Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-30T06:52:26.956Z Has data issue: false hasContentIssue false

Part Three - Asteroids as Records of Formation and Differentiation

Published online by Cambridge University Press:  25 February 2017

Linda T. Elkins-Tanton
Affiliation:
Arizona State University
Benjamin P. Weiss
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Planetesimals
Early Differentiation and Consequences for Planets
, pp. 267 - 362
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abell, P. A., Fernández, Y. R., Pravec, P., et al. 2005. Physical characteristics of comet Nucleus C/2001 OG108 (LONEOS). Icarus, 179, 174194.CrossRefGoogle Scholar
Abell, P. A., Vilas, F., Jarvis, K. S., et al. 2007. Mineralogical composition of (25143) Itokawa 1998 SF36 from visible and near-infrared reflectance spectroscopy: Evidence for partial melting. Meteoritics & Planetary Science, 42, 21652177.CrossRefGoogle Scholar
A’Hearn, M. F., Feaga, L. M., Keller, H. U., et al. 2012. Cometary volatiles and the origin of comets. Astrophysical Journal, 758, A29.CrossRefGoogle Scholar
Barkume, K. M., Brown, M. E., and Schaller, E. L. 2008. Near-infrared spectra of centaurs and Kuiper belt objects. Astronomical Journal, 135, 5567.CrossRefGoogle Scholar
Barucci, M. A., Cruikshank, D. P., Dotto, E., et al. 2005. Is Sedna another Triton? Astronomy & Astrophysics, 439, L1L4.Google Scholar
Barucci, M. A., Merlin, F., Guilbert, A., et al. 2008a. Surface composition and temperature of the TNO Orcus. Astron. Astrophys., 479, L13L16.Google Scholar
Barucci, M. A., Brown, M. E., Emery, J. P., and Merlin, F. 2008b. Composition and surface properties of trans-neptunian objects and centaurs. In The Solar System Beyond Neptune, ed. Barucci, M. A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A.. Tucson, AZ: University of Arizona Press, 143160.Google Scholar
Barucci, M.A., Alvarez-Candal, A., Merlin, F., et al. 2011. New insights on ices in centaur and transneptunian populations. Icarus, 214, 297307.Google Scholar
Bell, J. F. 1988. A probable asteroidal parent body for the CV or CO chondrites (abstract). Meteoritics, 23, 256257.Google Scholar
Bennett, C. J., Jamieson, C. S., Osamura, Y., and Kaiser, R. I. 2006. Laboratory studies on the irradiation of methane in interstellar, cometary, and solar system ices. Astrophysical Journal, 653, 792811.Google Scholar
Binzel, R. P., Xu, S., Bus, S. J., et al. 1993. Discovery of a main-belt asteroid resembling ordinary chondrite meteorites. Science, 262, 15411543.CrossRefGoogle ScholarPubMed
Bockelée-Morvan, D., Crovisier, J., Mumma, M. J., Weaver, H. A. 2004. The composition of cometary volatiles. In Comets II, ed. Festou, M. C., Keller, H. U., and Weaver, H. A.. Tucson, AZ: University of Arizona Press. Tucson, 391423.Google Scholar
Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P. 2002. An overview of the asteroids: The Asteroids III perspective. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press. Tucson, 315.Google Scholar
Bottke, W. F., Nesvorny, D., Grimm, R. E., Morbidelli, A., and O’Brien, D. P. 2006. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 439, 821824.Google Scholar
Bottke, W. F., Vokrouhlický, D., Minton, D., et al. 2012. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature, 485, 7881.Google Scholar
Brown, M. E. 2000. Near-infrared spectroscopy of Centaurs and irregular satellites. The Astronomical Journal, 119, 977983.CrossRefGoogle Scholar
Brown, M. E. 2012. The compositions of Kuiper belt objects. Annual Review of Earth and Planetary Sciences, 40, 467494.Google Scholar
Brown, M. E. 2013. The density of mid-sized Kuiper belt object 2002 UX25 and the formation of the dwarf planets. Astrophysical Journal Letters, 778, L34.CrossRefGoogle Scholar
Brown, M. E. and Rhoden, A. R. 2014. The 3 μm spectrum of Jupiter’s irregular satellite Himalia. Astrophysical Journal Letters, 793, L44.Google Scholar
Brown, M. E., Trujillo, C. A., and Rabinowitz, D. L. 2005. Discovery of a planetary-sized object in the scattered Kuiper belt. Astrophysical Journal Letters, 635, L97L100.Google Scholar
Brown, M. E., Barkume, K. M., Ragozzine, D., and Schaller, E. L. 2007. A collisional family of icy objects in the Kuiper belt. Nature, 446, 294296.Google Scholar
Brown, M. E., Schaller, E. L., and Fraser, W. C. 2011. A Hypothesis for the color diversity of the Kuiper belt. Astrophysical Journal Letters, 739, L60.Google Scholar
Brown, M. E., Schaller, E. L., and Fraser, W. C. 2012. Water ice in the Kuiper belt. Astronomical Journal, 143, 7 pp.CrossRefGoogle Scholar
Brownlee, D., Tsou, P., Aléon, J., et al. 2006. Comet 81P/Wild 2 under a microscope. Science, 314, 17111716.Google Scholar
Brunetto, R., Romano, F., Blanco, A., et al. 2006. Space weathering of silicates simulated by nanosecond pulse UV excimer laser. Icarus, 180, 546554.Google Scholar
Burbine, T. H. 1998. Could G-class asteroids be the parent bodies of the CM chondrites? Meteoritics & Planetary Science, 33, 253258.CrossRefGoogle Scholar
Burbine, T. H. 2014. Asteroids. Planets, asteroids, comets and the solar system. In Treatise on Geochemistry, 2nd edn, ed. Davis, A. M.. Amsterdam: Elsevier, 365415.Google Scholar
Burbine, T. H. and O’Brien, K. M. 2004. Determining the possible building blocks of the Earth and Mars. Meteoritics & Planetary Science, 39, 667681.Google Scholar
Burbine, T. H., Gaffey, M. J., and Bell, J. F. 1992. S-asteroids 387 Aquitania and 980 Anacostia: Possible fragments of the breakup of a spinel-bearing parent body with CO3/CV3 affinities. Meteoritics, 27, 424434.Google Scholar
Burbine, T. H., Meibom, A., and Binzel, R. P. 1996. Mantle material in the main belt: Battered to bits? Meteoritics & Planetary Science, 31, 607620.Google Scholar
Burbine, T. H., Binzel, R. P., Bus, S. J., and Clark, B. E. 2001. K asteroids and CO3/CV3 chondrites. Meteoritics & Planetary Science, 36, 245253.CrossRefGoogle Scholar
Burbine, T. H., McCoy, T. J., Meibom, A., et al. 2002a. Meteoritic parent bodies: Their number and identification. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press, 653667.Google Scholar
Burbine, T. H., McCoy, T. J., Nittler, L. R., et al. 2002b. Spectra of extremely reduced assemblages: Implications for Mercury. Meteoritics & Planetary Science, 37, 12331244.Google Scholar
Burbine, T. H., McCoy, T. J., Hinrichs, J. L., and Lucey, P. G. 2006. Spectral properties of angrites. Meteoritics & Planetary Science, 41, 11391145.Google Scholar
Burbine, T. H., Duffard, R., Buchanan, P. C., et al. 2011. Spectroscopy of O-type asteroids. Lunar and Planetary Science Conference, 42, 1608.Google Scholar
Bus, S. J. 1999. Compositional structure in the asteroid belt: Results of a spectroscopic survey. Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
Bus, S. J. and Binzel, R. P. 2002. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: a feature-based taxonomy. Icarus, 158, 146177.Google Scholar
Campins, H. and Ryan, E. V. 1989. The identification of crystalline olivine in cometary silicates. Astrophysical Journal, 341, 10591066.CrossRefGoogle Scholar
Campins, H., Ziffer, J., Licandro, J., et al. 2006. Nuclear spectra of comet 162P/Siding Spring (2004 TU12). Astronomical Journal, 132, 13461353.Google Scholar
Campins, H., Licandro, J., Pinilla-Alonso, N., et al. 2007. Nuclear spectra of comet 28P Neujmin 1. Astronomical Journal, 134, 16261633.Google Scholar
Campins, H., Hargrove, K., Pinilla-Alonso, N., et al. 2010. Water ice and organics on the surface of the asteroid 24 Themis. Nature, 464, 13201321.Google Scholar
Capaccioni, F., Coradini, A., Filacchione, G., et al. 2015. The organic-rich surface of comet 67P/Churyumov–Gerasimenko as seen by VIRTIS/Rosetta. Science, 347, 0628.Google Scholar
Carry, B. 2012. Density of asteroids. Planetary and Space Science, 73, 98118.Google Scholar
Chapman, C. R. and Salisbury, J. W. 1973. Comparisons of meteorite and asteroid spectral reflectivities. Icarus, 19, 507–22.Google Scholar
Chapman, C.R. 2004. Space weathering of asteroid surfaces. Annual Review of Earth and Planetary Sciences, 32, 539567.Google Scholar
Chiang, E. and Youdin, A. N. 2010. Forming planetesimals in solar and extrasolar nebulae. Annual Review of Earth and Planetary Sciences, 38, 493522.CrossRefGoogle Scholar
Ciesla, F. J. 2007. Outward transport of high-temperature materials around the midplane of the solar nebula. Science, 318, 613615.CrossRefGoogle ScholarPubMed
Ciesla, F. J., Davison, T. M., Collins, G. S., and O’Brien, D. P. 2013. Thermal consequences of impacts in the early solar system. Meteoritics & Planetary Science, 48, 25592576.Google Scholar
Clark, B. E., Bus, S. J., Rivkin, A. S., et al. 2004a. Spectroscopy of X-type asteroids. Astronomical Journal, 128, 30703081.Google Scholar
Clark, B. E., Bus, S. J., Rivkin, A. S., et al. 2004b. E-type asteroid spectroscopy and compositional modeling. Journal of Geophysical Research, 109, E02001.Google Scholar
Clark, B. E., Ockert-Bell, M. E., Cloutis, E. A., et al. 2009. Spectroscopy of K-complex asteroids: Parent bodies of carbonaceous meteorites? Icarus, 202, 119133.CrossRefGoogle Scholar
Clark, R. N., Brown, R. H., Jaumann, R., et al. 2005. Compositional maps of Saturn’s moon Phoebe from imaging spectroscopy. Nature, 435, 6669.CrossRefGoogle ScholarPubMed
Cloutis, E. A., Gaffey, M. J., Smith, D. G. W., and Lambert, R. St. J. 1990. Reflectance spectra of “featureless” materials and the surface mineralogies of M- and E-class asteroids. Journal of Geophysical Research, 95, 281293.Google Scholar
Cloutis, E. A., Binzel, R. P., Burbine, T. H., et al. 2006. Asteroid 3628 Boznemcová: Covered with angrite-like basalts? Meteoritics & Planetary Science, 41, 11471161.CrossRefGoogle Scholar
Consolmagno, G. J. and Drake, M. J. 1977. Composition and evolution of the eucrite parent body: Evidence from rare earth elements. Geochimica et Cosmochimica Acta, 41, 12711282.Google Scholar
Consolmagno, G., Britt, D., and Macke, R. 2008. The significance of meteorite density and porosity. Chemie der Erde, 68, 129.Google Scholar
Crovisier, J., Biver, N., Bockelée-Morvan, D., and Colom, P. 2009a. Radio observations of Jupiter-family comets. Planetary and Space Science, 57, 11621174.CrossRefGoogle Scholar
Crovisier, J., Biver, N., Bockelée-Morvan, D., et al. 2009b. The chemical diversity of comets: synergies between space exploration and ground-based radio observations. Earth, Moon, and Planets, 105, 267272.Google Scholar
Cruikshank, D. P. and Hartmann, W. K. 1984. The meteorite–asteroid connection: Two olivine-rich asteroids. Science, 223, 281283.Google Scholar
Cruikshank, D. P., Roush, T. L., Moore, J. M., et al. 1997. The surfaces of Pluto and Charon. In Pluto and Charon, ed. Stern, S. A. and Tholen, D. J.. Tucson, AZ: University of Arizona Press. 221267.Google Scholar
Dauphas, N. and Chaussidon, M. 2011. A Perspective from extinct radionuclides on a young stellar object: the sun and its accretion disk. Annual Review of Earth and Planetary Sciences, 39, 351386.Google Scholar
De León, J., Licandro, J., Serra-Ricart, M., et al. 2010. Observations, compositional, and physical characterization of near-Earth and Mars-crosser asteroids from a spectroscopic survey. Astronomy & Astrophysics, 517, A23.Google Scholar
De Luise, F., Dotto, E., Fornasier, S., et al. 2010. A peculiar family of Jupiter Trojans: The Eurybates. Icarus, 209, 586590.Google Scholar
DeMeo, F. E., Binzel, R. P., Slivan, S. M., and Bus, S. J. 2009. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160180.Google Scholar
DeMeo, F. E. and Carry, B. 2013. The taxonomic distribution of asteroids from multi-filter all sky photometric surveys. Icarus, 226, 723741.Google Scholar
DeMeo, F. E. and Carry, B. 2014. Solar system evolution from compositional mapping of the asteroid belt. Nature, 505, 629634.Google Scholar
Dumas, C., Owen, T., and Barucci, M. A. 1998. Near-infrared spectroscopy of low-albedo surfaces of the solar system: search for the spectral signature of dark material. Icarus, 133, 221232.Google Scholar
Dunn, T. L., Burbine, T. H., Bottke, W. F., and Clark, J. P. 2013. Mineralogies and source regions of near-Earth asteroids. Icarus, 222, 273282.Google Scholar
Emery, J. P. and Brown, R. H. 2003. Constraints on the surface composition of Trojan asteroids from near-infrared (0.8–4.0 μm) spectroscopy. Icarus, 164, 104121.Google Scholar
Emery, J.P., Cruikshank, D.P., and van Cleve, J. 2006. Thermal emission spectroscopy (5.2–38 μm) of three Trojan asteroids with the Spitzer Space Telescope: Detection of fine-grained silicates. Icarus, 182, 496512.Google Scholar
Emery, J. P., Burr, D. M., and Cruikshank, D. P. 2011. Near-infrared spectroscopy of Trojan asteroids: Evidence for two compositional groups. Astronomical Journal, 141, 25.Google Scholar
Emery, J. P., Marzari, F. Morbidelli, A., French, L. A., and Grav, T. 2015. The complex history of Trojan asteroids. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 203220.Google Scholar
Gaffey, M. J., Bell, J. F., and Cruikshank, D. P. 1989. Reflectance spectroscopy and asteroid surface mineralogy. In Asteroids II, ed. Binzel, R. P., Gehrels, T., and Matthews, M. F.. Tucson, AZ: University of Arizona Press, 98127.Google Scholar
Gaffey, M. J., Bell, J. F., Brown, R. H., et al. 1993. Mineralogic variations within the S-type asteroid class. Icarus, 106, 573602.Google Scholar
Gomes, R., Levison, H.F., Tsiganis, K., and Morbidelli, A. 2005. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, 466469.Google Scholar
Gradie, J., and Tedesco, E. 1982. Compositional structure of the asteroid belt. Science, 216, 14051407.Google Scholar
Grav, T., Holman, M. J., Gladman, B. J., and Aksnes, K. 2003. Photometric survey of the irregular satellites. Icarus, 166, 3345.CrossRefGoogle Scholar
Grav, T. & Holman, M. J. 2004. Near-infrared photometry of the irregular satellites of Jupiter and Saturn. Astrophysical Journal, 605, L141L144.Google Scholar
Hanner, M. S., Lynch, D. K., & Russell, R. W. 1994. The 8–13 micron spectra of comets and the composition of silicate grains. Astrophysical Journal, 425, 274285.CrossRefGoogle Scholar
Hanner, M. S., Gehrz, R. D., Harker, D. E., et al. 1997. Thermal emission from the dust coma of comet Hale–Bopp and the composition of the silicate grains. Earth Moon and Planets, 79, 247264.Google Scholar
Harker, D. E., Woodward, C. E., Kelley, M. S., et al. 2011. Mid-infrared spectrophotometric observations of fragments B and C of comet 73P/Schwassmann–Wachmann 3. Astronomical Journal, 141, 26.CrossRefGoogle Scholar
Hayward, T. L., Hanner, M. S., and Sekanina, Z. 2000. Thermal infrared imaging and spectroscopy of comet Hale–Bopp (C/1995 O1). Astrophysical Journal, 538, 428455.Google Scholar
Hiroi, T., Pieters, C. M., Zolensky, M. E., and Lipschutz, M. E. 1993. Evidence of thermal metamorphism on the C, G, B, and F asteroids. Science, 261, 10161018.Google Scholar
Hiroi, T. and Sasaki, S. 2001. Importance of space weathering simulation products in compositional modeling of asteroids: 349 Dembowska and 446 Aeternitas as examples. Meteoritics & Planetary Science, 36, 15871596.Google Scholar
Hsieh, H. H. and Jewitt, D. A. 2006. Population of comets in the main asteroid belt. Science, 312, 561563.Google Scholar
Hutchison, R. 2004. Meteorites: A Petrologic, Chemical and Isotopic Synthesis. Cambridge: Cambridge University Press.Google Scholar
Javoy, M., Kaminski, E., Guyot, F., et al. 2010. The chemical composition of the Earth: Enstatite chondrite models. Earth and Planetary Science Letters, 293, 259268.CrossRefGoogle Scholar
Jewitt, D. (2012). The active asteroids. Astronomical Journal, 143, 66.Google Scholar
Johansen, A., Oishi, J. S., Mac Low, M.-M., et al. 2007. Rapid planetesimal formation in turbulent circumstellar disks. Nature, 448, 10221025.CrossRefGoogle ScholarPubMed
Johansen, A., Klahr, H., and Henning, Th. 2011. High-resolution simulations of planetesimal formation in turbulent protoplanetary discs. Astronomy & Astrophysics, 529, A62.CrossRefGoogle Scholar
Johansen, A., Youdin, A. N., and Lithwick, Y. 2012. Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities. Astronomy & Astrophysics, 537, A125.CrossRefGoogle Scholar
Kelley, M. S. and Gaffey, M. J. 2002. High-albedo asteroid 434 Hungaria: Spectrum, composition and genetic connections. Meteoritics & Planetary Science, 37, 18151827.Google Scholar
Kelley, M. S. and Wooden, D. H. 2009. The composition of dust in Jupiter-family comets inferred from infrared spectroscopy. Planetary and Space Science, 57, 11331145.CrossRefGoogle Scholar
Küppers, M., O’Rourke, L., Bockelée-Morvan, D., Zakharov, V., Lee, S., et al. 2014. Localized sources of water vapour on the dwarf planet (1) Ceres. Nature, 505, 525527.Google Scholar
Levison, H., Bottke, W.F., Gounelle, M., et al. 2009. Contamination of the asteroid belt by primordial trans-neptunian objects. Nature, 460, 364366.Google Scholar
Licandro, J., Pinilla-Alonso, N., Pedani, M., et al. 2006. The methane ice rich surface of large TNO 2005 FY9: A Pluto-twin in the trans-neptunian belt? Astronomy & Astrophysics, 445, L35L38.Google Scholar
Lisse, C. M., VanCleve, J., Adams, A. C., et al. 2006. Spitzer spectral observations of the deep impact ejecta. Science, 313, 635640.CrossRefGoogle ScholarPubMed
Lynch, D. K., Russell, R. W., and Sitko, M. L. 2002. 3- to 14-μm spectroscopy of comet C/1999 T1 (McNaught–Hartley). Icarus, 159, 234238.Google Scholar
Marchi, S., Brunetto, R., Magrin, S., et al. 2005. Space weathering of near-Earth and main belt silicate-rich asteroids: Observations and ion irradiation experiments. Astronomy & Astrophysics, 443, 769775.Google Scholar
Marchis, F., Hestroffer, D., Descamps, P., et al. 2006. A low density of 0.8 g cm–3 for the Trojan binary asteroid 617 Patroclus. Nature, 439, 565567.Google Scholar
Marchis, F., Enriquez, J. E., Emery, J. P., et al. 2012. Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations. Icarus, 221, 11301161.Google Scholar
Marchis, F., Durech, J., Castillo-Rogez, J., et al. 2014. The puzzling mutual orbit of the binary Trojan asteroid (624) Hektor. Astrophysical Journal Letters, 783, L37.Google Scholar
Marsset, M., Vernazza, P., Gourgeot, F., et al. 2014. Similar origin for low- and high-albedo Jovian trojans and Hilda asteroids? Astronomy & Astrophysics, 568, L7.Google Scholar
Merlin, F., Barucci, M.A., de Bergh, C., et al. 2010a. Chemical and physical properties of the variegated Pluto and Charon surfaces. Icarus, 210, 930943.Google Scholar
Morbidelli, A., Levison, H. F., Tsiganis, K., and Gomes, R. 2005. Chaotic capture of Jupiter’s Trojan asteroids in the early solar system. Nature, 435, 462465.Google Scholar
Morbidelli, A., Levison, H. F., and Gomes, R. 2008. The dynamical structure of the Kuiper belt and its primordial origin. In The Solar System Beyond Neptune, ed. Barucci, M. A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A.. Tucson, AZ: University of Arizona Press, 275292.Google Scholar
Morbidelli, A., Bottke, W. F., Nesvorny, D., and Levison, H. F. 2009. Asteroids were born big. Icarus, 204, 558573.Google Scholar
Mueller, M., Marchis, F., Emery, J.P., et al. 2010. Eclipsing binary Trojan asteroid Patroclus: Thermal inertia from Spitzer observations. Icarus, 205, 505515.Google Scholar
Mumma, M. J. and Charnley, S. B. 2011. The chemical composition of comets: Emerging taxonomies and natal heritage. Annual Review of Astronomy & Astrophysics, 49, 471524.Google Scholar
Nakamura, T., Noguchi, T., Tanaka, M., et al. 2011. Itokawa dust particles: A direct link between S-type asteroids and ordinary chondrites. Science, 333, 11131116.Google Scholar
Nakashima, D., Kita, N. T., Ushikubo, T., et al. 2014. Oxygen three-isotope ratios of silicate particles returned from asteroid Itokawa by the Hayabusa spacecraft: A strong link with equilibrated LL chondrites. Earth and Planetary Science Letters, 379, 127136.Google Scholar
Peixinho, N., Lacerda, P., and Jewitt, D. 2008. Color–Inclination relation of the classical Kuiper belt objects. Astronomical Journal, 136, 18371845.Google Scholar
Peixinho, N., Delsanti, A., Guilbert-Lepoutre, A., et al. 2012. The bimodal colors of centaurs and small Kuiper belt objects. Astronomy & Astrophysics, 546, A86.Google Scholar
Rivkin, A. S. 2012. The fraction of hydrated C-complex asteroids in the asteroid belt from SDSS data. Icarus, 221, 744752.Google Scholar
Rivkin, A. S. and Emery, J. P. 2010. Detection of ice and organics on an asteroidal surface. Nature, 464, 13221323.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. 2012. Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Sasaki, S., Nakamura, K., Hamabe, Y., et al. 2001. Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature, 410, 555557.Google Scholar
Schaller, E. L. and Brown, M. E. 2007a. Detection of methane on Kuiper belt object (50000) Quaoar. Astrophysical Journal Letters, 670, L49L51.Google Scholar
Schaller, E. L. and Brown, M. E. 2007b. Volatile loss and retention on Kuiper belt objects. Astrophysical Journal Letters, 659, L61L64.CrossRefGoogle Scholar
Shepard, M. K., Taylor, P. A., Nolan, M. C., et al. 2015. A radar survey of M- and X-class asteroids. III. Insights into their composition, hydration state, and structure. Icarus, 245, 3855.CrossRefGoogle Scholar
Sheppard, S. S. and Trujillo, C. A. 2006. A thick cloud of Neptune Trojans and their colors. Science, 313, 511514.Google Scholar
Sierks, H., Lamy, P., Barbieri, C., et al. 2011. Images of asteroid 21 Lutetia: A remnant planetesimal from the early solar system. Science, 334, 487490.Google Scholar
Sierks, H., Barbieri, C., Lamy, P., et al. 2015. On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science, 347, aaa1044.CrossRefGoogle ScholarPubMed
Sitko, M. L., Lynch, D. K., Russell, R. W., and Hanner, M. S. 2004. 3–14 Micron spectroscopy of comets C/2002 O4 (Honig), C/2002 V1 (NEAT), C/2002 X5 (Kudo–Fujikawa), C/2002 Y1 (Juels–Holvorcem), and 69P/Taylor and the relationships among grain temperature, silicate band strength, and structure among comet families. Astrophysical Journal, 612, 576587.Google Scholar
Strazzulla, G., Dotto, E., Binzel, R., et al. 2005. Spectral alteration of the meteorite Epinal (H5) induced by heavy ion irradiation: A simulation of space weathering effects on near-Earth asteroids. Icarus, 174, 3135.Google Scholar
Sunshine, J. M., Bus, S. J., McCoy, T. J., et al. 2004. High calcium pyroxene as an indicator of igneous differentiation in asteroids and meteorites. Meteoritics & Planetary Science, 39, 13431357.Google Scholar
Sunshine, J. M., Bus, S. J., Corrigan, C. M., et al. 2007. Olivine-dominated asteroids and meteorites: Distinguishing nebular and igneous histories. Meteoritics & Planetary Science, 42, 155170.Google Scholar
Sunshine, J. M., Connolly, H. C., McCoy, T. J., et al. 2008. Ancient asteroids enriched in refractory inclusions. Science, 320, 514516.CrossRefGoogle ScholarPubMed
Takir, D. and Emery, J. P. 2012. Outer main belt asteroids: Identification and distribution of four 3-μm spectral groups. Icarus, 219, 641654.Google Scholar
Tegler, S.C., Grundy, W.M., Vilas, F., et al. 2008. Evidence of N2-ice on the surface of the icy dwarf Planet 136472 (2005 FY9). Icarus, 195, 844850.Google Scholar
Thomas, P. C. 2010. Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission. Icarus, 208, 395401.Google Scholar
Tsiganis, K., Gomes, R., Morbidelli, A., and Levison, H. F. 2005. Origin of the orbital architecture of the giant planets of the solar system. Nature, 435, 459461.Google Scholar
Tsuchiyama, A., Uesugi, M., Uesugi, K., et al. 2014. Three-dimensional microstructure of samples recovered from asteroid 25143 Itokawa: Comparison with LL5 and LL6 chondrite particles. Meteoritics & Planetary Science, 49, 172187.Google Scholar
Vernazza, P., Binzel, R. P., Thomas, C. A., et al. 2008. Compositional differences between meteorites and near-Earth asteroids. Nature, 454, 858860.Google Scholar
Vernazza, P., Binzel, R. P., Rossi, A., Fulchignoni, M., and Birlan, M. 2009a. Solar wind as the origin of rapid weathering of asteroid surfaces. Nature, 458, 993995.Google Scholar
Vernazza, P., Brunetto, R., Binzel, , et al. 2009b. Plausible parent bodies for enstatite chondrites and mesosiderites: Implications for Lutetia’s fly-by. Icarus, 202, 477486.Google Scholar
Vernazza, P., Lamy, P., et al. 2011. Asteroid (21) Lutetia as a remnant of Earth’s precursor planetesimals. Icarus, 216, 650659.Google Scholar
Vernazza, P., Delbo, M., King, P. L., et al. 2012. High surface porosity as the origin of emissivity features in asteroid spectra. Icarus, 221, 11621172.Google Scholar
Vernazza, P., Zanda, B., Binzel, R. P., et al. 2014. Multiple and fast: The Accretion of ordinary chondrite parent bodies. Astrophysical Journal, 791, L22.Google Scholar
Vernazza, P., Zanda, B., Nakamura, T., et al. 2015a. The formation and evolution of ordinary chondrite parent bodies. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 618634.Google Scholar
Vernazza, P., Marsset, B., Beck, P. et al. 2015b. Interplanetary dust particles as samples of icy asteroids. Astrophysical Journal, 806, 204.Google Scholar
Vilas, F., Lederer, S. M., Gill, S. L., et al. 2006. Aqueous alteration affecting the irregular outer planets satellites: Evidence from spectral reflectance. Icarus, 180, 453463.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., and Mandell, A. M. 2011. A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.CrossRefGoogle ScholarPubMed
Weiss, B. P. and Elkins-Tanton, L. T. 2013. Differentiated planetesimals and the parent bodies of chondrites. Annual Review of Earth and Planetary Sciences, 41, 529560.Google Scholar
Westphal, A. J., Fakra, S. C., Gainsforth, Z., et al. 2009. Mixing fraction of inner solar system material in comet 81P/Wild2. Astrophysical Journal, 694, 1828.Google Scholar
Wooden, D. H., Woodward, C. E., and Harker, D. E. 2004. Discovery of crystalline silicates in comet C/2001 Q4 (NEAT). Astrophysical Journal Letters, 612, L77L80.Google Scholar
Wooden, D. H. 2008. Cometary refractory grains: interstellar and nebular sources. Space Science Reviews, 138, 75108.Google Scholar
Woodward, C. E., Jones, T. J., Brown, B., et al. 2011. Dust in comet C/2007 N3 (Lulin). Astronomical Journal, 141, A181.Google Scholar
Yang, B., Lucey, P., and Glotch, T. 2013. Are large Trojan asteroids salty? An observational, theoretical, and experimental study. Icarus, 223, 359366.Google Scholar
Youdin, A. N. 2011. On the formation of planetesimals via secular gravitational instabilities with Turbulent Stirring. Astrophysical Journal, 731, 99.Google Scholar
Youdin, A. N. and Goodman, J. 2005. Streaming instabilities in protoplanetary disks. Astrophysical Journal, 620, 459469.Google Scholar
Yurimoto, H., Abe, K., Abe, M., et al. 2011. Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission. Science, 333, 11161119.Google Scholar
Zellner, B. 1975. 44 Nysa: An iron-depleted asteroid. Astrophysical Journal, 198, L45L47.Google Scholar
Zellner, B., Leake, M., Williams, J.G., and Morrison, D. 1977. The E asteroids and the origin of the enstatite achondrites. Geochimica et Cosmochimica Acta, 41, 17591767.Google Scholar
Zolensky, M. E., Zega, T. J., Yano, H., et al. 2006. Mineralogy and petrology of comet 81P/Wild 2 nucleus samples. Science, 314, 17351739.Google Scholar
Zolensky, M. E., Nakamura-Messenger, K., Rietmeijer, F., et al. 2008. Comparing Wild 2 particles to chondrites and IDPs. Meteoritics & Planetary Science, 43, 261272.CrossRefGoogle Scholar

References

Beck, A. W. and McSween, H. Y. Jr. 2010. Diogenites as polymict breccia composed of orthopyroxenite and harzburgite. Meteoritics & Planetary Science, 45, 850872.Google Scholar
Bell, J. F. 1988. A probable asteroidal parent body for the CO or CV chondrites. Meteoritics, 23, 256257.Google Scholar
Bendjoya, Ph. and Zappalà, V. 2002. Asteroid family identification. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press. Tucson, 613618.Google Scholar
Benedix, G. K., Lauretta, D. S., and McCoy, T. J. 2005. Thermodynamic constraints on the formation conditions of winonaites and silicate-bearing IAB irons. Geochimica et Cosmochimica, 69, 51235131.Google Scholar
Binzel, R. P. and Xu, S. 1993. Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186191.Google Scholar
Binzel, R. P., Rivkin, A. S., Bus, S. J., et al. 2001. MUSES-C target asteroid (25143) 1998 SF36: A reddened ordinary chondrite. Meteoritics & Planetary Science, 36, 11671172.Google Scholar
Bottke, W. F. Jr., Durda, D. D., Nesvorný, D., et al. 2005. The fossilized size distribution of the main asteroid belt. Icarus, 175, 111140.Google Scholar
Brunetto, R., Romano, F., Blanco, A., et al. 2006. Space weathering of silicates simulated by nanosecond pulse UV excimer laser. Icarus, 180, 546554.Google Scholar
Burbine, T. H., Meibom, A. and Binzel, R. P. 1996. Mantle material in the main belt: Battered to bits? Meteoritics & Planetary Science, 31, 607620.Google Scholar
Burbine, T. H., Buchanan, P. C., Binzel, R. P., et al. 2001. Vesta, Vestoids, and the HEDs: Relationships and the origin of spectral differences. Meteoritics & Planetary Science, 36, 761781.Google Scholar
Burbine, T. H., McCoy, T. J., Keil, K., et al. 2002a. Meteoritic parent bodies: Their number and identification. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press, 653667.Google Scholar
Burbine, T. H., McCoy, T. J., Nittler, L. R., et al. 2002b. Spectra of extremely reduced assemblages: Implications for Mercury. Meteoritics & Planetary Science, 37, 12331244.Google Scholar
Burbine, T. H., McCoy, T. J., Jarosewich, E., et al. 2003. Deriving asteroid mineralogies from reflectance spectra: Implications for the MUSES-C target asteroid. Antarctic Meteorite Research, 16, 185195.Google Scholar
Bus, S. J. 1999. Compositional structure in the asteroid belt. Results of a spectroscopic survey. Ph.D Thesis, Massachusetts Institute of Technology.Google Scholar
Bus, S. J., ed. 2011. IRTF near-ir spectroscopy of asteroids V2.0. EAR-A-I0046-4-IRTFSPEC-V2.0. NASA Planetary Data System.Google Scholar
Bus, S. J. and Binzel, R. P. 2002. Phase II of the small main-belt asteroid spectroscopic survey: A feature-based taxonomy. Icarus, 158, 146177.Google Scholar
Castillo-Rogez, J. C. and McCord, T. B. 2010. Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459.Google Scholar
Chapman, C. R., 1974. Asteroid size distribution: Implications for the origin of stony-iron and iron meteorites. Geophysical Research Letters, 1, 341344.Google Scholar
Chapman, C. R. 1996. S-type asteroids, ordinary chondrites, and space weathering: The evidence from Galileo’s fly-bys of Gaspra and Ida. Meteoritics & Planetary Science, 31, 699725.Google Scholar
Clark, B. E., Bus, S. J., Rivkin, A. S., et al. 2004. E-type asteroid spectroscopy and compositional modeling. Journal of Geophysical Research, 109, E02001.Google Scholar
Clark, B. E., Ockert-Bell, M. E., Cloutis, E. A., et al. 2009. Spectroscopy of K-complex asteroids: Parent bodies of carbonaceous meteorites? Icarus, 202, 119133.Google Scholar
Clenet, H., Jutzi, M., Barrat, J.-A., et al. 2014. A deep crust–mantle boundary in the asteroid 4 Vesta. Nature, 511, 303306.Google Scholar
de León, J., Pinilla-Alonso, N., Campins, H., et al. 2012. Near-infrared spectroscopic survey of B-type asteroids: Compositional analysis. Icarus, 218, 196206.Google Scholar
DeMeo, F. E., Binzel, R. P., Slivan, S. M., et al. 2009. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160180.Google Scholar
de Sanctis, M. C., Migliorini, A., Luzia Jasmim, F., et al. 2011. Spectral and mineralogical characterization of inner main-belt V-type asteroids. Astronomy & Astrophysics, 533, A77.Google Scholar
Duffard, R. and Roig, F. 2009. Two new V-type asteroids in the outer main belt? Planetary and Space Science, 57, 229234.Google Scholar
Gaffey, M. J. 1976. Spectral reflectance characteristics of the meteorite classes. Journal of Geophysical Research, 81, 905920.Google Scholar
Gaffey, M. J. 1984. Rotational spectral variations of asteroid (8) Flora: Implications for the nature of the S-type asteroids and for the parent bodies of the ordinary chondrites. Icarus, 60, 83114.Google Scholar
Gaffey, M. J. 1986. The spectral and physical properties of metal in meteorite assemblages: Implications for asteroid surface materials. Icarus, 66, 468486.Google Scholar
Gaffey, M. J., Bell, J. F., Brown, R. H., et al. 1993. Mineralogical variations with the S-type asteroid class. Icarus, 106, 573602.Google Scholar
Gardner-Vandy, K. G., Lauretta, D. S., and McCoy, T. J. 2013. A petrologic, thermodynamic and experimental study of brachinites: Partial melt residues of an R chondrite-like precursor. Geochimica et Cosmochimica Acta, 122, 3637.Google Scholar
Goodrich, C. A. 1992. Ureilites: A critical review. Meteoritics, 27, 327352.Google Scholar
Grady, M. M. 2000. Catalogue of Meteorites, 5th edn. Cambridge: Cambridge University Press.Google Scholar
Granahan, J. C. 1993. Investigations of asteroid family geology. Ph.D Thesis, University of Hawaii.Google Scholar
Granahan, J. C. 2011. Spatially resolved spectral variations of asteroid 951 Gaspra. Icarus, 213, 265272.Google Scholar
Granahan, J. C. and Bell, J. F. 1991. On the geologic reality of asteroid families. Lunar and Planetary Science Conference, 22, 477478.Google Scholar
Greenwood, R. C., Barrat, J.-A., Yamaguchi, A., et al. 2013. The oxygen isotope composition of diogenites: Evidence for early global melting on a single, compositionally diverse, HED parent body. Earth and Planetary Science Letters, 390, 165174.Google Scholar
Hardersen, P. S., Gaffey, M. J., and Abell, P. A. 2004. Mineralogy of asteroid 1459 Magnya and implications for its origin. Icarus, 167, 170177.Google Scholar
Hardersen, P. S., Reddy, V., Roberts, R., et al. 2014. More chips off of asteroid (4) Vesta: Characterization of eight Vestoids and their HED meteorite analogs. Icarus, 242, 269282.Google Scholar
Hasselmann, P. H., Carvano, J. M., and Lazzaro, D., 2012. SDSS-based asteroid taxonomy V1.1. EAR-A-I0035-5-SDSSTAX-V1.1. NASA Planetary Data System.Google Scholar
Hiroi, T., Pieters, C. M., and Takeda, H. 1994. Grain size of the surface regolith of asteroid 4 Vesta estimated from its reflectance spectrum in comparison with HED meteorites. Meteoritics, 29, 394396.Google Scholar
Huaman, M. E., Carruba, V., and Domingos, R. C. 2014. Dynamical evolution of V-type photometric candidates. Monthly Notices of the Royal Astronomical Society, 444, 29852992.Google Scholar
Ikeda, Y. and Takeda, H., 1985. A model for the origin of basaltic achondrites based on the Yamato 7308 howardite. Journal of Geophysical Research, 90, C649C663.Google Scholar
Isaacson, P. J., Pieters, C. M., Besse, S., et al., 2011. Remote compositional analysis of lunar olivine-rich lithologies with Moon Mineralogy Mapper (M3) spectra. Journal of Geophysical Research, 116, E00G11.Google Scholar
Ivezić, Ž, Lupton, R. H., Jurić, M., et al. 2002. Color confirmation of asteroid families. Astronomical Journal, 124, 29432948.Google Scholar
Jurewicz, A. J. G., Mittlefehldt, D. W., and Jones, J. H., 1991. Partial melting of the Allende (CV3) meteorite: Implications for origins of basaltic meteorites. Science, 252, 695698.Google Scholar
Keil, K. 2002. Geological history of asteroid 4 Vesta: The “smallest terrestrial planet”. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press, 573584.Google Scholar
Keil, K., 2010. Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chemie der Erde, 70, 295317.Google Scholar
Kelley, M. S. and Gaffey, M. J. 2002. High-albedo asteroid 434 Hungaria: Spectrum, composition, and genetic connections. Meteoritics & Planetary Science, 37, 18151827.Google Scholar
Kelley, M. S., Vilas, F., Gaffey, M. J., et al. 2003. Quantified mineralogical evidence for a common origin of 1929 Kollaa with 4 Vesta and the HED meteorites. Icarus, 165, 215218.Google Scholar
Küppers, M., O’Rourke, L., Bockelée, D. 2014. Localized sources of water vapour on the dwarf planet (1) Ceres. Nature, 505, 525527.Google Scholar
Larson, H. P. and Fink, U., 1975. Infrared spectral observations of asteroid 4 Vesta. Icarus, 26, 420427.Google Scholar
Lazzaro, D., Michtchenko, T., Carvano, J. M., et al. 2000. Discovery of a basaltic asteroid in the outer main belt. Science, 288, 20332035.Google Scholar
Le Corre, L., Reddy, V., Sanchez, J. A., et al. 2015. Exploring exogenic sources for the olivine on asteroid (4) Vesta. Icarus, 258, 483499.Google Scholar
Lucas, M. P. and Emery, J. P. 2014. Asteroid–Meteorite connections in the Hungaria background population: correlations with primitive achondrites? Lunar and Planetary Science Conference, 45, 1766.Google Scholar
Mainzer, A. K., Bauer, J., Grav, T., et al. 2011. Preliminary results from NEOWISE: An enhancement to the Wide-field Infrared Survey Explorer for solar system science. Astrophysical Journal, 731, 53.Google Scholar
Mandler, B. E. and Elkins-Tanton, L. T. 2013. The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 117.Google Scholar
Masiero, J. R., Mainzer, A. K., Grav, T., et al. 2011. Main belt asteroids with WISE/NEOWISE. I. Preliminary albedos and diameters. Astrophysical Journal, 741, 68.Google Scholar
Masiero, J. R., Mainzer, A. K., Bauer, J. M., et al. 2013. Asteroid family identification using the hierarchical clustering method and WISE/NEOWISE physical properties. Astrophysical Journal, 770, 7.Google Scholar
Mayne, R. G., Sunshine, J. M., McSween, H. Y., et al. 2011. The origin of Vesta’s crust: Insights from spectroscopy of the Vestoids. Icarus, 214, 147160.Google Scholar
McCord, T. B. and Gaffey, M. J. 1974. Asteroids: Surface composition from reflection spectroscopy. Science, 186, 352355.Google Scholar
McCord, T. B. and Sotin, C. 2005. Ceres: Evolution and current state. Journal of Geophysical Research: Planets, 110, E05009.Google Scholar
McCord, T. B., Adams, J. B., and Johnson, T. V. 1970. Asteroid Vesta: Spectral reflectivity and compositional implications. Science, 168, 14451447.Google Scholar
McCoy, T. J., Keil, K., Muenow, D. W., et al. 1997. Partial melting and melt migration in the acapulcoite–lodranite parent body. Geochimica et Cosmochimica Acta, 61, 639650.Google Scholar
McCoy, T. J., Nittler, L. R., Burbine, T. H., et al. 2000. Anatomy of a partially differentiated asteroid: A “NEAR”-sighted view of acapulcoites and lodranites. Icarus, 148, 2936.Google Scholar
McCoy, T. J., Robinson, M. S., Nittler, L. R., et al. 2002. The Near Earth Asteroid Rendezvous mission to asteroid 433 Eros: A milestone in the study of asteroids and their relationship to meteorites. Chemie der Erde, 62, 89121.Google Scholar
McSween, H. Y., Ammannito, E., Reddy, V., et al. 2013. Composition of the Rheasilvia basin, a window into Vesta’s interior. Journal of Geophysical Research: Planets, 118, 335346.Google Scholar
Michel, P., Tanga, P., Benz, W., et al. 2002. Formation of asteroid families by catastrophic disruption: Simulations with fragmentation and gravitational reaccumulation. Icarus, 160, 1023.Google Scholar
Michel, P., Benz, W., and Richardson, D. C. 2003. Disruption of fragmented parent bodies as the origin of asteroid families. Nature, 421, 608611.Google Scholar
Michtchenko, T. A., Lazzaro, D., Ferraz-Mello, S., et al. 2002. Origin of the basaltic asteroid 1459 Magnya: A dynamical and mineralogical study of the outer main belt. Icarus, 158, 343359.Google Scholar
Milliken, R. E. and Rivkin, A. S. 2009. Brucite and carbonate assemblages from altered olivine-rich materials on Ceres. Nature Geoscience, 2, 258261.Google Scholar
Moskovitz, N. A., Willman, M., Burbine, T. H., et al. 2010. A spectroscopic comparison of HED meteorites and V-type asteroids in the inner main belt. Icarus, 208, 773788.Google Scholar
Mothé-Diniz, T. and Nesvorný, D. 2008a. Visible spectroscopy of extremely young asteroid families. Astronomy & Astrophysics Letters, 486, L9L12.Google Scholar
Mothé-Diniz, T. and Nesvorný, D. 2008b. Tirela: An unusual asteroid family in the outer main belt. Astronomy & Astrophysics, 492, 593598.Google Scholar
Mothé-Diniz, T., Roig, F., and Carvano, J. M. 2005. Reanalysis of asteroid families structure through visible spectroscopy. Icarus, 174, 5480.Google Scholar
Mothé-Diniz, T., Carvano, J. M., Bus, S. J., et al. 2008. Mineralogical analysis of the Eos family from near-infrared spectra. Icarus, 195, 277294.Google Scholar
Nakamura, T., Noguchi, T., Tanaka, M, et al. 2011. Itokawa dust particles: A direct link between S-type asteroids and ordinary chondrites. Science, 333, 1113–115.Google Scholar
Nathues, A., Mottola, S., Kaasalainen, M., et al. 2005. Spectral study of the Eunomia asteroid family I. Eunomia. Icarus, 175, 452463.Google Scholar
Nathues, A., Hoffmann, M., Schäfer, M., et al. 2014. Distribution of potential olivine sites on the surface of Vesta by Dawn FC. Lunar and Planetary Science Conference, 45, 1740.Google Scholar
Nathues, A., Hoffmann, M., Schäfer, M., et al. 2015. Exogenic olivine from Dawn framing camera color data. Icarus, 258, 467482.Google Scholar
Nesvorný, D. 2012. Nesvorny HCM Asteroid Families V2.0. EAR-A-VARGBDET-5-NESVORNYFAM-V2.0. NASA Planetary Data System.Google Scholar
Nesvorný, D., Brož, M., and Carruba, V. 2015. Identification and dynamical properties of asteroid families. In Asteroids IV, ed. Michel, P., DeMeo, F. E., and Bottke, W. F. Jr. Tucson, AZ: University of Arizona Press. Tucson, 297322.Google Scholar
Neveu, M., Desch, S. J., Shock, E. L., et al. 2015. Prerequisites for explosive cryovolcanism on dwarf planet-class Kuiper belt objects. Icarus, 246, 4864.Google Scholar
Noguchi, T., Nakamura, T., Kimura, M., et al. 2011. Incipient space weathering observed on the surface of Itokawa dust particles. Science, 333, 11211125.Google Scholar
Parker, A., Ivezić, Ž, Jurić, M., et al. 2008. The size distributions of asteroid families in the SDSS Moving Object Catalog 4. Icarus, 198, 138155.Google Scholar
Reddy, V., Emery, J. P., Gaffey, M. J., et al. 2009. Composition of 298 Baptistina: Implications for the K/T impactor link. Meteoritics & Planetary Science, 44, 19171927.Google Scholar
Reddy, V., Carvano, J. M., Lazzaro, D., et al. 2011. Mineralogical characterization of Baptistina asteroid family: Implications for K/T impactor source. Icarus, 216, 184197.Google Scholar
Reed, K. L., Gaffey, M. J., and Lebofsky, L. A. 1997. Shape and albedo variations of asteroid 15 Eunomia. Icarus, 125, 446454.Google Scholar
Righter, K. and Drake, M. J. 1997. A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteoritics & Planetary Science, 32, 929944.Google Scholar
Rivkin, A. S., Asphaug, E., and Bottke, W. F. 2014. The case of the missing Ceres family. Icarus, 243, 429439.Google Scholar
Roig, F., Nesvorný, D., Gil-Hutton, R., et al. 2008. V-type asteroids in the middle main belt. Icarus, 194, 125136.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. 2012. Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Ruzicka, A., Snyder, G. A., and Taylor, L. A. 1997. Vesta as the HED parent body: Implications for the size of a core and for large-scale differentiation. Meteoritics & Planetary Science, 32, 825840.Google Scholar
Sack, R. O., Azeredo, W. J., and Lipschutz, M. E. 1991. Olivine diogenites: The mantle of the eucrite parent body. Geochimica et Cosmochimica Acta, 55, 11111120.Google Scholar
Sanchez, J. A., Reddy, V., Kelley, M. S., et al. 2014. Olivine-dominated asteroids: Mineralogy and origin. Icarus, 228, 288300.Google Scholar
Sasaki, S., Nakamura, K., Hamabe, Y., et al. 2001. Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature, 410, 555557.Google Scholar
Schenck, P., O’Brien, D. P., Marchi, S., et al. 2012. The geologically recent giant impact basins at Vesta’s south pole. Science, 336, 694697.Google Scholar
Scott, E. R. D., Greenwood, R. C., Franchi, I. A., et al. 2009. Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochimica et Cosmochimica Acta, 73, 58355853.Google Scholar
Singer, R. B. and Roush, T. L. 1985. Effects of temperature on remotely sensed mineral absorption features. Journal of Geophysical Research, 90, 1243412444.Google Scholar
Solontoi, M. R., Hammergren, M., Gyuk, G., et al. 2012. AVAST survey 0.4–1.0 μm spectroscopy of igneous asteroids in the inner and middle main belt. Icarus, 220, 577585.Google Scholar
Spoto, F., Milani, A., Cellino, A., et al. 2013. Larger classification allows a new interpretation of the Vesta family. American Astronomical Society DPS meeting, 45, 106.07.Google Scholar
Sunshine, J. M., Bus, S. J., and McCoy, T. J., et al. 2004. High-calcium pyroxene as an indicator of igneous differentiation in asteroids and meteorites. Meteoritics & Planetary Science, 39, 13431357.Google Scholar
Sunshine, J. M., Connolly, H. C., McCoy, T. J., et al. 2008. Ancient asteroids enriched in refractory inclusions. Science, 320, 514517.Google Scholar
Tera, F. and Carlson, R. W. 1999. Assessment of the Pb–Pb and U–Pb chronometry of the early solar system. Geochimica et Cosmochimica Acta, 63, 18771889.Google Scholar
Thangjam, G., Nathues, A., Mengel, K., et al. 2014. Olivine-rich exposures at Bellicia and Arruntia craters on (4) Vesta from Dawn FC. Meteoritics & Planetary Science, 49, 18311850.Google Scholar
Tholen, D. J. 1984. Asteroid taxonomy from cluster analysis of photometry. Ph.D Thesis, University of Arizona.Google Scholar
Thomas, P. C., Parker, J. Wm., McFadden, L. A., et al. 2005. Differentiation of the asteroid Ceres as revealed by its shape. Nature, 437, 224226.Google Scholar
Thomas, C. A., Lim, L., Moskovitz, N., et al. 2015. Searching for a differentiated asteroid family: A spectral survey of the Massalia, Merxia, and Agnia families. American Astronomical Society DPS meeting, 47, 308.13.Google Scholar
Vernazza, P., Birlan, M., Rossi, A., et al. 2006. Physical characterization of the Karin family. Astronomy & Astrophysics, 460, 945951.Google Scholar
Vernazza, P., Binzel, R. P., Thomas, C. A., et al. 2008. Compositional differences between meteorites and near-Earth asteroids. Nature, 454, 858860.Google Scholar
Warner, B. D., Harris, A. W., Vokrouhlický, D., et al. 2009. Analysis of the Hungaria asteroid population. Icarus, 204, 172182.Google Scholar
Warren, P. H. and Kallemeyn, G. W. 1995. Angrites: A volatile-rich variety of asteroidal basalt (except for alkalis and gallium!). Meteoritics, 30, 593.Google Scholar
Watters, T. R. and Prinz, M. 1979. Aubrites: Their origin and relationship to enstatite chondrites. Lunar and Planetary Science Conference, 10, 10731093.Google Scholar
Willman, M., Jedicke, R., Nesvorný, D., et al. 2008. Redetermination of the space weathering rate using spectra of Iannini asteroid family members. Icarus, 195, 663673.Google Scholar
Yamaguchi, A., Clayton, R. N., Mayeda, T. K., et al. 2002. A new source of basaltic meteorites inferred from Northwest Africa 011. Science, 296, 334336.Google Scholar
Yamaguchi, A., Barrat, J.-A., Ito, M., et al. 2011. Posteucritic magmatism on Vesta: Evidence from the petrology and thermal history of diogenites. Journal of Geophysical Research: Planets, 116, E08009.Google Scholar
York, D. G., Adelman, J., Anderson, J. E., et al. 2000. The Sloan Digital Sky Survey: Technical summary. Astronomical Journal, 120, 15791587.Google Scholar
Zappalà, V., Cellino, A., Farinella, P., et al. 1990. Asteroid families. I. Identification by hierarchial clustering and reliability assessment. Astronomical Journal, 100, 20302046.Google Scholar
Zellner, B., Leake, M., Williams, J. G., et al. 1977. The E asteroids and the origin of enstatite achondrites. Geochimica et Cosmochimica Acta, 41, 17591767.Google Scholar
Ziffer, J., Campins, H., Licandro, J., et al. 2011. Near-infrared spectroscopy of primitive asteroid families. Icarus, 213, 538546.Google Scholar

References

Ammannito, E., De Sanctis, M. C., Capaccioni, F., et al., 2013a. Vestan lithologies mapped by the visual and infrared spectrometer on Dawn. Meteoritics & Planetary Science, 48, 21852198.Google Scholar
Ammannito, E., De Sanctis, M. C., Palomba, E., et al. 2013b. Olivine in an unexpected location on Vesta’s surface. Nature, 504, 122125.Google Scholar
Ammannito, E., De Sanctis, M. C., Combe, J. P., et al. 2015. The vestan Rheasilvia basin at high spatial and spectral resolution. Icarus, 259, 194202.Google Scholar
Beck, A. W. and McSween, H. Y. 2010. Diogenites as polymict breccias composed of orthopyroxenite and harzburgite. Meteoritics & Planetary Science, 45, 850872.Google Scholar
Beck, A. W., McCoy, T. J., Sunshine, J. M., et al., 2013. Challenges in detecting olivine on the surface of 4 Vesta. Meteoritics & Planetary Science, 48, 21552165.Google Scholar
Beck, A. W., Lawrence, D. J., Peplowski, P. N., et al., 2015. Using HED meteorites to interpret neutron and gamma-ray data from asteroid 4 Vesta. Meteoritics & Planetary Science, 50, 13111337.Google Scholar
Binzel, R. P. and Xu, S. 1993. Chips off asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186191.Google Scholar
Binzel, R. P., Gaffey, M. J., Thomas, P., et al., 1997. Geologic mapping of Vesta from 1994 Hubble Space Telescope images. Icarus, 128, 95103.Google Scholar
Buczkowski, D. L., Wyrick, D. Y., Iyer, K. A., et al., 2012. Large-scale troughs on Vesta: A signature of planetary tectonics. Geophysical Research Letters, 39, L18205.Google Scholar
Buczkowski, D. L. , Wyrick, D. Y., Toplis, M., et al., 2014. The unique geomorphology and physical properties of the Vestalia Terra plateau. Icarus, 244, 89103.Google Scholar
Burbine, T. H., Meibom, A., and Binzel, R. P. 1996. Mantle material in the main belt: Battered to bits? Meteoritics & Planetary Science, 31, 607620.Google Scholar
Combe, J.-P., McCord, T. B., McFadden, L. A., et al., 2015. Composition of the northern regions of Vesta analyzed by the Dawn mission. Icarus, 259, 5371.Google Scholar
Consolmagno, G. J., Golabek, G. J., Turrini, D., et al., 2015. Is Vesta an intact and pristine protoplanet? Icarus, 254, 190201.Google Scholar
De Sanctis, M. C., Combe, J.-P., Ammannito, E., et al. 2012. Detection of widespread hydrated materials on Vesta by VIR imaging spectrometer on board the Dawn mission. Astrophysical Journal Letters, 758, L36.Google Scholar
De Sanctis, M. C., Ammannito, E., Capria, M. T., et al. 2013. Vesta’s mineralogical composition as revealed by the visible and infrared spectrometer on Dawn. Meteoritics & Planetary Science, 48, 21662184.Google Scholar
Denevi, B. W., Blewett, D. T., Buczkowski, D. L., et al. 2012. Pitted terrain on Vesta and implications for the presence of volatiles. Science, 338, 246249.Google Scholar
Ermakov, A. I., Zuber, M. T., Smith, D. E., et al. 2014. Constraints on Vesta’s interior structure using gravity and shape models from the Dawn mission. Icarus, 240, 146160.Google Scholar
Jaumann, R. J., Williams, D. A., Buczkowski, D. L., et al. 2012. Vesta’s shape and morphology. Science, 336, 687690.Google Scholar
Jutzi, M., Asphaug, E., Gillet, P., et al. 2013. The structure of asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature, 494, 207210.Google Scholar
Konopliv, A. S., Asmar, S. W., Park, R. S. et al. 2014. The Vesta gravity field, spin pole and rotation period, landmark positions and ephemeris from the Dawn tracking and optical data. Icarus, 240, 103117.Google Scholar
Li, S. and Milliken, R. E. 2015. Quantitative mapping of minerals on Vesta using Dawn VIR data. Lunar and Planetary Science Conference, 46, 2179.Google Scholar
Lunning, N. G., McSween, H. Y., Tenner, T. J., et al. 2015. Insights into the mantle of asteroid 4 Vesta from mineral fragments in meteorite breccias. Earth and Planetary Science Letters, 418, 126135.Google Scholar
Macke, R. J., Britt, D. T., and Consolmagno, G. J. 2011. Density, porosity, and magnetic susceptibility of achondritic meteorites. Meteoritics & Planetary Science, 46, 311326.Google Scholar
Marchi, S., McSween, H. Y., O’Brien, D. P., et al. 2012. The violent collisional history of asteroid 4 Vesta. Science, 336, 690694.Google Scholar
Mandler, B. E. and Elkins-Tanton, L. T. 2013. The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.Google Scholar
Marzari, F., Farinella, P., and Davis, D. R. 1999. Origin, aging, and death of asteroid families. Icarus, 142, 6377.Google Scholar
McCord, T. B., Adams, J. B., and Johnson, T. V. 1970. Asteroid Vesta: Spectral reflectivity and compositional implications. Science, 168, 14451447.Google Scholar
McCord, T. B., Li, J-Y., Combe, J-P., et al. 2012. Dark material on Vesta from the infall of carbonaceous volatile-rich material. Nature, 291, 8386.Google Scholar
McSween, H. Y., Mittlefehdlt, D. W., Beck, A. W., et al. 2011. HED meteorites and their relationship to the geology of Vesta. Space Science Reviews, 163, 141174.Google Scholar
McSween, H. Y. Jr., Binzel, R. P., De Sanctis, M. C., et al. 2013a. Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics & Planetary Science, 48, 20902014.Google Scholar
McSween, H. Y. Jr., Ammannito, E., Reddy, V., et al. 2013b. Composition of the Rheasilvia basin, a window into Vesta’s interior. Journal of Geophysical Research, 118, 335346.Google Scholar
Mizzon, H., Monnereau, M., Toplis, M., et al. 2015. A numerical model of the physical and chemical evolution of Vesta based on compaction equations and the olivine-anorthite-silica ternary diagram. Lunar and Planetary Science Conference, 46, 1832.Google Scholar
Neumann, W., Breuer, D., and Spohn, T. 2014. Differentiation of Vesta: Implications for a shallow magma ocean. Earth and Planetary Science Letters, 395, 267280.Google Scholar
Noguchi, T., Nakamura, T., Kimura, M., et al. 2011. Incipient space weathering observed on the surface of Itokawa dust particles. Science, 333, 11211125.Google Scholar
O’Brien, D. P., Marchi, S., Morbidelli, A., et al. 2015. Constraining the cratering chronology of Vesta. Planetary and Space Science, 103, 131142.Google Scholar
Park, R. S., Konopliv, A. S., Asmar, S. W., et al. 2014. Gravity field expansion in ellipsoidal harmonic and polyhedral internal representations applied to Vesta. Icarus, 240, 118132.Google Scholar
Pieters, C. M., Ammannito, E., Blewett, D. P., et al. 2012. Distinctive space weathering on Vesta from regolith mixing processes. Nature, 491, 7982.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. 2012. Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242246.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. 2013. Neutron absorption constraints on the composition of 4 Vesta. Meteoritics & Planetary Science, 48, 22112236.Google Scholar
Prettyman, T. H., Yamashita, N., Reedy, R. C., et al. 2015. Concentrations of potassium and thorium within Vesta’s regolith. Icarus, 259, 3952.Google Scholar
Preusker, F., Scholten, F., Matz, K.-D., et al. 2014. Global Shape of (4) Vesta from Dawn FC stereo images. Lunar and Planetary Science Conference, 45, 2027.Google Scholar
Reddy, V., Le Corre, L., and O’Brien, D. P., et al. 2012. Delivery of dark material to Vesta via carbonaceous chondritic impacts. Icarus, 221, 544559.Google Scholar
Righter, K. and Drake, M. J. 1997. A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteoritics & Planetary Science, 32, 929944.Google Scholar
Ruesch, O., Hiesinger, H., De Sanctis, M. C., et al. 2014. Detections and geologic context of local enrichments of olivine on Vesta with VIR/Dawn data. Journal of Geophysical Research, 119, 20782108.Google Scholar
Russell, C. T. and Raymond, C. A. 2011. The Dawn mission to Vesta and Ceres. Space Science Reviews Special Issue on Dawn Mission, 163, 323.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. 2012. Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Ruzicka, A., Snyder, G. A., and Taylor, L. A. 1997. Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of a core and for large-scale differentiation. Meteoritics & Planetary Science, 32, 825840.Google Scholar
Sarafian, A. R., Roden, M.F., and Patino-Douce, A. E. 2013. The volatile content of Vesta: Clues from apatite in eucrites. Meteoritics & Planetary Science, 48, 21352154.Google Scholar
Schenk, P., O’Brien, D. P., Marchi, S., et al. 2012. The geologically recent giant impact basins at Vesta’s south pole. Science, 336, 694697.Google Scholar
Schiller, M., Baker, J., Creech, J., et al. 2011. Rapid timescales for magma ocean crystallization on the howardite–eucrite–diogenite parent body. Astrophysical Journal Letters, 740, L22.Google Scholar
Schmedemann, N., Kneissl, T., Ivanov, B. A., et al. 2015. The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and ages of HED meteorites. Planetary and Space Science, 103, 104130.Google Scholar
Scully, J.E.C., Russell, C.T., Yin, A., et al. 2015. Geomorphological evidence for transient water flow on Vesta. Earth and Planetary Science Letters, 411, 151163.Google Scholar
Srinivasan, G., Goswami, J. N., and Bhandari, N. 1999. 26Al in eucrite Piplia Kalan: Plausible heat source and formation chronology. Science, 284, 13481350.Google Scholar
Thangjam, G., Reddy, V., Le Corre, L., et al. 2013. Lithologic mapping of HED terrains on Vesta using Dawn framing camera color data. Meteoritics & Planetary Science, 48, 21992210.Google Scholar
Toplis, M. J., Mizzon, H., Monnereau, M., et al. 2013. Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48, 23002315.Google Scholar
Trinquier, A., Birck, J. L., Allegre, C. J., et al. 2008. 53Mn–53Cr systematics of the early solar system revisited. Geochimica et Cosmochimica Acta, 72, 51465163.Google Scholar
Usui, T. and Iwamori, H. 2013. Mixing relations in the howardite–eucrite–diogenite suite: A new statistical approach of independent component analysis for the Dawn mission. Meteoritics & Planetary Science, 48, 22892299.Google Scholar
Warren, P. H. 1997. Magnesium oxide iron oxide mass balance constraints and a more detailed model for the relationship between eucrites and diogenites. Meteoritics & Planetary Science, 32, 945963.Google Scholar
Warren, P. H., Rubin, A. E., Isa, J., et al. 2014. Northwest Africa 5738: Multistage fluid-driven secondary alteration in an extraordinarily evolved eucrite. Geochimica et Cosmochimica Acta, 141, 199227.Google Scholar
Williams, D.A., Blewett, D. T., Buczkowski, D. L., et al. 2015. Complete global geologic map of Vesta from Dawn and mapping plans for Ceres. Lunar and Planetary Science Conference, 46, 1126.Google Scholar
Williams, D. A., Jaumann, R., McSween, H. Y., et al. 2014. The chronostratigraphy of protoplanet Vesta. Icarus, 244, 158165.Google Scholar
Wilson, L. and Keil, K. 2012. Volcanic activity on differentiated asteroids: A review and analysis. Chemie der Erde, 72, 289321.Google Scholar

References

Absil, O., Defrère, D, Coudeè du Foresto, V., Di Folco, E., et al. 2013. A near-infrared interferometric survey of debris-disc stars. III. First statistics based on 42 stars observed with CHARA/FLUOR. Astronomy & Astrophysics, 555A, 104124.Google Scholar
Acke, B., Min, M., Dominik, C., et al. 2012. Herschel images of Fomalhaut. An extrasolar Kuiper belt at the height of its dynamical activity. Astronomy & Astrophysics, 540A, 125133.Google Scholar
Adachi, I., Hayashi, C., and Nakazawa, K. 1976. The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Progress in Theoretical Physics, 56, 17561771.Google Scholar
Adams, E. R., Gulbis, A. A. S., Elliot, J. L., et al. 2014. De-biased populations of Kuiper belt objects from the Deep Ecliptic Survey. Astronomical Journal, 148, 5571.Google Scholar
ALMA Partnership, Brogan, C.L., Perez, L.M., et al. 2015. The 2014 ALMA long baseline campaign: First results from high angular resolution observations toward the HL Tau region. Astrophysical Journal Letters, 808, 312.Google Scholar
Augereau, J. C., Nelson, R. P., Lagrange, A. M., et al. 2001. Dynamical modeling of large scale asymmetries in the beta Pictoris dust disk. Astronomy & Astrophysics, 370, 447455.Google Scholar
Aumann, H. H., Beichman, C. A., Gillett, F. C., et al. 1984. Discovery of a shell around Alpha Lyrae, Astrophysical Journal Letters, 278, 2327.Google Scholar
Bai, X.-N. and Stone, J. M. 2010. The effect of the radial pressure gradient in protoplanetary disks on planetesimal formation. Astrophysical Journal Letters, 722, 220223.Google Scholar
Ballering, N. P., Rieke, G. H., Su, K. Y. L., and Montiel, E. 2013. A trend between cold debris disk temperature and stellar type: implications for the formation and evolution of wide-orbit planets. Astrophysical Journal, 775, 5568.Google Scholar
Ballering, N. P., Rieke, G. H., and Gáspár, A. 2014. Probing the terrestrial regions of planetary systems: Warm debris disks with emission features. Astrophysical Journal, 793, 5775.Google Scholar
Beitz, E., Güttler, C., Blum, J., et al. 2011. Low-velocity collisions of centimeter-sized dust aggregates. Astrophysical Journal, 736, 3444.Google Scholar
Blum, J. and Wurm, G. 2008. The growth mechanisms of macroscopic bodies in protoplanetary disks. Annual Review of Astronomy & Astrophysics, 46, 2146.Google Scholar
Boley, A. C., Payne, M. J., Corder, S. et al. 2012. Constraining the planetary system of Fomalhaut using high-resolution ALMA observations. Astrophysical Journal Letters, 750, 2125.Google Scholar
Booth, M., Wyatt, M. C., Morbidelli, A., Moro-Martín, A., and Levison, H. F. 2009. The history of the solar system’s debris disc: Observable properties of the Kuiper belt. Monthly Notices of the Royal Astronomical Society, 399, 385398.Google Scholar
Burns, J. A., Lamy, P. L., and Soter, S. 1979. Radiation forces on small particles in the solar system. Icarus, 40, 148.Google Scholar
Campo Bagatin, A., Cellino, A., Davis, D. R., Farinella, P., and Paolicchi, P. 1994. Wavy size distributions for collisional systems with a small-size cutoff. Planetary and Space Science, 42, 10791092.Google Scholar
Canup, R. M. 2004. Simulations of a late lunar-forming impact. Icarus, 168, 433456.Google Scholar
Carrera, D., Johansen, A., and Davies, M. B. 2015. How to form planetesimals from mm-sized chondrules and chondrule aggregates. Astronomy & Astrophysics, 579A, 4362.Google Scholar
Chambers, J. E. 2004. Planetary accretion in the inner solar system. Earth and Planetary Science Letters, 223, 241252.Google Scholar
Chen, C. H., Mittal, T., Kuchner, M., et al. 2014. The Spitzer Infrared Spectrograph Debris Disk Catalog. I. Continuum analysis of unresolved targets. Astrophysical Journal Supplements, 211, 2546.Google Scholar
Chiang, E. and Youdin, A. N. 2010. Forming planetesimals in solar and extrasolar nebulae. Annual Review of Earth and Planetary Sciences, 38, 493522.Google Scholar
Cuzzi, J. N., Hogan, R. C., and Shariff, K. 2008. Toward planetesimals: Dense chondrule clumps in the protoplanetary nebula. Astrophysical Journal, 687, 14321447.Google Scholar
Defrère, D., Hinz, P. M., Skemer, A. J., et al. 2015. First-light LBT nulling interferometric observations: Warm exozodiacal dust resolved within a few AU of η Crv. Astrophysical Journal, 799, 4250.Google Scholar
Dent, W. R. F., Wyatt, M. C., Roberge, A., et al. 2014. Molecular gas clumps from the destruction of icy bodies in the β Pictoris debris disk. Science, 343, 14901492.Google Scholar
Dohnanyi, J. S. 1969. Collisional model of asteroids and their debris. Journal of Geophysical Research, 74, 25312554.Google Scholar
Drążkowska, J., Windmark, F., and Dullemond, C. P. 2014. Modeling dust growth in protoplanetary disks: The breakthrough case. Astronomy & Astrophysics, 567A, 3845.Google Scholar
Dressing, C. D. and Charbonneau, D. 2015. The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. Astrophysical Journal, 807, 4567.Google Scholar
Gáspár, A., Psaltis, D., Rieke, G. H., and Özel, F. 2012. Modeling collisional cascades in debris disks: steep dust-size distributions. Astrophysical Journal, 754, 7489.Google Scholar
Gáspár, A., Rieke, G. H., and Balog, Z. 2013. The collisional evolution of debris disks. Astrophysical Journal, 768, 2553.Google Scholar
Genda, H., Kobayashi, H., and Kokubo, E. 2015. Warm debris disks produced by giant impacts during terrestrial planet formation. Astrophysical Journal, 810, 136143.Google Scholar
Gladman, B., Kavelaars, J. J., Petit, J.-M., et al. 2001. The structure of the Kuiper belt: Size distribution and radial extent. Astronomical Journal, 122, 10511066.Google Scholar
Goldreich, P. and Ward, W. R. 1973. The formation of planetesimals. Astrophysical Journal, 183, 10511062.Google Scholar
Goodman, J. and Pindor, B. 2000. Secular instability and planetesimal formation in the dust layer. Icarus, 148, 537549.Google Scholar
Grogan, K., Dermott, S. F., and Durda, D. D. 2001. The size–frequency distribution of the zodiacal cloud: evidence from the solar system dust bands. Icarus, 152, 251267.Google Scholar
Gustafson, B. Å. S. 1994. Physics of zodiacal dust. Annual Review of Earth and Planetary Sciences, 22, 553595.Google Scholar
Jackson, A. P. and Wyatt, M. C. 2012. Debris from terrestrial planet formation: the Moon-forming collision. Monthly Notices of the Royal Astronomical Society, 425, 657679.Google Scholar
Jacobson, S. A., Morbidelli, A., Raymond, S. N., et al. 2014. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature, 508, 8487.Google Scholar
Jacquet, E., Balbus, S., and Latter, H. 2011. On linear dust-gas streaming instabilities in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 415, 35913598.Google Scholar
Jewitt, D. and Luu, J. 1993. Discovery of the candidate Kuiper belt object 1992 QB1. Nature, 362, 730732.Google Scholar
Johansen, A. and Youdin, A. N. 2007. Protoplanetary disk turbulence driven by the streaming instability: Nonlinear saturation and particle concentration. Astrophysical Journal, 662, 627641.Google Scholar
Johansen, A., Youdin, A. N., and Lithwick, Y. 2012. Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities. Astronomy & Astrophysics, 537, A125A141.Google Scholar
Johansen, A., Jacquet, E., Cuzzi, J. N., Morbidelli, A., and Gounelle, M. 2015a. New paradigms for asteroid formation. In Asteroids IV, ed. Michel, P., DeMeo, F. E., and Bottke, W. F. Jr. Tucson, AZ: University of Arizona Press. Tucson, 471492.Google Scholar
Johansen, A., MacLow, M.-M., Lacerda, P., and Bizzarro, M. 2015b. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Science Advances, 1, 115109.Google Scholar
Johnson, B. C. and Melosh, H. J. 2012. Formation of spherules in impact produced vapor plumes. Icarus, 217, 416430.Google Scholar
Johnson, B. C., Lisse, C. M., Chen, C. H., et al. 2012. A self-consistent model of the circumstellar debris created by a giant hypervelocity mpact in the HD 172555 system. Astrophysical Journal, 761, 4557.Google Scholar
Kalas, P., Graham, J. R., Fitzgerald, M. P., and Clampin, M. 2013. STIS coronagraphic imaging of Fomalhaut: main belt structure and the orbit of Fomalhaut b. Astrophysical Journal, 775, 5686.Google Scholar
Kennedy, G. M. and Kenyon, S. J. 2008. Planet formation around stars of various masses: The snow line and the frequency of giant planets. Astrophysical Journal, 673, 502512.Google Scholar
Kennedy, G. M. and Wyatt, M. C. 2014. Do two-temperature debris discs have multiple belts? Monthly Notices of the Royal Astronomical Society, 444, 31643182.Google Scholar
Kenyon, S. J. and Bromley, B. C. 2004. Detecting the dusty debris of terrestrial planet formation. Astrophysical Journal Letters, 602, 133136.Google Scholar
Kenyon, S. J. and Bromley, B. C. 2006. Terrestrial planet formation. I. The transition from oligarchic growth to chaotic growth. Astronomical Journal, 131, 18371850.Google Scholar
Kenyon, S. J. and Bromley, B. C. 2012. Coagulation calculations of icy planet formation at 15–150 AU: A correlation between the maximum radius and the slope of the size distribution for trans-neptunian objects. Astrnomical Journal, 143, 6383.Google Scholar
Kleine, T., Touboul, M., Bourdon, B., et al. 2009. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 51505188.Google Scholar
Kokubo, E. and Ida, S. 1998. Oligarchic growth of protoplanets. Icarus, 131, 171178.Google Scholar
Kral, Q., Thébault, P., Augereau, J.-C., Boccaletti, A., and Charnoz, S. 2015. Signatures of massive collisions in debris discs. A self-consistent numerical model. Astronomy & Astrophysics, 573A, 3954.Google Scholar
Kretke, K. A. and Lin, D. N. C. 2007. Grain retention and formation of planetesimals near the snow line in MRI-driven turbulent protoplanetary disks. Astrophysical Journal Letters, 664, 5558.Google Scholar
Liou, J.-C. and Zook, H. A. 1999. Signatures of the giant planets imprinted on the Edgeworth–Kuiper belt dust disk. Astronomical Journal, 118, 580590.Google Scholar
Lisse, C. M., Chen, C. H., Wyatt, M. C., et al. 2009. Abundant circumstellar silica dust and SiO gas created by a giant hypervelocity collision in the 12 Myr HD172555 system. Astrophysical Journal, 701, 20192032.Google Scholar
Lyra, W. and Lin, M.-K. 2013. Steady state dust distributions in disk vortices: Observational predictions and applications to transitional disks. Astrophysical Journal, 775, 1726.Google Scholar
Malhotra, R. 2015. The mass distribution function of planets. Astrophysical Journal, 808, 7178.Google Scholar
Mann, I., Murad, E., and Czechowski, A. 2007. Nanoparticles in the inner solar system. Planetary and Space Science, 55, 10001009.Google Scholar
Melis, C., Zuckerman, B., Rhee, J. H., et al. 2012. Rapid disappearance of a warm, dusty circumstellar disk. Nature, 487, 7476.Google Scholar
Meng, H. Y. A., Rieke, G. H., Su, K. Y. L., et al. 2012. Variability of the infrared excess of extreme debris disks. Astrophysical Journal Letters, 751, 1721.Google Scholar
Meng, H. Y. A., Su, K. Y. L., and Rieke, G. H. 2014. Large impacts around a solar-analog star in the era of terrestrial planet formation. Science, 345, 10321035.Google Scholar
Meng, H. Y. A., Su, K. Y. L., Rieke, G. H., et al. 2015. Planetary collisions outside the solar system: time domain characterization of extreme debris disks. Astrophysical Journal, 805, 7791.Google Scholar
Mennesson, B., Millan-Gabet, R., Serabyn, E., et al. 2014. Constraining the exozodiacal luminosity function of main-sequence stars: Complete results from the Keck Nuller mid-infrared surveys. Astrophysical Journal, 797, 119146.Google Scholar
Minato, T., Köhler, M., Kimura, H., Mann, I., and Yamamoto, T. 2006. Momentum transfer to fluffy dust aggregates from stellar winds. Astronomy & Astrophysics, 452, 701707.Google Scholar
Mittal, T., Chen, C. H., Jang-Condell, H., et al. 2015. The Spitzer Infrared Spectrograph Debris Disk Catalog. II. Silicate feature analysis of unresolved targets. Astrophysical Journal, 798, 87112.Google Scholar
Morbidelli, A., Walsh, K. J., O’Brien, D. P., Minton, D. A., and Bottke, W. F. 2015a. The dynamical evolution of the asteroid belt. In Asteroids IV, ed. Michel, P., DeMeo, F. E., and Bottke, W. F. Jr. Tucson, AZ: University of Arizona Press. Tucson, 493507.Google Scholar
Morbidelli, A., Lambrechts, M., Jacobson, S., and Bitsch, B. 2015b. The great dichotomy of the solar system: Small terrestrial embryos and massive giant planet cores. Icarus, 258, 418429.Google Scholar
Mulders, G. D., Pascucci, I., and Apai, D. 2015. An increase in the mass of planetary systems around lower-mass stars. Astrophysical Journal, 814, 130139Google Scholar
Nesvorný, D., Bottke, W. F., Levison, H. F., and Dones, L. 2003. Recent origin of the solar system dust bands. Astrophysical Journal, 591, 486497.Google Scholar
Nesvorný, D., Jenniskens, P., Levison, H. A., et al. 2010. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophysical Journal, 713, 816836.Google Scholar
O’Brien, D. P. and Greenberg, R. 2003. Steady-state size distributions for collisional populations: Analytical solution with size-dependent strength. Icarus, 164, 334345.Google Scholar
O’Brien, D. P. and Sykes, M. V. 2011. The origin and evolution of the asteroid belt: Implications for Vesta and Ceres. Space Science Reviews, 163, 4161.Google Scholar
Ootsubo, T., Ueno, M., Ishiguro, M., et al. 2009. Mid-Infrared spectrum of the zodiacal light observed with AKARI/IRC. AKARI, a Light to Illuminate the Misty Universe. Astronomical Society of the Pacific Conference Series, 418, 395398.Google Scholar
Ormel, C. W. and Klahr, H. H. 2010, The effect of gas drag on the growth of protoplanets. Astronomy & Astrophysics, 520A, 4357.Google Scholar
Pan, L., Padoan, P., Scalo, J., Kritsuk, A. G., and Norman, M. L. 2011. Turbulent clustering of protoplanetary dust and planetesimal formation. Astrophysical Journal, 740, 626.Google Scholar
Papoular, R. and Pégourié, B. 1983. The IR silicate features as a measure of grain size in circumstellar dust. Astronomy & Astrophysics, 128, 335346.Google Scholar
Plavchan, P., Jura, M., and Lipscy, S. J. 2005. Where are the M dwarf disks older than 10 million years? Astrophysical Journal, 631, 11611169.Google Scholar
Rieke, G. H., Gáspár, A., and Ballering, N. P. 2016. Magnetic grain trapping and the hot excesses around early-type stars. Astrophysical Journal, 816, 5063.Google Scholar
Roberge, Aki, Chen, C. H., Millan-Gabet, R., et al. 2012. The exozodiacal dust problem for direct observations of exo-Earths. Publications of the Astronomical Society of the Pacific, 124, 799808.Google Scholar
Schneider, G., Grady, C. A., Hines, D. C., et al. 2014. Probing for exoplanets hiding in dusty debris disks: disk imaging, characterization, and exploration with HST/STIS multi-roll coronagraphy. Astronomical Journal, 148, 59108Google Scholar
Shariff, K. and Cuzzi, J. N. 2011. Gravitational instability of solids assisted by gas drag: Slowing by turbulent mass diffusivity. Astrophysical Journal, 738, 7381.Google Scholar
Sheehan, P. D. and Eisner, J. A. 2014. Constraining the disk masses of the class I binary protostar GV Tau. Astrophysical Journal, 791, 1937.Google Scholar
Sierchio, J. M., Rieke, G. H., Su, K. Y. L., and Gáspár, A. 2014. The decay of debris disks around Solar-type stars. Astrophysical Journal, 785, 3345.Google Scholar
Simon, J. B., Armitage, P. J., Li, R., and Youdin, A. N. 2016. The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. Astrophysical Journal, 822, 5572.Google Scholar
Smith, B. A. and Terrile, R. J. 1984. A circumstellar disk around Beta Pictoris. Science, 226, 14211424.Google Scholar
Soderblom, D. R., Hillenbrand, L. A., Jeffries, R. D., Mamaje, E. E., and Naylor, T. 2014. Ages of young stars. In Protostars & Planets VI, ed. Beuther, H., Klessen, R. S., Dullemond, C. P., and Henning, T.. Tucson, AZ: University of Arizona Press, 219241.Google Scholar
Soummer, R., Perrin, M. D., Pueyo, L., et al. 2014. Five debris disks newly revealed in scattered light from the Hubble Space Telescope NICMOS archive. Astrophysical Journal Letters, 786, L23L29.Google Scholar
Stapelfeldt, K. R., Holmes, E. K., Chen, C. H. et al. 2004. First Look at the Fomalhaut debris disk with the Spitzer Space Telescope. Astrophysical Journal Supplements, 154, 458462.Google Scholar
Stock, N. D., Su, K. Y.L., Liu, W. et al. 2010. The structure of the β Leonis debris disk. Astrophysical Journal, 724, 12381255.Google Scholar
Su, K. Y. L., Rieke, G. H., Malhotra, R., et al. 2013. Asteroid belts in debris disk twins: Vega and Fomalhaut. Astrophysical Journal, 763, 118131.Google Scholar
Su, K. Y. L. and Rieke, G. H. 2014. Signposts of multiple planets in debris disks. Exploring the formation and evolution of planetary systems. IAU Symposim, 299, 318321.Google Scholar
Szalay, J., Piquette, M., and Horanyi, M. 2015. Dust measurements by the Student Dust Counter onboard the New Horizons mission to Pluto. Lunar and Planetary Science Conference, 46, 1701.Google Scholar
Takahashi, S. Z. and Inutsuka, S.-I. 2014. Two-component secular gravitational instability in a protoplanetary disk: A possible mechanism for creating ring-like structures. Astrophysical Journal, 794, 5561.Google Scholar
Thébault, P. and Augereau, J.-C. 2007. Collisional processes and size distribution in spatially extended debris discs. Astronomy & Astrophysics, 472, 169185.Google Scholar
van Boekel, R., Min, M., Leinert, Ch., et al. 2004. The building blocks of planets within the ‘terrestrial’ region of protoplanetary disks. Nature, 432, 479482.Google Scholar
Vitense, Ch, Krivov, A. V., Kobayashi, H., and Löhne, T. 2012. An improved model of the Edgeworth–Kuiper debris disk. Astronomy & Astrophysics, 540, 3039.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., and Mandell, A. M. 2011. A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., and Mandell, A. M. 2012. Populating the asteroid belt from two parent source regions due to the migration of giant planets: “The Grand Tack”. Meteoritics & Planetary Science, 47, 19411947.Google Scholar
Weidenschilling, S. J. 1980. Dust to planetesimals: Settling and coagulation in the solar nebula. Icarus, 44, 172189.Google Scholar
Weissman, P. R. 1984. The VEGA particulate shell: Comets or asteroids? Science, 224, 987989.Google Scholar
Whipple, F. L. 1972. On certain aerodynamic processes for asteroids and comets. In From Plasma to Planet, ed. Elvius, A.. New York: Wiley, 211232.Google Scholar
Williams, J. P. and Cieza, L. A. 2011. Protoplanetary disks and their evolution. Annual Review of Astronomy & Astrophysics, 49, 67117.Google Scholar
Wyatt, M. C., Smith, R., Su, K. Y. L., et al. 2007. Steady state evolution of debris disks around A stars. Astrophysical Journal, 663, 365382.Google Scholar
Wyatt, M. C. 2008. Evolution of debris disks. Annual Review of Astronomy & Astrophysics, 46, 339383.Google Scholar
Youdin, A. N. 2010. From grains to planetesimals, EAS Publication Series, 41, 187207.Google Scholar
Youdin, A. N. 2011. On the formation of planetesimals via secular gravitational instabilities with turbulent stirring, Astrophysical Journal, 731, 99116.Google Scholar
Youdin, A. N. 2011b, The Exoplanet Census: A general method applied to Kepler. Astrophysical Journal, 742, 3850Google Scholar
Youdin, A. N. and Chiang, E. I. 2004. Particle pileups and planetesimal formation. Astrophysical Journal, 601, 11091119.Google Scholar
Youdin, A. N. and Goodman, J. 2005. Streaming instabilities in protoplanetary disks. Astrophysical Journal, 620, 459469.Google Scholar
Youdin, A. N. and Johansen, A. 2007. Protoplanetary disk turbulence driven by the streaming instability: Linear evolution and numerical methods. Astrophysical Journal, 662, 613626.Google Scholar
Youdin, A. N. and Kenyon, S. J. 2012. From disks to planets. In Planets, Stars and Stellar Systems, ed. Oswalt, T. D., French, L. M., Kalas, P.. Dordrecht: Springer, 162.Google Scholar
Youdin, A. N. and Lithwick, Y. 2007. Particle stirring in turbulent gas disks: Including orbital oscillations. Icarus, 192, 588604.Google Scholar
Youdin, A. N. and Shu, F. H. 2002. Planetesimal formation by gravitational instability. Astrophysical Journal, 580, 494505.Google Scholar
Zsom, A., Ormel, C. W., Güttler, C., Blum, J., and Dullemond, C. P. 2010. The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. Astronomy & Astrophysics, 513A, 5778.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×