Published online by Cambridge University Press: 23 November 2009
The graphical construction for the representation of the state of stress at a point within a continuum region is generally attributed to the German engineer Otto Christian Mohr. Although the use of graphical techniques in structural and solid mechanics has been an important area of activity both for engineering calculations and stress analysis, particularly in the eighteenth and nineteenth centuries (see, e.g., Todhunter and Pearson (1886, 1893) and Timoshenko (1953), the contributions of Karl Culmann and Otto Mohr to the development of this area are regarded as being particularly significant. Despite the passage of time these graphical constructions have continued to serve as efficient educational tools for the visualisation of difficult concepts related to the representation of three-dimensional states of stress, particularly in relation to the description of failure states in materials. The fact that the techniques developed in relation to the stress state at a point that can be represented in terms of a stress matrix of rank two or a second-order tensor implies that the procedures are equally applicable to the description of other properties and states in continua, which can be described in a similar manner. Examples include the description of moments of inertia of solids, flexural characteristics of plates and the hydraulic conductivity characteristics of porous media, etc. The purpose of this Appendix is to present a brief outline of the significant features of Mohr circles and to develop the basic equations applicable to the three-dimensional graphical representation of the stress state at a point.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.