J. Dombard 2006. Sulfur's impact on core evolution and magnetic field generation on Ganymede. Journal of Geophysical Research, 111, E09008.

M. G. Kivelson , L. F. Bargatze , K. K. Khurana , et al. 1993. Magnetic field signatures near Galileo's closest approach to Gaspra. Science, 261, 331–334.

M. G. Kivelson , Z. Wang , S. P. Joy , et al. 1995. Solar wind interaction with small bodies. 2. What can Galileo's detection of magnetic rotations tell us about Gaspra and Ida. Advances in Space Research , 16, 47–57.

M. G. Kivelson , K. K. Khurana , C. T. Russell , et al. 1996. Discovery of Ganymede's magnetic field by the Galileo spacecraft. Nature, 384, 537–541.

T. S. Kruijer , M. Touboul , M. Fischer-Gödde , et al. 2014. Protracted core formation and rapid accretion of protoplanets. Science, 344, 1150–1154.

G. Kullerud and H. S. Yoder 1959. Pyrite stability relations in the Fe–S system. Economic Geology, 54, 533–572.

M. Laneuville , M. A. Wieczorek , D. Breuer , et al. 2014. A long-lived lunar dynamo powered by core crystallization. Earth and Planetary Science Letters, 401, 251–260.

M. Le Bars , M. A. Wieczorek , O. Karatekin , D. Cebron , and M. Laneuville 2011. An impact-driven dynamo for the early Moon. Nature, 479, 215–218.

T. J. McCoy , K. Keil , D.W. Muenow , and L. Wilson 1997. Partial melting and melt migration in the acapulcoite–lodranite parent body. Geochimica et Cosmochimica Acta, 61, 639–650.

J. Monteux , A. M. Jellinek , and C. L. Johnson 2011. Why might planets and moons have early dynamos? Earth and Planetary Science Letters, 310, 349–359.

T. Nagata 1979. Natural remanent magnetization of the fusion crust of meteorites. Memoirs of National Institute of Polar Research, 15, 253–272.

C. Narayan and J. I. Goldstein 1982. A dendritic solidification model to explain Ge–Ni variations in iron meteorite chemical groups. Geochimica et Cosmochimica Acta, 46, 259–268.

N. F. Ness 2010. Space exploration of planetary magnetism. Space Science Reviews, 152, 5–22.

F. Nimmo 2009. Energetics of asteroid dynamos and the role of compositional convection. Geophysical Research Letters, 36, L10201.

N. Omidi , X. Blanco-Cano , C. T. Russell , H. Karimabadi , and M. Acuna 2002. Hybrid simulations of solar wind interaction with magnetized asteroids: General characteristics. Journal of Geophysical Research, 107, 1487.

L. J. Pesonen , M. Terho , and I. T. Kukkonen 1993. Physical properties of 368 meteorites: Implications for meteorite magnetism and planetary geophysics. Proceedings of the NIPR Symposium on Antarctic Meteorites, 6, 401–416.

I. Richter , D. E. Brinza , M. Cassel , et al. 2001. First direct magnetic field measurements of an asteroidal magnetic field: DS1 at Braille. Geophysical Research Letters, 28, 1913–1916.

I. Richter , H. U. Auster , K. H. Glassmeier , et al. 2012. Magnetic field measurements during the Rosetta flyby at asteroid (21) Lutetia. Planetary and Space Science, 66, 155–164.

A. Scheinberg , R. R. Fu , E. T. Elkins-Tanton , and B. P. Weiss 2015. Asteroid differentiation: melting and large-scale structure. In Asteroids IV, ed. P. Michel , F. DeMeo , and W. F. Bottke . Tucson, AZ: University of Arizona Press, 533–552.

A. Scheinberg , E. T. Elkins-Tanton , G. Schubert , and D. Bercovici 2016. Core solidification and dynamo evolution in a mantle-stripped planetesimal. Journal of Geophysical Research: Planets, 121, 2–20.

A. Scherstén , T. Elliott , C. Hawkesworth , S. Russell , and J. Masarik 2006. Hf‚W evidence for rapid differentiation of iron meteorite parent bodies. Earth and Planetary Science Letters, 241, 530–542.

D. W. Sears 1975. Temperature gradients in meteorites produced by heating during atmospheric passage. Modern Geology, 5, 155–164.

E. K. Shea , B. P. Weiss , W. S. Cassata , et al. 2012. A long-lived lunar core dynamo. Science, 335, 453–456.

J. B. Simon , X.-N. Bai , J. M. Stone , P. J. Armitage , and K. Beckwith 2013a. Turbulence in the outer regions of protoplanetary disks. I. Weak accretion with no vertical magnetic flux. Astrophysical Journal, 764, 66.

J. B. Simon , X.-N. Bai , J. M. Stone , P. J. Armitage , and K. Beckwith 2013b. Turbulence in the outer regions of protoplanetary disks. II. Strong accretion driven by a vertical magnetic field. Astrophysical Journal, 775, 73.

D. J. Stevenson 2001. Mars’ core and magnetism. Nature, 412, 214–219.

D. J. Stevenson 2003. Planetary magnetic fields. Earth and Planetary Science Letters, 208, 1–11.

D. Stöffler , K. Keil , and E. R. D. Scott 1991. Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta, 55, 3845–3867.

C. Suavet , J. Gattacceca , P. Rochette , et al. 2009. Magnetic properties of micrometeorites. Journal of Geophysical Research, 114, B04102.

T. D. Swindle 1998. Implications of iodine-xenon studies for the timing and location of secondary alteration. Meteoritics & Planetary Science, 33, 1147–1155.

J. A. Tarduno , R. D. Cottrell , F. Nimmo , et al. 2012. Evidence for a dynamo in the main group pallasite parent body. Science, 338, 939–942.

N. J. Turner S. Fromang , C. Gammie , et al., 2014. Transport and accretion in planet-forming disks. In Protostars and Planets VI, ed. H. Beuther , R. S Klessen , C. P Dullemond , and T. Henning . Tucscon, AZ: University of Arizona Press, 411–434.

P. Wasilewski 1981. New magnetic results from Allende C3(V). Physics of the Earth and Planetary Interiors, 26, 134–148.

P. Wasilewski , M. H. Acuña , and G. Kletetschka 2002. 433 Eros: Problems with the meteorite magnetism record in attempting an asteroid match. Meteoritics & Planetary Science, 37, 937–950.

X. Wei , R. Arlt , and A. Tilgner 2014. A simplified model of collision-driven dynamo action in small bodies. Physics of the Earth and Planetary Interiors, 231, 30–38.

M. K. Weisberg , T. J. McCoy , and A. N. Krot , 2006. Systematics and evaluation of meteorite classification. In Meteorites and the Early Solar System II, ed. D. S. Lauretta and H. Y. McSween Jr. Tucson, AZ: University of Arizona Press, 19–52.

B. P. Weiss and S. M. Tikoo 2014. The lunar dynamo. Science, 346, 1246753, doi: 10.1126/science.1246753.

B. P. Weiss , J. S. Berdahl , L. T. Elkins-Tanton , et al., 2008. Magnetism on the angrite parent body and the early differentiation of planetesimals. Science, 322, 713–716.

B. P. Weiss , J. Gattacceca , S. Stanley , P. Rochette , and U. R. Christensen 2010. Paleomagnetic records of meteorites and early planetesimal differentiation. Space Science Reviews, 152, 341–390.

B. P. Weiss , H. Wang , B. G. Downey , et al., 2014. An unmagnetized early planetary body. AGU Fall Meeting, San Francisco, December 15–19, abstract GP51B–3733.

Q. Williams 2009. Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores. Earth and Planetary Science Letters, 284, 564–569.

J. Yang , J. I. Goldstein , and E. R. D. Scott 2008. Metallographic cooling rates and origin of IVA iron meteorites. Geochimica et Cosmochimica Acta, 72, 3043–3061.

J. Yang , J. I. Goldstein , J. R. Michael , P. G. Kotula , and E. R. D. Scott 2010. Thermal history and origin of the IVB iron meteorites and their parent body. Geochimica et Cosmochimica Acta, 74, 4493–4506.

X. Zhan , K. Zhang , and R. Zhu 2011. A full-sphere convection-driven dynamo: Implications for the ancient geomagnetic field. Physics of the Earth and Planetary Interiors, 187, 328–335.

L. B. Ziegler and D. R. Stegman 2013. Implications of a long-lived basal magma ocean in generating Earth's ancient magnetic field. Geochemistry, Geophysics, Geosystems , 14, 4735–4742.

G. Asti , M. Solzi , M. Ghidini , and F. Neri 2004. Micromagnetic analysis of exchange-coupled hard–soft planar nanocomposites. Physical Review B, 69, 174401.

J. S. Boesenberg , J. S. Delaney , and R. H. Hewins 2012. A petrological and chemical reexamination of main group pallasite formation. Geochimica et Cosmochimica Acta, 89, 134–158.

A. Brecher and L. Albright 1977. The thermoremanence hypothesis and the origin of magnetization in iron meteorites. Journal of Geomagnetism and Geoelectricity, 29, 379–400.

J. F. Bryson , N. S. Church , T. Kasama , and R. Harrison 2014a. Nanomagnetic intergrowths in Fe–Ni meteoritic metal: The potential for time-resolved records of planetesimal dynamo fields. Earth and Planetary Science Letters, 388, 237–248.

J. F. J. Bryson , C. I. O. Nichols , J. Herrero-albillos , et. al. 2015. Long-lived magnetism from solidifcation-driven convection on the pallasite parent body. Nature, 517, 472–475.

S. M. Cisowski 1987. Magnetism of meteorites. In Geomagnetism, ed. J. A. Jacobs . New York: Academic Press, vol. 2, 525–560.

R. S. Clarke and E. R. D. Scott 1980. Tetrataenite – ordered FeNi, a new mineral in meteorites. American Mineralogist, 65, 624–630.

M. Dang and D. Rancourt 1996. Simultaneous magnetic and chemical order-disorder phenomena in Fe3Ni, FeNi, and FeNi3 . Physical Review B, 53, 2291.

E. Dos Santos , J. Gattacceca , P. Rochette , R. B. Scorzelli , and G. Fillion 2014. Magnetic hysteresis properties and 57Fe Mössbauer spectroscopy of iron and stony-iron meteorites: Implications for mineralogy and thermal history. Physics of Earth and Planetary Interiors, 242, 50–64.

L. T. Elkins-Tanton , B. P. Weiss , and M. T. Zuber 2011. Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters, 305, 1–10.

D. R. Fearn and D. E. Loper 1981. Compositional convection and stratification of Earth's core. Nature, 289, 393–394.

J. Goldstein and J. Michael 2006. The formation of plessite in meteoritic metal. Meteoritics & Planetary Science, 41, 553–570.

J. Goldstein , E. Scott , and N. Chabot 2009a. Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Chemie der Erde, 69, 293–325.

J. Goldstein , J. Yang , P. Kotula , J. Michael , and E. Scott 2009b. Thermal histories of IVA iron meteorites from transmission electron microscopy of the cloudy zone microstructure. Meteoritics & Planetary Science, 44, 343–358.

H. Haack and E. R. D. Scott 1992. Asteroid core crystallization by inward dendritic growth. Journal of Geophysical Research, 97, 14727–14734.

P. J. Hevey and I. S. Sanders 2006. A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95–106.

P. James , O. Eriksson , B. Johansson , and I. Abrikosov 1999. Calculated magnetic properties of binary alloys between Fe, Co, Ni, and Cu. Physical Review B, 59, 419–430.

T. Kleine , M. Touboul , B. Bourdon , et. al. 2009. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 5150–5188.

E. Kneller and R. Hawig 1991. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Transactions on Magnetics, 27, 3588–3600.

H. Leroux , J.-C. Doukhan , and C. Perron 2000. Microstructures of metal grains in ordinary chondrites: Implications for their thermal histories. Meteoritics & Planetary Science, 35, 569–580.

T. J. McCoy , R. J. Walker , J. I. Goldstein , et. al., 2011. Group IVA irons: New constraints on the crystallization and cooling history of an asteroidal core with a complex history. Geochimica et Cosmochimica Acta, 75, 6821–6843.

L. Néel , J. Pauleve , R. Pauthenet , J. Laugier , and D. Dautreppe 1964. Magnetic properties of an iron–nickel single crystal ordered by neutron bombardment. Journal of Applied Physics, 35, 873–876.

F. Nimmo , 2009. Energetics of asteroid dynamos and the role of compositional convection. Geophysical Research Letters, 36, L10201.

P. Olson and U. R. Christensen 2006. Dipole moment scaling for convection-driven planetary dynamos. Earth and Planetary Science Letters, 250, 561–571.

D. Rancourt , K. Lagarec , A. Densmore , et. al., 1999. Experimental proof of the distinct electronic structure of a new meteoritic Fe–Ni alloy phase. Journal of Magnetism and Magnetic Materials, 191, L255–L260.

D. G. Rancourt and R. B. Scorzelli 1995. Low-spin γ-Fe–Ni (γ LS) proposed as a new mineral in Fe–Ni-bearing meteorites: epitaxial intergrowth of γ LS and tetrataenite as a possible equilibrium state at∼ 20–40 at% Ni. Journal of Magnetism and Magnetic Materials, 150, 30–36.

K. B. Reuter , D. B. Williams , and J. I. Goldstein 1988. Low temperature phase transformations in the metallic phases of iron and stony-iron meteorites. Geochimica et Cosmochimica Acta, 52, 617–626.

M. G. Sterenborg and J. W. Crowley 2013. Thermal evolution of early solar system planetesimals and the possibility of sustained dynamos. Physics of Earth and Planetary Interiors, 214, 53–73.

J. A. Tarduno , R. D. Cottrell , F. Nimmo , et. al., 2012. Evidence for a dynamo in the main group pallasite parent body. Science, 338, 939–42.

J. A. Tarduno , R. Cottrell , M. Watkeys , et. al. 2010. Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science, 327, 1238–1240.

P. Wasilewski 1988. Magnetic characterization of the new magnetic mineral tetrataenite and its contrast with isochemical taenite. Physics of Earth and Planetary Interiors, 52, 150–158.

J. T. Wasson and B.-G. Choi 2003. Main-group pallasites: Chemical composition, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 67, 3079–3096.

B. P. Weiss , J. S. Berdahl , L. Elkins-Tanton , et. al., 2008. Magnetism on the angrite parent body and the early differentiation of planetesimals. Science, 322, 713–716.

Q. Williams 2009. Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores. Earth and Planetary Science Letters, 284, 564–569.

C. Yang , D. Williams , and J. Goldstein 1996. A revision of the Fe–Ni phase diagram at low temperatures (< 400 °C). Journal of Phase Equilibria, 17, 522–531.

C.-W. Yang , D. B. Williams , and J. I. Goldstein 1997a. Low-temperature phase decomposition in metal from iron, stony-iron, and stony meteorites. Geochimica et Cosmochimica Acta, 61, 2943–2956.

C. Yang , D. B. Williams , and J. I. Goldstein 1997b. A new empirical cooling rate indicator for meteorites based on the size of the cloudy zone of the metallic phases. Meteoritics & Planetary Science, 32, 423–429.

J. Yang , J. I. Goldstein , and E. R. Scott 2010. Main-group pallasites: Thermal history, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 74, 4471–4492.

J. Yang , J. I. Goldstein , and E. R. D. Scott 2008. Metallographic cooling rates and origin of IVA iron meteorites. Geochimica et Cosmochimica Acta, 72, 3043–3061.

J. Zhang , D. Williams , and J. Goldstein 1993. The microstructure and formation of duplex and black plessite in iron meteorites. Geochimica et Cosmochimica Acta, 57, 3725–3735.

Y. Amelin 2008. U–Pb ages of angrites. Geochimica et Cosmochimica Acta, 72, 221–232.

Y. Amelin , A. Kaltenbach , T. Iizuka , et al. 2010. U–Pb chronology of the solar system's oldest solids with variable 238U/235U. Earth and Planetary Science Letters, 300, 343–350.

J. A. Baker , M. Schiller , and M. Bizzarro 2012. 26Al–26Mg deficit dating ultramafic meteorites and silicate planetesimal differentiation in the early solar system? Geochimica et Cosmochimica Acta, 77, 415–431.

A. Bouvier , L. J. Spivak-Birndorf , G. A. Brennecka , and M. Wadhwa 2011. New constraints on early solar system chronology from Al–Mg and U–Pb isotope systematics in the unique basaltic achondrite Northwest Africa 2976. Geochimica et Cosmochimica Acta, 75, 5310–5323.

A. Bouvier and M. Wadhwa 2010. The age of the solar system redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nature Geoscience, 3, 637–641.

G. A. Brennecka and M. Wadhwa 2012. Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early solar system. Proceedings of the National Academy of Sciences of the United States of America, 109, 9299–9303.

G. A. Brennecka , S. Weyer , M. Wadhwa et al. 2010. 238U/235U variations in meteorites: Extant 247Cm and implications for Pb–Pb dating. Science, 327, 449–451.

A. J. Campbell and M. Humayun 2005. Compositions of group IVB iron meteorites and their parent melt. Geochimica et Cosmochimica Acta , 69, 4733–4744.

N. L. Chabot 2004. Sulfur contents of the parental metallic cores of magmatic iron meteorites. Geochimica et Cosmochimica Acta, 68, 3607–3618.

J. N. Connelly , M. Bizzarro , A. N. Krot , et al. 2012. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338 , 651–655.

J. M. D. Day , R. J. Walker , L. Qin , and D. Rumble Iii 2012. Late accretion as a natural consequence of planetary growth. Nature Geoscience, 5, 614–617.

D. P. Glavin , A. Kubny , E. Jagoutz , and G. W. Lugmair 2004. Mn–Cr isotope systematics of the D'Orbigny angrite. Meteoritics & Planetary Science, 39, 693–700.

A. Goldmann , G. Brennecka , J. Noordmann , S. Weyer , and M. Wadhwa 2015. The uranium isotopic composition of the Earth and the solar system. Geochimica et Cosmochimica Acta, 148, 145–158.

C. M. Gray , D. A. Papanastassiou , and G. J. Wasserburg 1973. Identification of early condensates from solar nebula. Icarus, 20, 213–239.

L. Grossman 1980. Refractory inclusions in the Allende meteorite. Annual Review of Earth and Planetary Sciences, 8, 559–608.

U. Hans , T. Kleine , and B. Bourdon 2013. Rb–Sr chronology of volatile depletion in differentiated pro-toplanets: BABI, ADOR and ALL revisited. Earth and Planetary Science Letters, 374, 204–214.

P. J. Hevey and I. S. Sanders 2006. A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95–106.

J. C. Holst , M. B. Olsen , C. Paton , et. al. (2013) 182Hf–182W dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early solar system. Proceedings of the National Academy of Sciences of the United States of America, 110, 8819–8823.

M. Hopkins , S. Mojzsis , W. Bottke , and O. Abramov 2015. Micrometer-scale U–Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body. Icarus, 245, 367–378.

B. Jacobsen , Q.-Z. Yin , F. Moynier , et al. 2008. 26Al–26Mg and 207Pb–206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth and Planetary Science Letters, 272, 353–364.

N. T. Kita , G. R. Huss , S. Tachibana , et al. 2005. Constraints on the origin of chondrules and CAIs from short-lived and long-lived radionuclides. In Chondrites and the Protoplanetary Disk , ed. A. N. Krot , E. R. D. Scott , and B. Reipurth . San Francisco, CA: Astronomical Society of the Pacific, 558–587.

T. Kleine , C. Münker , K. Mezger , and H. Palme 2002. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature, 418, 952–955.

T. Kleine , K. Mezger , C. Münker , H. Palme , and A. Bischoff , 2004. 182Hf–182W isotope systematics of chondrites, eucrites, and Martian meteorites: Chronology of core formation and mantle differentiation in Vesta and Mars. Geochimica et Cosmochimica Acta, 68, 2935–2946.

T. Kleine , K. Mezger , H. Palme , E. Scherer , and C. Münker 2005a. Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf–182W in CAIs, metal-rich chondrites and iron meteorites. Geochimica et Cosmochimica Acta, 69, 5805–5818.

T. Kleine , K. Mezger , H. Palme , E. Scherer , and C. Münker 2005b. The W isotope composition of eucrites metal: Constraints on the timing and cause of the thermal metamorphism of basaltic eucrites. Earth and Planetary Science Letters, 231 , 41–52.

T. Kleine , M. Touboul , B. Bourdon , et al. 2009. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 5150–5188.

T. Kleine , U. Hans , A. J. Irving , and B. Bourdon 2012. Chronology of the angrite parent body and implications for core formation in protoplanets. Geochimica et Cosmochimica Acta, 84, 186–203.

A. N. Krot , Y. Amelin , P. Bland , et al. 2009. Origin and chronology of chondritic components: A review. Geochimica et Cosmochimica Acta, 73, 4963–4997.

T. S. Kruijer , M. Fischer-Gödde , T. Kleine , et al. 2013. Neutron capture on Pt isotopes in iron meteorites and the Hf–W chronology of core formation in planetesimals. Earth and Planetary Science Letters, 361, 162–172.

T. S. Kruijer , T. Kleine , M. Fischer-Godde , C. Burkhardt , and R. Wieler 2014a. Nucleosynthetic W isotope anomalies and the Hf–W chronometry of Ca–Al-rich inclusions. Earth and Planetary Science Letters, 403, 317–327.

T. S. Kruijer , M. Touboul , M. Fischer-Godde , et al. 2014b. Protracted core formation and rapid accretion of protoplanets. Science, 344 , 1150–1154.

T. Kunihiro , A. E. Rubin , K. D. McKeegan , and J. T. Wasson , 2004. Initial 26Al/27Al in carbonaceous-chondrite chondrules: Too little 26Al to melt asteroids. Geochimica et Cosmochimica Acta, 68, 2947–2957.

K. K. Larsen , A. Trinquier , C. Paton , et al. 2011. Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophysical Journal Letters, L37.

I. Leya , R. Wieler , and A. N. Halliday 2003. The influence of cosmic-ray production on extinct nuclide systems. Geochimica et Cosmochimica Acta, 67, 529–541.

G. W. Lugmair and A. Shukolyukov 1998. Early solar system timescales according to 53Mn–53Cr systematics. Geochimica et Cosmochimica Acta, 62, 2863–2886.

G. J. MacPherson , N. T. Kita , T. Ushikubo , E. S. Bullock and A. M. Davis , 2012. Well-resolved variations in the formation ages for Ca‚ Al-rich inclusions in the early solar system. Earth and Planetary Science Letters, 331–332, 43–54.

A. Markowski , G. Quitté , A. N. Halliday , and T. Kleine 2006. Tungsten isotopic compositions of iron meteorites: Chronological constraints vs. cosmogenic effects. Earth and Planetary Science Letters, 242, 1–15.

T. J. McCoy , D. W. Mittlefehldt and L. Wilson 2006. Asteroid differentiation. In Meteorites and the Early Solar System II, ed. D. S. Lauretta and H. Y. McSween Jr. Tucson, AZ: University of Arizona Press, 733–745.

K. Misawa , A. Yamaguchi , and H. Kaiden , 2005. U–Pb and Pb-207–Pb-206 ages of zircons from basaltic eucrites: Implications for early basaltic volcanism on the eucrite parent body. Geochimica et Cosmochimica Acta, 69, 5847–5861.

D. W. Mittlefehldt , T. J. McCoy , C. A. Goodrich , and A. Kracher 1998. Non-chondritic meteorites from asteroidal bodies. In Planetary Materials (Reviews in Mineralogy, Volume 36), ed. J. J. Papike . Washington, DC: Mineralogical Society of America, ch. 4.

N. Moskovitz and E. Gaidos 2011. Differentiation of planetesimals and the thermal consequences of melt migration. Meteoritics & Planetary Science, 46, 903–918.

W. Neumann , D. Breuer , and T. Spohn 2014. Differentiation of Vesta: Implications for a shallow magma ocean. Earth and Planetary Science Letters, 395, 267–280.

L. E. Nyquist , T. Kleine , C. Y. Shih , and Y. Reese 2009. The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion, differentiation, and secondary alteration. Geochimica et Cosmochimica Acta, 73, 5115–5136.

L. Qin , N. Dauphas , M. Wadhwa , J. Masarik , and P. E. Janney 2008. Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf–182W chronometry and thermal modeling. Earth and Planetary Science Letters, 273, 94-104.

K. Righter and C. K. Shearer 2003. Magmatic fractionation of Hf and W: Constraints on the timing of core formation and differentiation in the Moon and Mars. Geochimica et Cosmochimica Acta, 67, 2497–2507.

A. Scherstén , T. Elliott , C. Hawkesworth , S. S. Russell , and J. Masarik 2006. Hf–W evidence for rapid differentiation of iron meteorite parent bodies. Earth and Planetary Science Letters, 241, 530–542.

M. Schiller , J. A. Baker , and M. Bizzarro 2010. 26Al–26Mg dating of asteroidal magmatism in the young solar system. Geochimica et Cosmochimica Acta, 74, 4844–4864.

M. Schiller , J. N. Connelly , A. C. Glad , T. Mikouchi , and M. Bizzarro 2015. Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory. Earth and Planetary Science Letters, 420, 45–54.

R. Schoenberg , B. S. Kamber , K. D. Collerson , and O. Eugster 2002. New W-isotope evidence for rapid terrestrial accretion and very early core formation. Geochimica et Cosmochimica Acta, 66, 3151–3160.

E. R. D. Scott and J. T. Wasson 1975. Classification and properties of iron meteorites. Reviews of Geophysics, 13, 527–546.

L. Spivak-Birndorf , M. Wadhwa , and P. E. Janney 2009. 26Al–26Mg systematics in D'Orbigny and Sahara 99555 angrites: Implications for high-resolution chronology using extinct chronometers. Geochimica et Cosmochimica Acta, 73, 5202–5211.

M. Touboul , P. Sprung , S. M. Aciego , B. Bourdon , and T. Kleine 2015. Hf–W chronology of the eucrite parent body. Geochimica et Cosmochimica Acta, 156, 106–121.

J. Villeneuve , M. Chaussidon , and G. Libourel 2009. Homogeneous distribution of Al-26 in the solar system from the Mg isotopic composition of chondrules. Science, 325, 985–988.

G. J. Wasserburg , J. Wimpenny , and Q. Z. Yin 2012. Mg isotope heterogeneity, Al–Mg isochrons, and canonical 26Al/27Al in the early solar system Meteoritics & Planetary Science, 47, 1980–1997.

J. T. Wasson and H. Huber 2006. Compositional trends among IID irons; their possible formation from the P-rich lower magma in a two-layer core. Geochimica et Cosmochimica Acta, 70, 6153–6167.

L. Wilson and K. Keil 2012. Volcanic activity on differentiated asteroids: A review and analysis. Chemie der Erde, 72, 289–321.

N. Wittig , M. Humayun , A. D. Brandon , S. Huang , and I. Leya 2013. Coupled W–Os–Pt isotope systematics in IVB iron meteorites: In situ neutron dosimetry for W isotope chronology. Earth and Planetary Science Letters, 361, 152–161.

A. Yamaguchi , G. J. Taylor , and K. Keil 1996. Global crustal metamorphism of the eucrite parent body. Icarus, 124, 97–112.

Q. Z. Yin , S. B. Jacobsen , K. Yamashita , et al. 2002. A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature, 418, 949–952.

Q. Zhou , Q. Z. Yin , E. D. Young , et al. 2013. SIMS Pb–Pb and U–Pb age determination of eucrite zircons at < 5 μm scale and the first 50 Ma of the thermal history of Vesta. Geochimica et Cosmochimica Acta, 110, 152–175.

F. Albarede 2009. Volatile accretion history of the terrestrial planets and dynamic implications. Nature, 461, 1227–1233.

R. M. G. Armytage , R. B. Georg , P. S. Savage , et al. 2011. Silicon isotopes in meteorites and planetary core formation. Geochimica et Cosmochimica Acta, 75, 3662–3676.

J.A. Barrat , B. Zanda , F. Moynier , et al. 2012. Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn isotopes. Geochimica et Cosmochimica Acta, 83, 79–92.

C. M. Bertka and Y. Fei 1997. Mineralogy of the Martian interior up to core–mantle boundary pressures. Journal of Geophysical Research, 102, 5251–5264.

F. Birch 1964. Density and composition of mantle and core. Journal of Geophysical Research, 69, 4377–4388.

I. Casanova , K. Keil , and H. E. Newsom 1993. Composition of metal in aubrites: constraints on core formation. Geochimica et Cosmochimica Acta, 57, 675–682.

R. Chakrabarti and S. B. Jacobsen 2010. Silicon isotopes in the inner solar system: Implications for core formation, solar nebular processes and partial melting. Geochimica et Cosmochimica Acta, 74, 6921–6933.

H. Chen , P. S. Savage , F-.Z. Teng , R. T. Helz , and F. Moynier 2013. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth. Earth and Planetary Science Letters, 407, 96–108.

P. R. Craddock and N. Dauphas 2010. Iron isotopic compositions of geological reference materials and chondrites. Geostandards and Geoanalytical Research, 35, 101–123.

P. R. Craddock , J. M. Warren , and N. Dauphas 2013. Abyssal peridotites reveal the near-chondritic Fe isotopic composition of the Earth. Earth and Planetary Science Letters, 365, 63–76.

N. Dauphas , P. R. Craddock , P. D. Asimow , et al. 2009. Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth and Planetary Science Letters, 288, 255–267.

N. Dauphas , F. Poitrasson , C. Burkhardt , H. Kobayashi , and K. Kurosawa 2015. Planetary and meteoritic Mg/Si and δ30Si variations inherited from solar nebula chemistry. Earth and Planetary Science Letters, 427, 236–248.

A. Davis , A. Hashimoto , and R. Clayton 1990. Isotope mass fractionation during evaporation of Mg2SiO4 . Nature, 347, 655–658.

J. M. Day and F. Moynier 2014. Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon. Philosophical Transactions of the Royal Society of London A, 372, #20130259.

Y. Fei and C. Bertka 2005. The interior of Mars. Science, 308, 1120–1121.

C. Fitoussi , B. Bourdon , T. Kleine , F. Oberli , and B. C. Reynolds 2009. Si isotope systematics of meteorites and terrestrial peridotites: Implications for Mg/Si fractionation in the solar nebula and for Si in the Earth's core. Earth and Planetary Science Letters, 287, 77–85.

C. Fitoussi and B. Bourdon 2012. Silicon isotope evidence against an enstatite chondrite earth. Science, 335, 1477–1480.

G. A. Gaetani and T. L. Grove 1997. Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: Constraints on core formation in the Earth and Mars. Geochimica et Cosmochimica Acta, 61, 1829–1846.

R. B. Georg , A. N. Halliday , E. A. Schauble , and B. C. Reynolds 2007. Silicon in the Earth's core. Science, 447, 1102–1006.

C. K. Gessmann , B. J. Wood , D. C. Rubie , and M. R. Kilburn 2001. Solubility of silicon in liquid metal at high pressure: Implications for the composition of the Earth's core. Earth and Planetary Science Letters, 184, 367–376.

D. C. Hezel , A. W. Needham , R. Armytage , et al. 2010. A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites. Earth and Planetary Science Letters, 296, 423–433.

G. F. Herzog , F. Moynier , F. Albarede , and A. A. Berezhnoy 2009. Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele's hairs, and a terrestrial basalt. Geochimica et Cosmochimica Acta, 73, 5884–5904.

R. C. Hin , M. W. Schmidt , and B. Bourdon 2012. Experimental evidence for the absence of iron isotope fractionation between metal and silicate liquids at 1 GPa and 1250–1300 °C and its cosmochemical consequences. Geochimica et Cosmochimica Acta, 93, 164–181.

C Kato , F. Moynier , M. Valdes , J. Dhaliwal , and J. Day 2015. Extensive volatile loss during the formation and differentiation of the Moon. Nature Communications, 6, article no. 7617.

K. Keil 2010. Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chemie der Erde, 70, 295–317.

L. Keil 2012. Angrites, a small but diverse suite of ancient, silica-undersaturated volcanic-plutonic mafic meteorites, and the history of their parent asteroid. Chemie der Erde, 72, 191–218.

P.