Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2017
  • Online publication date: February 2017

10 - Magnetic Mineralogy of Meteoritic Metal: Paleomagnetic Evidence for Dynamo Activity on Differentiated Planetesimals

from Part Two - Chemical and Mineralogical Diversity

Related content

Powered by UNSILO
Asphaug, E. 2010. Similar-sized collisions and the diversity of planets. Chemie der Erde, 70, 199219.
Asti, G., Solzi, M., Ghidini, M., and Neri, F. 2004. Micromagnetic analysis of exchange-coupled hard–soft planar nanocomposites. Physical Review B, 69, 174401.
Boesenberg, J. S., Delaney, J. S., and Hewins, R. H. 2012. A petrological and chemical reexamination of main group pallasite formation. Geochimica et Cosmochimica Acta, 89, 134158.
Brecher, A. and Albright, L. 1977. The thermoremanence hypothesis and the origin of magnetization in iron meteorites. Journal of Geomagnetism and Geoelectricity, 29, 379400.
Bryson, J. F., Church, N. S., Kasama, T., and Harrison, R. 2014a. Nanomagnetic intergrowths in Fe–Ni meteoritic metal: The potential for time-resolved records of planetesimal dynamo fields. Earth and Planetary Science Letters, 388, 237248.
Bryson, J. F., Herrero-Albillos, J., Kronast, F., et al. 2014b. Nanopaleomagnetism of meteoritic Fe–Ni studied using X-ray photoemission electron microscopy. Earth and Planetary Science Letters, 396, 125133.
Bryson, J. F. J., Nichols, C. I. O., Herrero-albillos, J., et al. 2015. Long-lived magnetism from solidifcation-driven convection on the pallasite parent body. Nature, 517, 472475.
Cisowski, S. M. 1987. Magnetism of meteorites. In Geomagnetism, ed. Jacobs, J. A.. New York: Academic Press, vol. 2, 525560.
Clarke, R. S. and Scott, E. R. D. 1980. Tetrataenite – ordered FeNi, a new mineral in meteorites. American Mineralogist, 65, 624630.
Dang, M., Dubé, M., and Rancourt, D. 1995. Local moment magnetism of fcc Fe–Ni alloys II. Ising approximation Monte Carlo. Journal of Magnetism and Magnetic Materials, 147, 133140.
Dang, M. and Rancourt, D. 1996. Simultaneous magnetic and chemical order-disorder phenomena in Fe3Ni, FeNi, and FeNi3. Physical Review B, 53, 2291.
Dos Santos, E., Gattacceca, J., Rochette, P., Scorzelli, R. B., and Fillion, G. 2014. Magnetic hysteresis properties and 57Fe Mössbauer spectroscopy of iron and stony-iron meteorites: Implications for mineralogy and thermal history. Physics of Earth and Planetary Interiors, 242, 5064.
Elkins-Tanton, L. T., Weiss, B. P., and Zuber, M. T. 2011. Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters, 305, 110.
Fearn, D. R. and Loper, D. E. 1981. Compositional convection and stratification of Earth’s core. Nature, 289, 393394.
Goldstein, J. and Michael, J. 2006. The formation of plessite in meteoritic metal. Meteoritics & Planetary Science, 41, 553570.
Goldstein, J., Scott, E., and Chabot, N. 2009a. Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Chemie der Erde, 69, 293325.
Goldstein, J., Yang, J., Kotula, P., Michael, J., and Scott, E. 2009b. Thermal histories of IVA iron meteorites from transmission electron microscopy of the cloudy zone microstructure. Meteoritics & Planetary Science, 44, 343358.
Haack, H. and Scott, E. R. D. 1992. Asteroid core crystallization by inward dendritic growth. Journal of Geophysical Research, 97, 1472714734.
Hevey, P. J. and Sanders, I. S. 2006. A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95106.
James, P., Eriksson, O., Johansson, B., and Abrikosov, I. 1999. Calculated magnetic properties of binary alloys between Fe, Co, Ni, and Cu. Physical Review B, 59, 419430.
Kleine, T., Touboul, M., Bourdon, B., et al. 2009. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 51505188.
Kneller, E. and Hawig, R. 1991. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Transactions on Magnetics, 27, 35883600.
Leroux, H., Doukhan, J.-C., and Perron, C. 2000. Microstructures of metal grains in ordinary chondrites: Implications for their thermal histories. Meteoritics & Planetary Science, 35, 569580.
Lewis, L. H., Mubarok, A., Poirier, E., et al. 2014. Inspired by nature: Investigating tetrataenite for permanent magnet applications. Journal of Physics Condensed Matter, 26, 064213.
Locatelli, A. and Bauer, E. 2008. Recent advances in chemical and magnetic imaging of surfaces and interfaces by XPEEM. Journal of Physics Condensed Matter, 20, 093002.
McCoy, T. J., Walker, R. J., Goldstein, J. I., et al., 2011. Group IVA irons: New constraints on the crystallization and cooling history of an asteroidal core with a complex history. Geochimica et Cosmochimica Acta, 75, 68216843.
Néel, L., Pauleve, J., Pauthenet, R., Laugier, J., and Dautreppe, D. 1964. Magnetic properties of an iron–nickel single crystal ordered by neutron bombardment. Journal of Applied Physics, 35, 873876.
Nimmo, F., 2009. Energetics of asteroid dynamos and the role of compositional convection. Geophysical Research Letters, 36, L10201.
Olson, P. and Christensen, U. R. 2006. Dipole moment scaling for convection-driven planetary dynamos. Earth and Planetary Science Letters, 250, 561571.
Rancourt, D., Lagarec, K., Densmore, A., et al., 1999. Experimental proof of the distinct electronic structure of a new meteoritic Fe–Ni alloy phase. Journal of Magnetism and Magnetic Materials, 191, L255L260.
Rancourt, D. G. and Scorzelli, R. B. 1995. Low-spin γ-Fe–Ni (γ LS) proposed as a new mineral in Fe–Ni-bearing meteorites: epitaxial intergrowth of γ LS and tetrataenite as a possible equilibrium state at∼ 20–40 at% Ni. Journal of Magnetism and Magnetic Materials, 150, 3036.
Reuter, K. B., Williams, D. B., and Goldstein, J. I. 1988. Low temperature phase transformations in the metallic phases of iron and stony-iron meteorites. Geochimica et Cosmochimica Acta, 52, 617626.
Sterenborg, M. G. and Crowley, J. W. 2013. Thermal evolution of early solar system planetesimals and the possibility of sustained dynamos. Physics of Earth and Planetary Interiors, 214, 5373.
Tarduno, J. A., Cottrell, R. D., Nimmo, F., et al., 2012. Evidence for a dynamo in the main group pallasite parent body. Science, 338, 939–42.
Tarduno, J. A., Cottrell, R., Watkeys, M., et al. 2010. Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science, 327, 12381240.
Uehara, M., Gattacceca, J., Leroux, H., Jacob, D., and van der Beek, C. J. 2011. Magnetic microstructures of metal grains in equilibrated ordinary chondrites and implications for paleomagnetism of meteorites. Earth and Planetary Science Letters, 306, 241252.
Wasilewski, P. 1988. Magnetic characterization of the new magnetic mineral tetrataenite and its contrast with isochemical taenite. Physics of Earth and Planetary Interiors, 52, 150158.
Wasson, J. T. and Choi, B.-G. 2003. Main-group pallasites: Chemical composition, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 67, 30793096.
Weiss, B. P., Berdahl, J. S., Elkins-Tanton, L., et al., 2008. Magnetism on the angrite parent body and the early differentiation of planetesimals. Science, 322, 713716.
Williams, Q. 2009. Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores. Earth and Planetary Science Letters, 284, 564569.
Yang, C., Williams, D., and Goldstein, J. 1996. A revision of the Fe–Ni phase diagram at low temperatures (< 400 °C). Journal of Phase Equilibria, 17, 522531.
Yang, C.-W., Williams, D. B., and Goldstein, J. I. 1997a. Low-temperature phase decomposition in metal from iron, stony-iron, and stony meteorites. Geochimica et Cosmochimica Acta, 61, 29432956.
Yang, C., Williams, D. B., and Goldstein, J. I. 1997b. A new empirical cooling rate indicator for meteorites based on the size of the cloudy zone of the metallic phases. Meteoritics & Planetary Science, 32, 423429.
Yang, J., Goldstein, J. I., and Scott, E. R. 2010. Main-group pallasites: Thermal history, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 74, 44714492.
Yang, J., Goldstein, J. I., and Scott, E. R. D. 2008. Metallographic cooling rates and origin of IVA iron meteorites. Geochimica et Cosmochimica Acta, 72, 30433061.
Zhang, J., Williams, D., and Goldstein, J. 1993. The microstructure and formation of duplex and black plessite in iron meteorites. Geochimica et Cosmochimica Acta, 57, 37253735.