Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-20T01:01:37.070Z Has data issue: false hasContentIssue false

5 - Laboratory studies

from II - Theory, instrumentation, and laboratory studies

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akimov, L. A. and Shkuratov, Y. G. (1983). Optical research on lunar soil samples of different degrees of maturity. Solar System Research, 17, 152158.Google Scholar
Arago, F. (1858, posthumous). Astronomie populaire, Livre XVII, Les Comètes. Paris: Gide Editeur.Google Scholar
Barucci, M. A., Fornasier, S., Dotto, E.et al. (2008). Asteroids 2867 Steins and 21 Lutetia: Surface composition from far infrared observations with the Spitzer space telescope. Astronomy and Astrophysics, 477, 665670.CrossRefGoogle Scholar
Blum, J. and Schräpler, R. (2004). Structure and mechanical properties of high-porosity macroscopic agglomerates formed by random ballistic deposition. Physical Review Letters, 93, 14.CrossRefGoogle ScholarPubMed
Brissaud, O., Schmitt, B., Bonnefoy, N.et al. (2004). Spectrogonio radiometer for the study of the bidirectional reflectance and polarization functions of planetary surfaces. 1. Design and tests. Applied Optics, 43, 19261934.CrossRefGoogle Scholar
Dollfus, A. and Bowell, E. (1971). Polarimetric properties of the lunar surface and its interpretation. Part I. Telescopic observations. Astronomy and Astrophysics, 10, 2953.Google Scholar
Dollfus, A. and Geake, J. (1975). Polarimetric properties of the lunar surface and its interpretation. Part VII. Other solar system objects. In Proceedings of the 6th Lunar Science Conference. Lunar Science Institute, pp. 27492768.Google Scholar
Dollfus, A. and Geake, J. (1977). Polarimetric and photometric studies of lunar samples. Philosophical Transactions of the Royal Society London, A285, 397402.Google Scholar
Dollfus, A. and Titulaer, C. (1971). Polarimetric properties of the lunar surface and its interpretation. Part III. Volcanic samples in several wavelengths. Astronomy and Astrophysics, 12, 199209.Google Scholar
Dollfus, A. and Zellner, B. (1979). Optical polarimetry of asteroids and laboratory samples. In Gehrels, T., ed., Asteroids. Tucson: University Arizona Press, pp. 170183.Google Scholar
Dollfus, A., Bowell, E., and Titulaer, C. (1971a). Polarimetric properties of the lunar surface and its interpretation. Part II. Terrestrial samples in orange light. Astronomy and Astrophysics, 10, 450466.Google Scholar
Dollfus, A., Geake, J. E., and Titulaer, C. (1971b). Polarimetric properties of the lunar surface and its interpretation. Apollo 11 and Apollo 12 lunar samples. In Proceedings of the Second Lunar Science Conference, Vol. 3. The MIT Press, pp. 22852300.Google Scholar
Dollfus, A., Mandeville, J. C., and Duseaux, M. (1979). The nature of the M-type asteroids from optical polarimetry. Icarus, 37(1), 124132.CrossRefGoogle Scholar
Francis, M., Renard, J.-B., Hadamcik, E.et al. (2011). New studies on scattering properties of different kinds of soot. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 17661775.CrossRefGoogle Scholar
Fulle, M., Levasseur-Regourd, A. C., McBride, N., and Hadamcik, E. (2000). In-situ dust measurements from within the coma of 1P/Halley: First order approximation with a dust dynamical model. The Astronomical Journal, 119, 19681977.CrossRefGoogle Scholar
Garlick, G. F., Steigmann, G. A., Lamb, W. E., and Geake, J. E. (1973). Fluidization of lunar dust layers and effect on optical polarization of the diffuse reflectance of light. Proceedings of the 4th Lunar Science Conference. Lunar Science Institute, pp. 31753180.Google Scholar
Geake, J. E. and Dollfus, A. (1986). Planetary surface texture and albedo from parameter plots of optical polarization data. Monthly Notices of the Royal Astronomical Society, 218, 7591.CrossRefGoogle Scholar
Geake, J. and Geake, M. (1990). A remote-sensing method for subwavelength grains on planetary surfaces by optical polarimetry. Monthly Notices of the Royal Astronomical Society, 245, 4655.CrossRefGoogle Scholar
Geake, J. E., Dollfus, A., Garlick, G.F.et al. (1970). Luminescence, electron paramagnetic resonance, and optical properties of lunar material. Science, 167, 717720.CrossRefGoogle Scholar
Geake, J., Geake, M., and Zellner, B. (1984). Experiments to test theoretical models of the polarization of light by rough surfaces. Monthly Notices of the Royal Astronomical Society, 210, 89112.CrossRefGoogle Scholar
Giese, R. H., Weiss, K., Zerull, R. H., and Ono, T. (1978). Large fluffy particles: A possible explanation of the optical properties of interplanetary dust. Astronomy and Astrophysics, 65, 265272.Google Scholar
Greenberg, J. M. and Gustafson, B. Å. S. (1981). A comet fragment model for zodiacal light particles. Astronomy and Astrophysics, 93, 3542.Google Scholar
Greenberg, J. M., Pedersen, N. E., and Pedersen, J. C. (1961). Microwave analog to the scattering of light by non spherical particles. Journal of Applied Physics, 32, 233242.CrossRefGoogle Scholar
Gustafson, B. Å. S. (2000). Microwave analog to light scattering measurements. In Mishchenko, M. I., Hovenier, J. W., and Travis, L. D., eds., Light Scattering by Nonspherical Particles. San Diego CA: Academic Press, pp. 367390.CrossRefGoogle Scholar
Gustafson, B. Å. S. (2009). Scaled analog experiments in electromagnetic scattering. In Kokhanovsky, A. A. ed., Light Scattering Reviews 4. Berlin: Springer, pp. 330.CrossRefGoogle Scholar
Hadamcik, E., Levasseur-Regourd, A. C., Renard, J.-B., and Worms, J. C. (1996). Grains in Earth and microgravity conditions. In Gustafson, B. Å. S. and Hanner, M. S., eds., Physics, Chemistry and Dynamics of Interplanetary Dust. San Francisco CA: Astronomical Society of the Pacific, pp. 391394.Google Scholar
Hadamcik, E., Renard, J.-B., Worms, J. C., Levasseur-Regourd, A. C., and Masson, M. (2002). Polarization of light scattered by fluffy particles (PROGRA2 experiment). Icarus, 155, 497508.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Levasseur-Regourd, A. C., and Lasue, J. (2006). Light scattering by fluffy particles with the PROGRA2 experiment: Mixtures of materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 143156.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Lasue, J.et al. (2007a). Light scattering by low density agglomerates of micron-sized grains with the PROGRA2 experiment. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 7489.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Rietmeijer, F. J. M.et al. (2007b). Light scattering by fluffy Mg-Fe-SiO and C mixtures as cometary analogs (PROGRA2 experiment). Icarus, 190, 660671.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Levasseur-Regourd, A. C., and Worms, J. C. (2009a). Laboratory measurements of the light scattered by clouds of solid particles by imaging technique. In A. A. Kokhanovsky, ed., Light Scattering Reviews 4. Berlin: Springer, pp. 3170.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Alcouffe, G.et al. (2009b). Laboratory light-scattering measurements with Titan’s aerosols analogues produced by a dusty plasma. Planetary and Space Science, 57, 16311641.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Levasseur-Regourd, A. C.et al. (2009c). Light scattering by agglomerates: Interconnecting size and absorption effects (PROGRA2 experiment). Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 17551770.CrossRefGoogle Scholar
Hadamcik, E., Renard, J. B., Alcouffe, G., Cernogora, G., Levasseur-Regourd, A. C., and Szopa, C. (2009d). Laboratory light-scattering measurements with Titan’s aerosols analogues produced by a dusty plasma. Planetary and Space Science, 57(13), 16311641.CrossRefGoogle Scholar
Hadamcik, E., Levasseur-Regourd, A. C., and Renard, J.-B. (2010). Observations and laboratory simulations of asteroids by polarization measurements. In K. Muinonen, A. Penttilä, and H. Lindqvist eds., Electromagnetic and Light Scattering XII. Helsinki: University of Helsinki, pp. 7073.Google Scholar
Hadamcik, E., Renard, J.-B., Levasseur-Regourd, A. C., and Lasue, J. (2011a). Laboratory measurements of light scattered by clouds and layers of solid particles using an imaging technique. In M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, eds., Polarimetric Detection, Characterization, and Remote Sensing. Dordrecht: Springer, pp. 137175.CrossRefGoogle Scholar
Hadamcik, E., Levasseur-Regourd, A. C., Renard, J.-B., Lasue, J., and Sen, A. K. (2011b). Polarimetric observations and laboratory simulations of asteroidal surfaces: The case of 21 Lutetia. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 18811890.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Szopa, C.et al. (2011c). Light scattering by organic materials in dust clouds when approaching the Sun, laboratory simulations. EPSC-DPS joint meeting 2011 abstracts, 1827.Google Scholar
Hanner, M. S., Giese, R. H., Weiss, K., and Zerull, R. (1981). On the definition of albedo and application to irregular particles. Astronomy and Astrophysics, 104, 4246.Google Scholar
Hansen, J. E. and Hovenier, J. W. (1974). Interpretation of the polarization of Venus. Journal of the Atmospheric Sciences, 31, 11371160.2.0.CO;2>CrossRefGoogle Scholar
Haudebourg, V. (2000). Propriétés de diffusion lumineuse de particules en suspension: transition du régime de Mie à celui d’agrégats: expérience spatiale CODAG/LSU. Ph.D. thesis, UPMC, Paris.Google Scholar
Kvaratskhelia, O. I. (1988). Spectropolarimetry of the lunar surface and samples of the lunar soil. Bulletin of Abastumari Astrophysical Observatory, 64, 1312 [in Russian].Google Scholar
Kvaratskhelia, O. I. and Kolokolova, L. O. (1987). The difference between natural lunar surface material and lunar soil samples obtained by spacecraft. Kinematika i Fizika Nebesnykh Tel, 3, 9092 [in Russian].Google Scholar
Lasue, J. and Levasseur-Regourd, A. C. (2007). Cosmic dust optical properties, numerical simulations and future laboratory measurements in microgravity. Advances in Space Research, 39, 345350.CrossRefGoogle Scholar
Lasue, J., Levasseur-Regourd, A. C., Hadamcik, E., and Renard, J.-B. (2007a). Light scattering by coated spheres: Experimental results and numerical simulations. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 212224.CrossRefGoogle Scholar
Lasue, J., Levasseur-Regourd, A. C., Fray, N., and Cottin, H. (2007b). Inferring the interplanetary dust properties from remote observations and simulation. Astronomy and Astrophysics, 473, 642649.CrossRefGoogle Scholar
Lasue, J., Levasseur-Regourd, A. C., Hadamcik, E., and Alcouffe, G. (2009). Cometary dust properties retrieved from polarization observations: Application to C/1995 O1 Hale–Bopp and 1P/Halley. Icarus, 199, 129144.CrossRefGoogle Scholar
Levasseur-Regourd, A. C. (2003). Cosmic dust physical properties and the ICAPS facility on board the ISS. Advances in Space Research, 31, 25992606.CrossRefGoogle Scholar
Levasseur-Regourd, A. C. (2004). Polarimetry of dust in the solar system: Remote observations, in-situ measurements and experimental simulations. In G. Videen, Y. Yatskiv, and M. Mishchenko, eds., Photopolarimetry in Remote Sensing. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 393410.Google Scholar
Levasseur-Regourd, A. C. (2010). Inferring properties of dust within solar system small bodies through observations and simulations of the linear polarization of scattered solar-light. In M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, eds., Polarimetric Detection, Characterization, and Remote Sensing. Dordrecht, the Netherlands: Springer, pp. 295312.Google Scholar
Levasseur-Regourd, A. C., Cabane, M., Worms, J. C., and Haudebourg, V. (1997). Physical properties of dust in the solar system: Relevance of the computational approach and of measurements under microgravity conditions. Advances in Space Research, 20, 15851594.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Cabane, M., Haudebourg, V., and Worms, J. C. (1998). Light scattering experiments under microgravity conditions. Earth, Moon, and Planets, 80, 343368.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Cabane, M., Chassefière, E., Haudebourg, V., and Worms, J. C. (1999). The LS-CODAG experiment for light scattering measurements by dust particles and their aggregates. Advances in Space Research, 23, 12711277.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Hadamcik, E., and Lasue, J. (2005). Light scattering as a clue to cometary dust structure. Highlights of Astronomy, 13, 498500.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Zolensky, M., and Lasue, J. (2008). Dust in cometary comae: Present understanding of the structure and composition of dust particles. Planetary and Space Science, 56, 17191724.CrossRefGoogle Scholar
Lyot, B. (1929). Recherche sur la polarisation de la lumière des planètes et de quelques substances terrestres. Thesis, Paris.Google Scholar
Lyot, B. (1934). Polarisation de la lumière des petites planets. Comptes Rendus de l’Académie des sciences, 199, 774782.Google Scholar
McFadden, L. A., Ammonito, E., Cloutis, E. A.et al. (2009). Coordinated laboratory studies of meteorites supporting Rosetta mission’s asteroid flyby target: 2867 Steins. In 40th Lunar and Planetary Sciences Conference, 2887. Houston TX: LPI.Google Scholar
Mikrenska, M., Koulev, P., Renard, J.-B., Hadamcik, E., and Worms, J. C. (2006). Direct simulation Monte Carlo ray tracing model of light scattering by a class of real particles and comparison with PROGRA2 experimental results. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 256267.CrossRefGoogle Scholar
Muinonen, K. (1989). Electromagnetic scattering by two interacting dipoles. In Proceedings of the 1989 URSI International Symposium on Electromagnetic Theory. Stockholm, pp. 428430.Google Scholar
Muñoz, O. and Hovenier, J. W. (2011). Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air: A review. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 16461657.CrossRefGoogle Scholar
Muñoz, O., Volten, H, de Haan, J., Vassen, W., and Hovenier, J. (2000). Experimental determination of scattering matrices of olivine and Allende meteorite particles. Astronomy and Astrophysics, 360, 777788.Google Scholar
Nelson, R. M., Hapke, B. W., Smythe, W. D., and Horn, L. J. (1998). Phase curves of selected particulate materials: The contribution of coherent backscattering to the opposition surge. Icarus, 131, 223230.CrossRefGoogle Scholar
Nelson, R., Hapke, B., Smyth, W.et al. (1999). The reflectance phase curves at very small phase angle: A comparative study of two goniometers. In 30th Lunar and Planetary Sciences Conference, 2068. Houston TX: LPI.Google Scholar
Ovcharenko, A. A., Bondarenko, S. Y., Zubko, E. S.et al. (2006). Particle size effect on the opposition spike and negative polarization. Journal of Quantitative Spectroscopy and Radiative Transfer, 101, 394403.CrossRefGoogle Scholar
Penttilä, A., Lumme, K., Worms, J.C.et al. (2003). Theoretical analysis of the particle properties and polarization measurements made in microgravity. Journal of Quantitative Spectroscopy and Radiative Transfer, 79–80, 10431049.CrossRefGoogle Scholar
Petrov, D., Shkuratov, Y., and Videen, G. (2011). An analytical approach to electromagnetic wave scattering from particles of arbitrary shapes. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 16361645.CrossRefGoogle Scholar
Petrov, D., Shkuratov, Y, and Videen, G. (2012). Light scattering by arbitrary shaped particles with rough surfaces. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 24062418.CrossRefGoogle Scholar
Provostaye, M. F. and Desain, P. (1852). Mémoire sur la diffusion de la chaleur. Annales de Chimie et de Physique, 3(34), 192226.Google Scholar
Psarev, V., Ovcharenko, A., Shkuratov, Y., Belskaya, I., and Videen, G. (2007). Photometry of surfaces with complicated structure at extremely small phase angles. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 455463.CrossRefGoogle Scholar
Reid, J. P. (2009). Particle levitation and laboratory scattering. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 12931306.CrossRefGoogle Scholar
Renard, J.-B., Worms, J.-C., Lemaire, T., Hadamcik, E., and Huret, N. (2002). Light scattering by dust particles in microgravity: Polarization and brightness imaging with the new version of the PROGRA2 instrument. Applied Optics, 41, 609618.CrossRefGoogle ScholarPubMed
Renard, J.-B., Daugeron, D., Personne, P.et al. (2005). Optical properties of randomly distributed soot: Improved polarimetric and intensity scattering functions. Applied Optics, 44, 591596.CrossRefGoogle ScholarPubMed
Renard, J.-B., Brogniez, C., Berthet, G.et al. (2008). Vertical distribution of the different types of aerosols in the stratosphere: Detection of solid particles and analysis of their spatial variability. Journal of Geophysical Research D, 113, D21303.CrossRefGoogle Scholar
Renard, J.-B., Francis, M., Hadamcik, E.et al. (2010). Scattering properties of sands. 2 Results for sands from different origins. Applied Optics, 49(18), 35523559.CrossRefGoogle ScholarPubMed
Renard, J.-B., Hadamcik, E., Couté, B., Jeannot, M., and Levasseur-Regoud, A. C. (2014). Wavelength dependence of linear polarization in the visible and near infrared domain for large levitating grains (PROGRA2 instruments). Journal of Quantitative Spectroscopy and Radiative Transfer, 146, 424430.CrossRefGoogle Scholar
Shepard, M. K. and Arvidson, R. E. (1999). The opposition surge and photopolarimetry of fresh and coated basalts. Icarus, 141, 172178.CrossRefGoogle Scholar
Shkuratov, Y. G. (1985). On the origin of the opposition effect and negative polarization for cosmic bodies with solid surface. In Astronomicheskii Circular, 1400. Moscow: Sternberg State Astron. Inst., pp. 36 [in Russian].Google Scholar
Shkuratov, Y. G. (1987). Negative polarization of sunlight scattered from celestial bodies: Interpretation of the wavelength dependence. Soviet Astronomy Letters, 13(3), 182183.Google Scholar
Shkuratov, Y. G. and Akimov, L. A. (1987). Laboratory studies of the negative polarization. Consequences for atmosphereless cosmic bodies. 1. Kinematics and Physics of Celestial Bodies, 3, 2227 [in Russian].Google Scholar
Shkuratov, Y. G. and Opanasenko, N. V. (1992). Polarimetric and photometric study of the Moon: Telescope observation and laboratory simulation. 2. The positive polarization. Icarus, 99, 468484.CrossRefGoogle Scholar
Shkuratov, Y. G. and Ovcharenko, A. (2002). Experimental modeling of opposition effect and negative polarization of regolith-like surfaces. In G. Videen and M. Kocifaj, eds., Optics of Cosmic Dust. London: Kluwer Academic Publishers, pp. 225238.CrossRefGoogle Scholar
Shkuratov, Y. G., Akimov, L. A., and Tishkovets, V. P. (1984). Negative polarization does not confirm the existence of dust on the surface of atmosphereless celestial bodies. Soviet Astronomy Letters, 10, 797799.Google Scholar
Shkuratov, Y. G., Akimov, L. A., Stankevich, N. P.et al. (1987). Laboratory studies of the negative polarization. Consequences for atmosphereless cosmic bodies. 2. Kinematics and Physics of Celestial Bodies, 3, 3237 [in Russian].Google Scholar
Shkuratov, Y. G., Melkumova, L. Y., and Badukov, D. D. (1988). Laboratory studies of the negative polarization. Consequences for atmosphereless cosmic bodies. 3. Kinematics and Physics of Celestial Bodies, 4, 1118 [in Russian].Google Scholar
Shkuratov, Y. G., Muinonen, K., Bowell, E.et al. (1994). A critical review of theoretical models for the negative polarization of light scattered by atmosphereless solar system bodies. Earth, Moon, and Planets, 65, 201246.CrossRefGoogle Scholar
Shkuratov, Y. G., Ovcharenko, A., Zubko, E.et al. (2002). The opposition effect and negative polarization of structurally simulated planetary regoliths. Icarus, 159, 396416.CrossRefGoogle Scholar
Shkuratov, Y. G., Ovcharenko, A., Zubko, E.et al. (2004). The negative polarization of light scattered from particulate surfaces and of independently scattering particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 88, 267284.CrossRefGoogle Scholar
Shkuratov, Y. G., Bondarenko, S., Ovcharenko, A.et al. (2006). Comparative studies of the reflectance and degree of linear polarization of particulate surfaces and independently scattering particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 340358.CrossRefGoogle Scholar
Shkuratov, Y. G., Bondarenko, S., Kaydash, V.et al. (2007a). Photometry and polarimetry of particulate surfaces and aerosol particles over a wide range of phase angles. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 487508.CrossRefGoogle Scholar
Shkuratov, Y. G., Ovcharenko, A. A., Psarev, V. A., and Bondarenko, S. Y. (2007b). Laboratory measurements of reflected light intensity and polarization for selected particulate surfaces. In A. A. Kokhanovsky, ed., Light Scattering Reviews, 3. Berlin: Springer, pp. 383402.Google Scholar
Shkuratov, Y. G., Kaydash, V., Korokhin, V.et al. (2011). Optical measurements of the Moon as a tool to study its surface. Planetary and Space Science, 59, 13261371.CrossRefGoogle Scholar
Tomasko, M. G. and Smith, P. H. (1982). Photometry and polarimetry of Titan: Pioneer 11 observations and their implications for aerosol properties. Icarus, 51, 6595.CrossRefGoogle Scholar
Umov, N. (1905). Chromatische depolarisation durch Lichtzerstreung. Physikalische Zeitschrift, 6, 674676.Google Scholar
Vaillon, R. and Geffrin, J. M. (2014). Recent advances in microwave analog to light scattering experiments. Journal of Quantitative Spectroscopy and Radiative Transfer, 146, 100105.CrossRefGoogle Scholar
Vaillon, R., Geffrin, J. M., Eyraud, C.et al. (2011). A new implementation of a microwave analog to light scattering measurement device. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 17531760.CrossRefGoogle Scholar
Weiss-Wrana, K. (1983). Optical properties of interplanetary dust: Comparison with light scattering by larger meteoritic and terrestrial grains. Astronomy and Astrophysics, 126, 240250.Google Scholar
West, R. A., Lane, A. L., Hart, H.et al. (1983). Voyager 2 photopolarimeter observations of Titan. Journal of Geophysical Research, 88, 86998708.CrossRefGoogle Scholar
Worms, J.-C., Renard, J.-B., Hadamcik, E., Levasseur-Regourd, A. C., and Gayet, J.-F. (1999a). Results of the PROGRA2 experiment: An experimental study in microgravity of scattered polarized light by dust particles with large size parameter. Icarus, 142, 281297.CrossRefGoogle Scholar
Worms, J.-C., Renard, J.-B., Levasseur-Regourd, A. C., and Hadamcik, E. (1999b). Light scattering by dust particles in microgravity: The PROGRA2 achievements and results. Advances in Space Research, 23(7), 12571266.CrossRefGoogle Scholar
Worms, J. C., Renard, J.-B., Hadamcik, E., Brun-Huret, N., and Levasseur-Regourd, A. C. (2000). Light scattering by dust particles with the PROGRA2 instrument – comparative measurements between clouds under microgravity and layers on the ground. Planetary and Space Science, 48, 493505.CrossRefGoogle Scholar
Zerull, R. H., Giese, R. H., and Weiss, K. (1977). Scattering functions of nonspherical dielectric and absorbing particles vs. Mie theory. Applied Optics, 16, 777778.CrossRefGoogle ScholarPubMed
Zubko, E., Shkuratov, Y., Mishchenko, M., and Videen, G. (2008). Light scattering in a finite multi-particle system. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 21952206.CrossRefGoogle Scholar
Zubko, E., Videen, G., Shkuratov, Y., Muinonen, K., and Yamamoto, T. (2011). The Umov effect for single irregularly shaped particles with sizes comparable with wavelength. Icarus, 212, 403415.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×