Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-04-30T23:23:32.942Z Has data issue: false hasContentIssue false

8 - Experimental scattering matrices of clouds of randomly oriented particles

from II - Theory, instrumentation, and laboratory studies

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banin, A., Han, F. X., Kan, I., and Cicelsky, A. (1997). Acidic volatiles and the Mars soil. Journal of Geophysical Research, 102, 1334113356.CrossRefGoogle Scholar
Baran, A. J. (2009). A review of the light scattering properties of cirrus. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 12391260.CrossRefGoogle Scholar
Barkey, B. and Liou, K. N. (2001). Polar nephelometer for light-scattering measurements of ice crystals. Optics Letters, 26, 232234.CrossRefGoogle ScholarPubMed
Barkey, B., Liou, K. N., Gellerman, W., and Sokolsky, P. (1999). An analog light scattering experiment of hexagonal icelike particles. Part I: Experimental apparatus and test measurements. Journal of the Atmospheric Sciences, 56, 605612.2.0.CO;2>CrossRefGoogle Scholar
Bi, L., Yang, P., Kattawar, G. W., and Kahn, R. (2010). Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra. Applied Optics, 49(3), 334341.CrossRefGoogle ScholarPubMed
Bohren, C. F. and Huffman, D. R. (1983). Absorption and Scattering of Light by Small Particles. New York: Wiley.Google Scholar
Braak, C. J., de Haan, J.F., van der Mee, C. V. M., Hovenier, J. W., and Travis, L. D. (2001). Parameterized scattering matrices for small particles in planetary atmospheres. Journal of Quantitative Spectroscopy and Radiative Transfer, 69, 585604.CrossRefGoogle Scholar
Chernova, G. P., Kiselev, N. N., and Jockers, K. (1993). Polarimetric characteristics of dust particles as observed in 13 comets: Comparisons with asteroids. Icarus, 103, 144158.CrossRefGoogle Scholar
Clancy, R. T., Lee, S. W., Gladstone, G. R., McMillan, W. W., and Roush, T. (1995). A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos. Journal of Geophysical Research, 100(E3), 52515263.CrossRefGoogle Scholar
Curtis, D. B., Aycibin, M., Young, M. A., Grassian, V. H., and Kleiber, P. D. (2007). Simultaneous measurement of light-scattering properties and particle size distribution for aerosols: Application to ammonium sulfate and quartz aerosol particles. Atmospheric Environment, 41, 47484758.CrossRefGoogle Scholar
Dabrowska, D. D., Muñoz, O., Moreno, F.et al. (2013). Experimental and simulated scattering matrices of small calcite particles at 647 nm. Journal of Quantitative Spectroscopy and Radiative Transfer, 124, 6278.CrossRefGoogle Scholar
Dubovik, O., Sinyuk, A., Lapyonok, T.et al. (2006). Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. Journal of Geophysical Research, 111, D11208.CrossRefGoogle Scholar
Gayet, J. F., Crepel, O., Fournol, J. F., and Oshepkov, S. (1997). A new airborne polar nephelometer for the measurement of optical and microphysical cloud properties. I. Theoretical design. Annals of Geophysics, 15, 451459.CrossRefGoogle Scholar
Greenberg, J. M., Pedersen, N. E., and Pedersen, J. C. (1961). Microwave analog to the scattering of light by nonspherical particles. Journal of Applied Physics, 32, 233242.CrossRefGoogle Scholar
Gustafson, B. A. S. (2000). Microwave analog to light scattering measurements. In M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. San Diego: Academic Press.Google Scholar
Hadamcik, E. and Levasseur-Regourd, A. C. (2003). Imaging polarimetry of cometary dust: different comets and phase angles. Journal of Quantitative Spectroscopy and Radiative Transfer, 79–80, 661678.CrossRefGoogle Scholar
Hansen, J. E. and Hovenier, J. W. (1974). Interpretation of the polarization of Venus. Journal of the Atmospheric Sciences, 31, 11371160.2.0.CO;2>CrossRefGoogle Scholar
Herman, M., Deuzé, J. L., Marchand, A., Roger, B., and Lallart, P. (2005). Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval using a nonspherical particle model. Journal of Geophysical Research, 110(D10), CiteID D10S02.CrossRefGoogle Scholar
Holmes, A. W. (1981). Light scattering from ammonia and water crystals. Ph.D. dissertation, University of Arizona, Tucson.Google Scholar
Holland, A. C. and Gagne, G. (1970). The scattering of polarized light by polydisperse systems of irregular particles. Applied Optics, 9, 11131121.CrossRefGoogle ScholarPubMed
Hovenier, J. W. (2000). Measuring scattering matrices of small particles at optical wavelengths. In M. I. Mishchenko, J. W. Hovenier, and L.D. Travis, eds., Light Scattering by Nonspherical Particles. San Diego CA: Academic Press, pp. 355365.CrossRefGoogle Scholar
Hovenier, J. W. and van der Mee, C. V. M. (1996). Testing scattering matrices, a compendium of recipes. Journal of Quantitative Spectroscopy and Radiative Transfer, 55, 649661.CrossRefGoogle Scholar
Hovenier, J. W., Volten, H., Muñoz, O., van der Zande, W. J., and Waters, L. B. F. M. (2003). Laboratory studies of scattering matrices for randomly oriented particles. Potentials, problems, and perspectives. Journal of Quantitative Spectroscopy and Radiative Transfer, 79–80, 741755.CrossRefGoogle Scholar
Hovenier, J. W., van der Mee, C. V. M., and Domke, H. (2004). Transfer of Polarized Light in Planetary Atmospheres: Basic Concepts and Practical Methods. Dordrecht: Kluwer/Springer.CrossRefGoogle Scholar
Hunt, A. J. and Huffman, D. R. (1973). A new polarization-modulated light scattering instrument. Review of Scientific Instruments, 44 (12), 17531762.CrossRefGoogle Scholar
Kahnert, M. and Nousiainen, T. (2006). Uncertainties in measured and modeled asymmetry parameters of mineral dust. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 173178.CrossRefGoogle Scholar
Kahnert, M. and Nousiainen, T. (2007). Variational data-analysis method for combining laboratory-measured light-scattering phase functions and forward scattering computations. Journal of Quantitative Spectroscopy and Radiative Transfer, 103, 2742.CrossRefGoogle Scholar
Kikuchi, S. (2006). Linear polarimetry of five comets. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 179190.CrossRefGoogle Scholar
Kikuchi, S., Mikami, Y., Mukai, T., Mukai, S., and Hough, J. H. (1987). Polarimetry of Comet P/Halley. Astronomy and Astrophysics, 187, 689692.Google Scholar
Kiselev, N., Rosenbush, V., Jockers, K., Velichko, S., and Kikuchi, S. (2005). Database of comet polarimetry: Analysis and some results. Earth, Moon, and Planets, 97 (3–4), 365378.CrossRefGoogle Scholar
Kolokolova, L. and Kimura, H. (2010). Comet dust as a mixture of aggregates and solid particles: Model consistent with ground based and space mission results. Earth, Planets and Space, 62 (1), 1721.CrossRefGoogle Scholar
Kolokolova, L., Hanner, M. S., Levasseur-Regourd, A. C., and Gustafson, B. A. S. (2004). Physical properties of cometary dust from light scattering and thermal emission. In M. Festou, H. U. Keller, and H. A. Weaver, eds., Comets II. Tucson: University of Arizona Press, pp. 577604.CrossRefGoogle Scholar
Konert, M. and Vandenberghe, J. (1997). Comparison of laser grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction. Sedimentology, 44: 523535.CrossRefGoogle Scholar
Kuik, F. (1992). Single scattering by ensembles of particles with various shapes. Ph.D. dissertation. Free University, Amsterdam.Google Scholar
Laan, E. C., Volten, H., Stam, D. M.et al. (2009). Scattering matrices and expansion coefficients of Martian analogue palagonite particles. Icarus, 199, 219230.CrossRefGoogle Scholar
Liu, L., Mishchenko, M. I., Hovenier, J. W., Volten, H., and Muñoz, O. (2003). Scattering matrix of quartz aerosols: Comparison and synthesis of laboratory and Lorenz Mie results. Journal of Quantitative Spectroscopy and Radiative Transfer, 79/80, 911920.CrossRefGoogle Scholar
Martin, E., Hesse, E., Hough, J. W.et al. (2010). Polarized optical scattering signatures from biological materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 111: 24442459.CrossRefGoogle Scholar
McCrowey, C. J., Soseala, T. S., Calderon, G., Koo, J. E., and Curtis, D. D. (2013). A portable high-resolution polar nephelometer for measurements of the angular scattering properties of atmospheric aerosol: Design and validation. Aerosol Science and Technology, 47(6), 592605.CrossRefGoogle Scholar
Miffre, A., Gregory, D., Benjamin, T., and Rairoux, P. (2011). Atmospheric non-spherical particles optical properties from UV-polarization lidar and scattering matrix. Geophysical Research Letters, 38(16), 17.CrossRefGoogle Scholar
Min, M., Hovenier, J. W., and de Koter, A. (2005). Modeling optical properties of cosmic dust grains using a distribution of hollow spheres. Astronomy and Astrophysics, 432(3), 909920.CrossRefGoogle Scholar
Mishchenko, M. I., Travis, L. D., and Lacis, A. A. (2002). Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press.Google Scholar
Mishchenko, M. I., Rosenbush, V. K., Kiselev, N. N.et al. (2010). Polarimetric Remote Sensing of Solar System Objects. Kyiv: Akademperiodyka.CrossRefGoogle Scholar
Moreno, F., Muñoz, O., López-Moreno, J. J., Molina, A., and Ortiz, J. L. (2002). A Monte Carlo code to compute energy fluxes in cometary nuclei. Icarus, 156(2), 474484.CrossRefGoogle Scholar
Moreno, F., Muñoz, O., Guirado, D., and Vilaplana, R. (2007). Comet dust as a size distribution of irregularly shaped, compact particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 106(1–3), 348359.CrossRefGoogle Scholar
Muinonen, K., Nousiainen, T., Lindqvist, H., Muñoz, O., and Videen, G. (2009). Light scattering by Gaussian particles with internal inclusions and roughened surfaces using ray optics. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 16281639.CrossRefGoogle Scholar
Muñoz, O., Volten, H., de Haan, J. F., Vassen, W., and Hovenier, J. W. (2000). Experimental determination of scattering matrices of olivine and Allende meteorite particles. Astronomy and Astrophysics, 360, 777788.Google Scholar
Muñoz, O., Volten, H., Hovenier, J. W.et al. (2004). Scattering matrices of volcanic ash particles of Mount St. Helens, Redoubt, and Mount Spurr volcanoes. Journal of Geophysical Research, 109, D16201.CrossRefGoogle Scholar
Muñoz, O., Moreno, F., Guirado, D.et al. (2010). The new IAA light scattering apparatus. Journal of Quantitative Spectroscopy and Radiative Transfer, 111, 187196.CrossRefGoogle Scholar
Muñoz, O., Moreno, F., Guirado, D.et al. (2011). The IAA cosmic dust laboratory: Experimental scattering matrices of clay particles. Icarus, 211, 894900.CrossRefGoogle Scholar
Muñoz, O., Moreno, F., Dabrowska, D. D., Volten, H., and Hovenier, J. W. (2012). The Amsterdam–Granada light scattering database. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 565574.CrossRefGoogle Scholar
Nousiainen, T. (2009). Optical modeling of mineral dust particles, a review. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 12611279.CrossRefGoogle Scholar
Pope, S. K. (1991). Laboratory measurements of the single scattering properties of ammonia ice crystals. Ph.D. dissertation, University of Arizona, Tucson.Google Scholar
Pope, S. K., Tomasko, M. G., Williams, M. S.et al. (1992). Clouds of ammonia ice: Laboratory measurements of the single-scattering properties. Icarus, 100, 203220.CrossRefGoogle Scholar
Pritchard, B. S. and Elliott, W. G. (1960). Two instruments for atmospheric optics measurements. Journal of the Optical Society of America, 50, 191202.CrossRefGoogle Scholar
Roush, T. L. and Bell, J. F. (1995). Thermal emission measurements 2000–400/cm (5–25 micrometers) of Hawaiian palagonitic soils and their implications for Mars. Journal of Geophysical Research, 100, 53095317.CrossRefGoogle Scholar
Sassen, K. and Liou, K. N. (1979). Scattering of polarized light by water droplet, mixed-phase and ice crystal clouds. Part I: Angular scattering patterns. Journal of the Atmospheric Sciences, 36, 838851.2.0.CO;2>CrossRefGoogle Scholar
Stammes, P. (1989). Light scattering properties of aerosols and the radiation inside a planetary atmosphere. Ph.D. dissertation, Free University, Amsterdam.Google Scholar
Vaillon, R., Geffrin, J. M., Eyraud, C.et al. (2011). A novel implementation of a microwave analog to light scattering measurement device. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(11), 17531760.CrossRefGoogle Scholar
Van de Hulst, H. C. (1957). Light Scattering by Small Particles. New York: John Wiley and Sons Inc.; Also New York: Dover Publications Inc., 1981.CrossRefGoogle Scholar
Volten, H. (2001). Light scattering by small planetary particles. An experimental study. Ph.D. dissertation, Free University, Amsterdam.Google Scholar
Volten, H., de Haan, J. F., Hovenier, J. W.et al. (1998). Laboratory measurements of angular distributions of light scattered by phytoplankton and silt. Limnology and Oceanography, 43, 11801197.CrossRefGoogle Scholar
Volten, H., Muñoz, O., Rol, E.et al. (2001). Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm. Journal of Geophysical Research, 106, 1737517401.CrossRefGoogle Scholar
Volten, H., Muñoz, O., Hovenier, J. W.et al. (2005). WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm. Journal of Quantitative Spectroscopy and Radiative Transfer, 90 (2), 191206.CrossRefGoogle Scholar
Volten, H., Muñoz, O., Hovenier, J. W.et al. (2006a). Scattering matrices and reflectance spectra of forsterite particles with different size distributions. Journal of Quantitative Spectroscopy and Radiative Transfer, 100(1–3), 429436.CrossRefGoogle Scholar
Volten, H., Muñoz, O., Hovenier, J.W., and Waters, L. B. F. M. (2006b). An update of the Amsterdam light scattering database. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 437443.CrossRefGoogle Scholar
Volten, H., Muñoz, O., Hovenier, J. W.et al. (2007). Experimental light scattering by fluffy aggregates of magnesiosilica, ferrosilica, and alumina cosmic dust analogs. Astronomy and Astrophysics, 470, 377386.CrossRefGoogle Scholar
Weiss-Wrana, K. (1983). Optical properties of interplanetary dust: Comparison with light scattering by larger meteoritic and terrestrial grains. Astronomy and Astrophysics, 126, 240250.Google Scholar
West, R. A. and Smith, P. H. (1991). Evidence for aggregate particles in the atmospheres of Titan and Jupiter. Icarus, 90, 330333.CrossRefGoogle Scholar
West, R. A., Doose, L. R., Eibl, A. M., Tomasko, M. G., and Mishchenko, M. I. (1997). Laboratory measurements of mineral dust scattering phase function and linear polarization. Journal of Geophysical Research, 102(D14), 1687116881.CrossRefGoogle Scholar
Wolff, M. J. and Clancy, R. T. (2003). Constraints on the size of Martian aerosols from thermal emission Spectrometer observations. Journal of Geophysical Research, 108(E9), 5097, doi:10.1029/2003JE002057.CrossRefGoogle Scholar
Yang, P. and Liou, K. N. (2006). Light scattering and absorption by nonspherical ice crystals. In A. A. Kokhanovsky, ed., Light Scattering Reviews. Springer, pp. 3164.CrossRefGoogle Scholar
Zerull, R. and Giese, R. H. (1974). Microwave analog studies. In T. Gehrels, ed., Planets, Stars, and Nebulae Studied with Photopolarimetry. Tucson AZ: University of Arizona Press, pp. 901915.Google Scholar
Zubko, E., Muinonen, K., Shkuratov, Y.et al. (2012). Evaluating the carbon depletion found by the Stardust mission in Comet 81 P/Wild 2. Astronomy and Astrophysics, 544, L8.CrossRefGoogle Scholar
Zubko, E., Muinonen, K., Shkuratov, Y., and Videen, G. (2013). Characteristics of cometary dust in the innermost coma derived from polarimetry by Giotto. Monthly Notices of the Royal Astronomical Society, 430, 11181124.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×