Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-01T01:31:06.063Z Has data issue: false hasContentIssue false

II - Theory, instrumentation, and laboratory studies

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Chandrasekhar, S. (1950). Radiative Transfer. Oxford: Oxford University Press.Google Scholar
Davis, E. J. and Schweiger, G. (2002). The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena. Berlin: Springer Publishing Company.CrossRefGoogle Scholar
Dlugach, J. M., Mishchenko, M. I., Liu, L., and Mackowski, D. W. (2011). Numerically exact computer simulations of light scattering by densely packed, random particulate media. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 20682078.CrossRefGoogle Scholar
Draine, B. T. and Flatau, P. J. (1994). Discrete dipole approximation for scattering calculations. Journal of the Optical Society of America A, 11, 14911499.CrossRefGoogle Scholar
Goodman, J. W. (2005). Introduction to Fourier Optics. Englewood, CO: Roberts & Company.Google Scholar
Gustafson, B. Å. S. (2000). Microwave analog to light-scattering measurements. In Mishchenko, M. I., Hovenier, J. W., and Travis, L. D., eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. San Diego, CA: Academic Press, pp. 367390.CrossRefGoogle Scholar
Hansen, J. E. and Hovenier, J. W. (1974). Interpretation of the polarization of Venus. Journal of the Atmospheric Sciences, 31, 11371160.2.0.CO;2>CrossRefGoogle Scholar
Hansen, J. E. and Travis, L. D. (1974). Light scattering in planetary atmospheres. Space Science Reviews, 16, 527610.CrossRefGoogle Scholar
Hapke, B. (2012). Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press.CrossRefGoogle Scholar
Hovenier, J. W. (2000). Measuring scattering matrices of small particles at optical wavelengths. In Mishchenko, M. I., Hovenier, J. W., and Travis, L. D., eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. San Diego CA: Academic Press, pp. 355365.CrossRefGoogle Scholar
Hovenier, J. W. and van der Mee, C. V. M. (2000). Basic relationships for matrices describing scattering by small particles. In Mishchenko, M. I., Hovenier, J. W., and Travis, L. D., eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. San Diego CA: Academic Press, pp. 6185.CrossRefGoogle Scholar
Hovenier, J. W., van der Mee, C., and Domke, H. (2004). Transfer of Polarized Light in Planetary Atmospheres—Basic Concepts and Practical Methods. Dordrecht, the Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Kahnert, F. M. (2003). Numerical methods in electromagnetic scattering theory. Journal of Quantitative Spectroscopy and Radiative Transfer, 79–80, 775824.CrossRefGoogle Scholar
Kimble, H. J. and Mandel, L. (1984). Photoelectric detection of polychromatic light. Physical Review A, 30, 844850.CrossRefGoogle Scholar
Lenoble, J., ed. (1985). Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. Hampton, VA: A. Deepak Publishing.Google Scholar
Mackowski, D. W. and Mishchenko, M. I. (1996). Calculation of the T matrix and the scattering matrix for ensembles of spheres. Journal of the Optical Society of America A, 13, 22662278.CrossRefGoogle Scholar
Mackowski, D. W. and Mishchenko, M. I. (2011). A multiple sphere T-matrix Fortran code for use on parallel computer clusters. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 21822192.CrossRefGoogle Scholar
Mackowski, D. W. and Mishchenko, M. I. (2013). Direct simulation of extinction in a slab of spherical particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 123, 103112.CrossRefGoogle Scholar
Mandel, L. and Wolf, E. (1995). Optical Coherence and Quantum Optics. Cambridge University Press.CrossRefGoogle Scholar
Mishchenko, M. I. (2009). Gustav Mie and the fundamental concept of electromagnetic scattering by particles: A perspective. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 12101222.CrossRefGoogle Scholar
Mishchenko, M. I. (2013). Measurement of electromagnetic energy flow through a sparse particulate medium: A perspective, Journal of Quantitative Spectroscopy and Radiative Transfer, 123, 122134.CrossRefGoogle Scholar
Mishchenko, M. I., Hovenier, J. W., and Travis, L. D., eds. (2000). Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. San Diego, CA: Academic Press.Google Scholar
Mishchenko, M. I., Travis, L. D., and Lacis, A. A. (2002). Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press. Available in pdf format at www.giss.nasa.gov/staff/mmishchenko/books.html (accessed January 27, 2015).Google Scholar
Mishchenko, M. I., Travis, L. D., and Lacis, A. A. (2006). Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. Cambridge University Press. Available in pdf format at www.giss.nasa.gov/staff/mmishchenko/books.html (accessed January 27, 2015).Google Scholar
Mishchenko, M. I., Liu, L., and Videen, G. (2007). Conditions of applicability of the single-scattering approximation. Optics Express, 15, 75227527.CrossRefGoogle ScholarPubMed
Mishchenko, M. I., Dlugach, J. M., Liu, L.et al. (2009). Direct solutions of the Maxwell equations explain opposition phenomena observed for high-albedo solar system objects. The Astrophysical Journal, 705, L118L122.CrossRefGoogle Scholar
Mishchenko, M. I., Rosenbush, V. K., Kiselev, N. N.et al. (2010). Polarimetric Remote Sensing of Solar System Objects. Kyiv: Akademperiodyka. Available in pdf format at http://arxiv.org/abs/1010.1171 (accessed December 10, 2014).CrossRefGoogle Scholar
Mishchenko, M. I., Yatskiv, Ya. S., Rosenbush, V. K., and Videen, G., eds. (2011a). Polarimetric Detection, Characterization, and Remote Sensing. Dordrecht, the Netherlands:Springer Publishing Company.CrossRefGoogle Scholar
Mishchenko, M. I., Tishkovets, V. P., Travis, L. D.et al. (2011b). Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 671692.CrossRefGoogle Scholar
Mishchenko, M. I., Goldstein, D. H., Chowdhary, J., and Lompado, A. (2013). Radiative transfer theory verified by controlled laboratory experiments. Optics Letters, 38, 35223525.CrossRefGoogle ScholarPubMed
Muinonen, K. (2004). Coherent backscattering of light by complex random media of spherical scatterers: Numerical solution. Waves in Random Media, 14, 365388.CrossRefGoogle Scholar
Muinonen, K., Mishchenko, M. I., Dlugach, J. M.et al. (2012). Coherent backscattering verified numerically for a finite volume of spherical particles. The Astrophysical Journal, 760, 118.CrossRefGoogle Scholar
Müller, C. (1969). Foundations of the Mathematical Theory of Electromagnetic Waves. Berlin:Springer Publishing Company.CrossRefGoogle Scholar
Muñoz, O. and Hovenier, J. W. (2011). Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. A review. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 16461657.CrossRefGoogle Scholar
Peltoniemi, J., Hakala, T., Suomalainen, J., and Puttonen, E. (2009). Polarised bidirectional reflectance factor measurements from soil, stones, and snow. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 19401953.CrossRefGoogle Scholar
Shkuratov, Yu., Bondarenko, S., Ovcharenko, A.et al. (2006). Comparative studies of the reflectance and degree of linear polarization of particulate surfaces and independently scattering particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 340358.CrossRefGoogle Scholar
Tishkovets, V. P., Petrova, E. V., and Mishchenko, M. I. (2011). Scattering of electromagnetic waves by ensembles of particles and discrete random media. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 20952127.CrossRefGoogle Scholar
Tsang, L. and Kong, J. A. (1980). Multiple scattering of electromagnetic waves by random distributions of discrete scatterers with coherent potential and quantum mechanical formalism. Journal of Applied Physics, 51, 34653485.CrossRefGoogle Scholar
Vaillon, R., Geffrin, J.-M., Eyraud, C.et al. (2011). A new implementation of a microwave analog to light scattering measurement device. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 17531760.CrossRefGoogle Scholar
Videen, G. and Kocifaj, M. (2002). Optics of Cosmic Dust. Dordrecht, the Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Videen, G., Yatskiv, Ya., and Mishchenko, M., eds. (2004). Photopolarimetry in Remote Sensing. Dordrecht, the Netherlands: Kluwer Academic Publishers.Google Scholar
Yang, P. and Liou, K. N. (2000). Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles. In Mishchenko, M. I., Hovenier, J. W., and Travis, L. D., eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. San Diego CA: Academic Press, pp. 173221.CrossRefGoogle Scholar
Yurkin, M. A. and Hoekstra, A. G. (2007). The discrete dipole approximation: An overview and recent developments. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 558589.CrossRefGoogle Scholar
Yurkin, M. A. and Hoekstra, A. G. (2011). The discrete-dipole-approximation code ADDA: Capabilities and known limitations. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 22342247.CrossRefGoogle Scholar

References

Aitken, D. K. and Hough, J. H. (2001). Spectral modulation, or ripple in retardation plates for linear and circular polarization. Publications of the Astronomical Society of the Pacific, 113(788), 13001305.CrossRefGoogle Scholar
Anan, T., Ichimoto, K., Oi, A.et al. (2012). Developments of the wideband spectropolarimeter of the Domeless Solar Telescope at Hida Observatory. In Ground-based and Airborne Instrumentation for Astronomy IV. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Appenzeller, I., Fricke, K., Fürtig, W.et al. (1998). Successful commissioning of FORS1 – the first optical instrument on the VLT. The Messenger, 94, 16.Google Scholar
Azzam, R. M. and Bashara, N. M. (1987). Ellipsometry and Polarized Light. North Holland: Elsevier Science Publishing Co., Inc.CrossRefGoogle Scholar
Bagnulo, S., Landolfi, M., Landstreet, J. D.et al. (2009). Stellar spectropolarimetry with retarder waveplate and beam splitter devices. Publications of the Astronomical Society of the Pacific, 121, 9931015.CrossRefGoogle Scholar
Bagnulo, S., Landstreet, J. D., Fossati, L., and Kochukhov, O. (2012). Magnetic field measurements and their uncertainties: The FORS1 legacy. Astronomy and Astrophysics, 538, id. A129, 22 pp.CrossRefGoogle Scholar
Bagnulo, S., Fossati, L., Kochukhov, O., and Landstreet, J. D. (2013). The importance of non-photon noise in stellar spectropolarimetry. The spurious detection of a non-existing magnetic field in the A0 supergiant HD 92207. Astronomy and Astrophysics, 559, id. A103, 10 pp.CrossRefGoogle Scholar
Bailey, J., Lucas, P. W., and Hough, J. H. (2010). The linear polarization of nearby bright stars measured at the parts per million level. Monthly Notices of the Royal Astronomical Society, 405(4), 25702578.Google Scholar
Barrick, G., Benedict, T., and Sabin, D. (2010). Correcting polarization crosstalk in the ESPaDOnS spectro-polarimeter. In SPIE Astronomical Telescopes and Instrumentation: Observational Frontiers of Astronomy for the New Decade. Bellingham WA: International Society for Optics and Photonics, p. 77354C.Google Scholar
Batcheldor, D., Schneider, G., Hines, D. C. et al. (2009). High-accuracy near-infrared imaging polarimetry with NICMOS. Publications of the Astronomical Society of the Pacific, 121(876), 153166.CrossRefGoogle Scholar
Baur, T. G. (2003). A new type of beam-splitting polarizer cube. In Optical Science and Technology, SPIE’s 48th Annual Meeting. Bellingham WA: International Society for Optics and Photonics, pp. 135141.Google Scholar
Beck, C., Schmidt, W., Kentischer, T., and Elmore, D. (2005). Polarimetric Littrow Spectrograph – Instrument Calibration and First Measurements. Astronomy and Astrophysics, 437, 11591167.CrossRefGoogle Scholar
Beckers, J. M. (1971). Achromatic linear retarders. Applied Optics, 10(4), 973975.CrossRefGoogle ScholarPubMed
Berreman, D. W. (1972). Optics in stratified and anisotropic media: 4 × 4-matrix formulation. Journal of the Optical Society of America, 62(4), 502510.CrossRefGoogle Scholar
Brink, J. D., Buckley, D. A. H., Nordsieck, K. H., and Potter, S. B. (2010). Spectropolarimetry with the SALT RSS. In Ground-based and Airborne Instrumentation for Astronomy III. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7735. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Cao, W., Ahn, K., Goode, P. R.et al. (2011). The new solar telescope in Big Bear: Polarimetry II. In Solar Polarization 6. Astronomical Society of the Pacific Conference Series, Vol. 437. San Francisco, CA: Astronomical Society of the Pacific, p. 345.Google Scholar
Capobianco, G., Fineschi, S., Massone, G.et al. (2012). Electro-optical polarimeters for ground-based and space-based observations of the solar K-corona. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8450. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Chipman, R. A. (1989). Polarization analysis of optical systems. Optical Engineering, 28(2), 280290280290.Google Scholar
Clarke, D. (2005). Effects in polarimetry of interference within wave plates. Astronomy and Astrophysics, 434, 377384.CrossRefGoogle Scholar
Clarke, D. (2010). Stellar Polarimetry. New York: Wiley Publ., doi: 10.1002/9783527628322.Google Scholar
Clemens, D. P., Sarcia, D., Grabau, A.et al. (2007). Mimir: A near-infrared wide-field imager, spectrometer and polarimeter. Publications of the Astronomical Society of the Pacific, 119, 13851402.CrossRefGoogle Scholar
Clemens, D. P., Pinnick, A. F., and Pavel, M. D. (2012). Polarimetric calibration of Mimir and the Galactic Plane Infrared Polarization Survey (GPIPS). The Astrophysical Journal Supplement Series, 200, 20.CrossRefGoogle Scholar
Collados, M., Lagg, A., Diaz Garcia, J. J.et al. (2007). Tenerife infrared polarimeter II. The Physics of Chromospheric Plasmas, 368, 611.Google Scholar
Collados, M., Lopez, R., Paez, E.et al. (2012). GRIS: The GREGOR infrared spectrograph. Astronomische Nachrichten, 333, 872.CrossRefGoogle Scholar
Collins, P., Kyne, G., Lara, D.et al. (2013). The Galway astronomical Stokes polarimeter: An all-Stokes optical polarimeter with ultra-high time resolution. Experimental Astronomy, 36, 479503.CrossRefGoogle Scholar
Covino, S., Molinari, E., Bruno, P.et al. (2013). PAOLO: A Polarimeter Add-On for the LRS Optics at a Nasmyth focus of the TNG. Astronomische Nachrichten, 335(2), 117.CrossRefGoogle Scholar
Crescenzio, G., Fineschi, S., Capobianco, G.et al. (2012). Imaging polarimetry with the METIS coronagraph of the Solar Orbiter mission. In Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8443. Bellingham WA: International Society for Optics and Photonics.Google Scholar
de Wijn, A. G., Bethge, C., Tomczyk, S., and McIntosh, S. (2012a). The chromosphere and prominence magnetometer. In Ground-based and Airborne Instrumentation for Astronomy IV. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. Bellingham WA: International Society for Optics and Photonics.Google Scholar
de Wijn, A. G., Burkepile, J. T., Tomczyk, S.et al. (2012b). Stray light and polarimetry considerations for the COSMO K-Coronagraph. In Astronomical Telescopes + Instrumentation. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8444. Bellingham WA: International Society for Optics and Photonics.Google Scholar
del Toro Iniesta, J. C. and Collados, M. (2000). Applied Optics, 39, 1637.CrossRefGoogle Scholar
del Toro Iniesta, J. C. and Martínez Pillet, V. (2012). Assessing the behavior of modern solar magnetographs and spectropolarimeters. The Astrophysical Journal Supplement, 201, id. 22, 9 pp.CrossRefGoogle Scholar
Delacroix, C., Absil, O., Forsberg, P.et al. (2013). Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph. Astronomy and Astrophysics, 553, A98.CrossRefGoogle Scholar
Deschamps, P. Y., Bréon, F. M., Leroy, M.et al. (1994). The POLDER mission: Instrument characteristics and scientific objectives. IEEE Transactions on Geoscience and Remote Sensing, 32(3), 598615.CrossRefGoogle Scholar
Diner, D., Davis, A., Hancock, B.et al. (2010). First results from a dual photoelastic-modulator-based polarimetric camera. Applied Optics, 49, 29292946.CrossRefGoogle ScholarPubMed
Donati, J.-F. (2003). ESPaDOnS: An Echelle spectropolarimetric device for the observation of stars at CFHT. In ASP Conference Proceedings, Vol. 307. San Francisco: Astronomical Society of the Pacific, p. 41.Google Scholar
Donati, J.-F., Catala, C., Landstreet, J. D., and Petit, P. (2006). ESPaDOnS: The new generation stellar spectro-polarimeter. Performances and first results. In Astronomical Society of the Pacific Conference Series, Vol. 358. San Francisco, CA: Astronomical Society of the Pacific, p. 362.Google Scholar
Fossati, L., Bagnulo, S., Mason, E., and Degl’Innocenti, E. L. (2007). Standard stars for linear polarization observed with FORS1. In Astronomical Society of the Pacific Conference Series, Vol. 364. San Francisco: Astronomical Society of the Pacific.Google Scholar
Gandorfer, A., Solanki, S. K., Woch, J.et al. (2011). The Solar Orbiter Mission and its Polarimetric and Helioseismic Imager (SO/PHI). Journal of Physics Conference Series, 271, 012086.CrossRefGoogle Scholar
Gehrels, T., Coffeen, D., Tomasko, M.et al. (1974). The imaging photopolarimeter experiment on Pioneer 10. Science, 183(4122), 318320.CrossRefGoogle ScholarPubMed
Gil-Hutton, R. and Benavidez, P. (2003). Southern stars that can be used as unpolarized standards. Monthly Notices of the Royal Astronomical Society, 345(1), 9799.CrossRefGoogle Scholar
Goldstein, D. (2011). Polarized Light, 3rd edn. New York: Marcel Dekker.Google Scholar
Goode, P. R., Cao, W., Ahn, K., Gorceix, N., and Coulter, R. (2011). The new solar telescope in Big Bear: Polarimetry II. In Solar Polarization 6. Astronomical Society of the Pacific Conference Series, Vol. 437. San Francisco CA: Astronomical Society of the Pacific, p. 341.Google Scholar
Goodrich, R. and Cohen, M. (2003). LRIS imaging spectropolarimeter at the W.M. Keck Observatory. Polarimetry in Astronomy, 4843, 146155.CrossRefGoogle Scholar
Guimond, S. and Elmore, D. (2004). Optical design and engineering: Polarizing view. oemagazine, May, doi: 10.1117/2.5200405.0007, SPIE. Available online at http://spie.org/x17069.xml (accessed December 11, 2014).Google Scholar
Hale, P. D. and Day, G. W. (1988). Stability of birefringent linear retarders (waveplates). Applied Optics, 27, 51465153.CrossRefGoogle ScholarPubMed
Harrington, D. M. and Kuhn, J. R. (2008). Spectropolarimetric observations of Herbig Ae/Be Stars. I. HiVIS spectropolarimetric calibration and reduction techniques. Publications of the Astronomical Society of the Pacific, 120, 89117.CrossRefGoogle Scholar
Harrington, D. M., Kuhn, J. R., and Whitman, K. (2006). The new HiVIS spectropolarimeter and spectropolarimetric calibration of the AEOS telescope. Publications of the Astronomical Society of the Pacific, 118, 845859.CrossRefGoogle Scholar
Harrington, D. M., Kuhn, J. R., Sennhauser, C., Messersmith, E. J., and Thornton, R. J. (2010). Achromatizing a liquid-crystal spectropolarimeter: Retardance vs. Stokes-based calibration of HiVIS. Publications of the Astronomical Society of the Pacific, 122(890), 420438.CrossRefGoogle Scholar
Harrington, D. M., Kuhn, J. R., and Hall, S. (2011). Deriving telescope Mueller matrices using daytime sky polarization observations. Publications of the Astronomical Society of the Pacific, 123(905), 799811.CrossRefGoogle Scholar
Hinkley, S., Oppenheimer, B. R., Soummer, R.et al. (2009). Speckle suppression through dual imaging polarimetry, and a ground-based image of the HR 4796A circumstellar disk. The Astrophysical Journal, 701(1), 804.CrossRefGoogle Scholar
Hodapp, K. W., Suzuki, R., Tamura, M.et al. (2008). HiCIAO: The Subaru Telescope’s new high-contrast coronographic imager for adaptive optics. In Ground-based and Airborne Instrumentation for Astronomy II. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7014. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Hou, J., de Wijn, A. G., and Tomczyk, S. (2013). Design and measurement of the Stokes polarimeter for the COSMO K-coronagraph. The Astrophysical Journal, 774, 85.CrossRefGoogle Scholar
Hough, J., Lucas, P. W., Bailey, J., and Tamura, M. (2007). Low polarization standards. The Future of Photometric, Spectrophotometric, and Polarimetric Standardization. ASP Conference Series, Vol. 364. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Hough, J. H., Lucas, P. W., Bailey, J. A. et al. (2006). PlanetPol: A very high sensitivity polarimeter. Publications of the Astronomical Society of the Pacific, 118(847), 13021318.CrossRefGoogle Scholar
Ichimoto, K., Lites, B. W., Elmore, D.et al. (2008). Polarization calibration of the solar optical telescope onboard Hinode. Solar Physics, 249, 233261.CrossRefGoogle Scholar
Ilyin, I., Strassmeier, K. G., Woche, M., Dionies, F., and Di Varano, I. (2011). On the design of the PEPSI spectropolarimeter for the LBT. Astronomische Nachrichten, 332, 753.CrossRefGoogle Scholar
Jaeggli, S. A., Lin, H., Mickey, D. L.et al. (2010). FIRS: A new instrument for photospheric and chromospheric studies at the DST. Memorie della Societa Astronomica Italiana, 81, 763.Google Scholar
Kanbach, G., Stefanescu, A., Duscha, S.et al. (2008). OPTIMA: A high time resolution optical photo-polarimeter. Astrophysics and Space Science Library, 351, 153.CrossRefGoogle Scholar
Kandori, R., Kusakabe, N., Tamura, M.et al. (2006). SIRPOL: A JHKs-simultaneous imaging polarimeter for the IRSF 1.4-m telescope. In Ground-based and Airborne Instrumentation for Astronomy. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 6269. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Kashikawa, N., Aoki, K., Asai, R.et al. (2002). FOCAS: The Faint Object Camera and Spectrograph for the Subaru Telescope. Publications of the Astronomical Society of Japan, 54, 819832.CrossRefGoogle Scholar
Käufl, H.-U., Moorwood, A. F. M., and Pirard, J.-F. (2003). Spectropolarimetry with CRIRES: Technical aspects and scientific potential. Polarimetry in Astronomy, 4843, 223232.CrossRefGoogle Scholar
Kawabata, K. S., Nagae, O., Chiyonobu, S.et al. (2008). Wide-field one-shot optical polarimeter: HOWPol. In Ground-based and Airborne Instrumentation for Astronomy II. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7014. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Keller, C. U. (1996). Recent progress in imaging polarimetry. In Solar Polarization. The Netherlands: Springer, pp. 243252.CrossRefGoogle Scholar
Keller, C. U. (2002). Instrumentation for astrophysical spectropolarimetry. In Astrophysical Spectropolarimetry, Vol. 1. Cambridge University Press, pp. 303354.Google Scholar
Keller, C. U., Harvey, J. W., and Solis Team (2003). The SOLIS Vector-Spectromagnetograph. Solar Polarization, 307, 13.Google Scholar
King, O. G., Blinov, D., Ramaprakash, A. N.et al. (2013). The RoboPol Pipeline and Control System. Monthly Notices of the Royal Astronomical Society, 442(2), 17061717.CrossRefGoogle Scholar
Komanduri, R. K., Lawler, K. F., and Escuti, M. J. (2013). Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers. Optics Express, 21, 404.CrossRefGoogle ScholarPubMed
Korablev, O., Fedorova, A., Bertaux, J.-L.et al. (2012). SPICAV IR acousto-optic spectrometer experiment on Venus Express. Planetary and Space Science, 65, 3857.CrossRefGoogle Scholar
Ksanfomaliti, L. V., Moroz, V. I., and Dollfus, A. (1975). Polarimetry experiment on board Mars 5. Kosmicheskie Issledovaniia, 13, 9298.Google Scholar
Kuhn, J. R., Balasubramaniam, K. S., Kopp, G.et al. (1994). Removing instrumental polarization from infrared solar polarimetric observations. Solar Physics, 153(1–2), 143155.CrossRefGoogle Scholar
Kuhn, J. R., Potter, D., and Parise, B. (2001). Imaging polarimetric observations of a new circumstellar disk system. The Astrophysical Journal Letters, 553(2), L189.CrossRefGoogle Scholar
Langlois, M., Dohlen, K., Augereau, J.-C.et al. (2010). High contrast imaging with IRDIS near infrared polarimeter. In Ground-based and Airborne Instrumentation for Astronomy III. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7735. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Leroy, J. L. (2000). Polarization of Light and Astronomical Observation. Vol. 4 of Advances in Astronomy and Astrophysics. Amsterdam: Gordon and Breach Science.Google Scholar
Levasseur-Regourd, A. C., Bertaux, J. L., Dumont, R.et al. (1986). Optical probing of comet Halley from the Giotto spacecraft. Nature, 321, 341344.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., McBride, N., Hadamcik, E., and Fulle, M. (1999). Similarities between in situ measurements of local dust scattering and dust flux impact data within the coma of 1P/Halley. Astronomy and Astrophysics, 348, 636641.Google Scholar
Lillie, C. F., Hord, C. W., Pang, K., Coffeen, D. L., and Hansen, J. E. (1977). The Voyager mission photopolarimeter experiment. Space Science Reviews, 21(2), 159181.CrossRefGoogle Scholar
Magalhaes, A. M., de Oliveiraa, C. M., Carciofia, A.et al. (2012). South Pol: Revealing the polarized southern sky. American Institute of Physics Conference Series, 1429, 244247.Google Scholar
Mahler, A. B., McClain, S., and Chipman, R. (2011). Achromatic athermalized retarder fabrication. Applied Optics, 50(5), 755765.CrossRefGoogle ScholarPubMed
Manchado, A., Fuentes, F. J., Prada, F.et al. (1998). LIRIS: A long-slit intermediate-resolution infrared spectrograph for the WHT. Infrared Astronomical Instrumentation, 3354, 448455.CrossRefGoogle Scholar
Martinez Pillet, V., del Toro Iniesta, J. C., Alvarez-Herrero, A.et al. (2011). The Imaging Magnetograph eXperiment (IMaX) for the Sunrise Balloon-Borne Solar Observatory. Solar Physics, 268, 57102.CrossRefGoogle Scholar
Masiero, J., Hodapp, K., Harrington, D., and Lin, H. (2007). Commissioning of the dual-beam imaging polarimeter for the University of Hawaii 88 inch telescope. Publications of the Astronomical Society of the Pacific, 119, 11261132.CrossRefGoogle Scholar
Mein, P., Mein, N., and Bommier, V. (2009). Fast imaging spectroscopy with MSDP spectrometers. Vector magnetic maps with THEMIS/MSDP. Astronomy and Astrophysics, 507, 531539.CrossRefGoogle Scholar
Mishchenko, M. I., Rosenbush, V. K., Kiselev, N. N.et al. (2010). Polarimetric remote sensing of solar system objects. “Akademperiodyka,” Kyiv, ArXiv e-prints arXiv:1010.1171.CrossRefGoogle Scholar
Monin, D., Bohlender, D., Hardy, T., Saddlemyer, L., and Fletcher, M. (2012). An inexpensive liquid crystal spectropolarimeter for the Dominion Astrophysical Observatory Plaskett Telescope. Publications of the Astronomical Society of the Pacific, 124(914), 329342.CrossRefGoogle Scholar
Moorwood, A., Cuby, J.-G., and Lidman, C. (1998). SOFI sees first light at the NTT. The Messenger, 91, 913.Google Scholar
Moorwood, A., Cuby, J.-G., Ballester, P.et al. (1999). ISAAC at the VLT. The Messenger, 95, 15.Google Scholar
Nordsieck, K. H. (1974). A simple polarimetric system for the Lick Observatory Image-Tube Scanner. Publications of the Astronomical Society of the Pacific, 86, 324329.CrossRefGoogle Scholar
Nordsieck, K. H., Jaehnig, K. P., Burgh, E. B.et al. (2003). Instrumentation for high-resolution spectropolarimetry in the visible and far-ultraviolet. Polarimetry in Astronomy, 4843, 170179.CrossRefGoogle Scholar
Oh, C. and Escuti, M. J. (2008). Achromatic diffraction from polarization gratings with high efficiency. Optics Letters, 33, 2287–2289.CrossRefGoogle ScholarPubMed
Oka, K. and Kato, T. (1999). Spectroscopic polarimetry with a channeled spectrum. Optics Letters, 24(21), 14751477.CrossRefGoogle ScholarPubMed
Oke, J. B., Cohen, J. G., Carr, M. M.et al. (1994). Low-resolution imaging spectrometer for the Keck Telescope. In 1994 Symposium on Astronomical Telescopes and Instrumentation for the 21st Century. Bellingham WA: International Society for Optics and Photonics, pp. 178184.Google Scholar
Packham, C. and Jones, T. J. (2008). MMT-Pol: An adaptive optics optimized 1–5μm polarimeter. In Astronomical Telescopes and Instrumentation: Synergies Between Ground and Space. Bellingham WA: International Society for Optics and Photonics, p. 70145F.Google Scholar
Packham, C., Telesco, C. M., Hough, J. H., and Ftaclas, C. (2005). CanariCam: The multi-mode mid-IR instrument for the GTC. Revista Mexicana de Astronomia y Astrofisica Conference Series, 24, 712.Google Scholar
Packham, C., Escuti, M., Ginn, J.et al. (2010). Polarization gratings: A novel polarimetric component for astronomical instruments. Publications of the Astronomical Society of the Pacific, 122(898), 14711482.CrossRefGoogle Scholar
Packham, C., Jones, T. J., Warner, C.et al. (2012). Commissioning results of MMT-POL: The 1–5um imaging polarimeter leveraged from the AO secondary of the 6.5m MMT. In Ground-based and Airborne Instrumentation for Astronomy IV. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Pancharatnam, S. (1955). Achromatic combinations of birefringent plates. Part II. An achromatic quarter-wave plate. Proceedings of the Indian Academy of Science, A41, 137144.CrossRefGoogle Scholar
Pares, L., Donati, J.-F., Dupieux, M.et al. (2012). Front end of the SPIRou spectropolarimeter for Canada-France Hawaii Telescope. In Ground-based and Airborne Instrumentation for Astronomy IV. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Patat, F. and Romaniello, M. (2006). Error analysis for dual-beam optical linear polarimetry. Publications of the Astronomical Society of the Pacific, 118, 146161.CrossRefGoogle Scholar
Pellicori, S. F., Russell, E. E., and Watts, L. A. (1973). Pioneer imaging photopolarimeter optical system. Applied Optics, 12(6), 12461258.CrossRefGoogle ScholarPubMed
Peralta, R. J., Nardell, C., Cairns, B.et al. (2007). Aerosol polarimetry sensor for the Glory Mission. In International Symposium on Multispectral Image Processing and Pattern Recognition. Bellingham WA: International Society for Optics and Photonics, p. 67865L.Google Scholar
Pereyra, A., Rodrigues, C.V., and Martioli, E. (2015). Measuring the continuum polarization with ESPaDOnSAstronomy and Astrophysics, 573, id. A133, 13 pp.CrossRefGoogle Scholar
Perrin, M. D., Graham, J. R., and Lloyd, J. P. (2008). The IRCAL polarimeter: Design, calibration, and data reduction for an adaptive optics imaging polarimeter. Publications of the Astronomical Society of the Pacific, 120, 555570.CrossRefGoogle Scholar
Perrin, M. D., Graham, J. R., Larkin, J. E.et al. (2010). Imaging polarimetry with the Gemini Planet Imager. In B. Ellerbroek, ed., Imaging Polarimetry with the Gemini Planet Imager. Adaptive Optics Systems II. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7736. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Persh, S., Shaham, Y. J., Benami, O.et al. (2010). Ground performance measurements of the Glory aerosol polarimetry sensor. In SPIE Optical Engineering + Applications. Bellingham WA: International Society for Optics and Photonics, p. 780703.Google Scholar
Piirola, V. (1973). A double image chopping polarimeter. Astronomy and Astrophysics, 27, 383388.Google Scholar
Potter, S., Buckley, D., O’Donoghue, D.et al. (2008). A new two channel high-speed photo-polarimeter (HIPPO) for the SAAO. In Ground-based and Airborne Instrumentation for Astronomy II. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7014. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Povel, H. P. (1995). Imaging Stokes polarimetry with piezoelastic modulators and charge-coupled-device image sensors. Optical Engineering, 34(7), 18701878.CrossRefGoogle Scholar
Povel, H. P., Keller, C. U., and Yadigaroglu, I. A. (1994). Two-dimensional polarimeter with a charge-coupled-device image sensor and a piezoelastic modulator. Applied Optics, 33(19), 42544260.CrossRefGoogle Scholar
Puschmann, K. G., Denker, C., Kneer, F.et al. (2012). The GREGOR Fabry-Perot Interferometer. Astronomische Nachrichten, 333, 880.CrossRefGoogle Scholar
Ramelli, R., Balemi, S., Bianda, M.et al. (2010). ZIMPOL-3: A powerful solar polarimeter. In SPIE Astronomical Telescopes and Instrumentation: Observational Frontiers of Astronomy for the New Decade. Bellingham WA: International Society for Optics and Photonics, p. 77351Y.Google Scholar
Ramstedt, S., Maercker, M., Olofsson, G., Olofsson, H., and Schöier, F. L. (2011). Imaging the circumstellar dust around AGB stars with PolCor. Astronomy and Astrophysics, 531, id. A148, 15 pp.CrossRefGoogle Scholar
Rodenhuis, M., Canovas, H., Jeffers, S. V.et al. (2012). The extreme polarimeter: Design, performance, first results and upgrades. In SPIE Astronomical Telescopes + Instrumentation. Bellingham WA: International Society for Optics and Photonics, p. 84469I.Google Scholar
Rodrigues, C. V., Taylor, K., Jablonski, F. J.et al. (2012). Concept of SPARC4: A simultaneous polarimeter and rapid camera in 4 bands. In Ground-based and Airborne Instrumentation for Astronomy IV. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Roelfsema, R., Schmid, H. M., Pragt, J.et al. (2010). The ZIMPOL high-contrast imaging polarimeter for SPHERE: Design, manufacturing, and testing. In Ground-based and Airborne Instrumentation for Astronomy III. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7735. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Russell, E. E., Watts, L. A., Pellicori, S. F., and Coffeen, D. L. (1977). Orbiter cloud photopolarimeter for the Pioneer Venus mission. In 21st Annual Technical Symposium. Bellingham WA: International Society for Optics and Photonics, pp. 2844.Google Scholar
Russell, E. E., Brown, F. G., Chandos, R. A.et al. (1992). Galileo photopolarimeter/radiometer experiment. Space Science Reviews, 60, 531563, doi:10.1007/BF00216867.CrossRefGoogle Scholar
Samoĭlov, A.V., Samoĭlov, V. S., Klimov, A. S., and Oberemok, E. A. (2009). Properties of multicomponent achromatic and superachromatic zero-order wave plates. The Journal of Optical Technology, 76, 312315.CrossRefGoogle Scholar
Sanchez Almeida, J. and Martinez Pillet, V. (1992). Instrumental polarization in the focal plane of telescopes. Astronomy and Astrophysics, 260, 543555.Google Scholar
Saviane, I., Piirola, V., Bagnulo, S.et al. (2007). Circular polarimetry now offered at EFOSC2. The Messenger, 129, 1417.Google Scholar
Scherrer, P. H., Bogart, R. S., Bush, R. I.et al. (1995). The solar oscillations investigation-Michelson Doppler imager. Solar Physics, 162(1–2), 129188.CrossRefGoogle Scholar
Schmid, H. M., Downing, M., Roelfsema, R.et al. (2012). Tests of the demodulating CCDs for the SPHERE/ZIMPOL imaging polarimeter. In SPIE Astronomical Telescopes+ Instrumentation. Bellingham WA: International Society for Optics and Photonics, p. 84468Y.Google Scholar
Schmidt, W., Beck, C., Kentischer, T., Elmore, D., and Lites, B. (2003). POLIS: A spectropolarimeter for the VTT and for GREGOR. Astronomische Nachrichten, 324, 300301.CrossRefGoogle Scholar
Schou, J., Scherrer, P. H., Bush, R. I.et al. (2012a). Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the Solar Dynamics Observatory (SDO). In The Solar Dynamics Observatory. New York: Springer, pp. 229259.Google Scholar
Schou, J., Borrero, J. M., Norton, A. A.et al. (2012b). Polarization calibration of the helioseismic and magnetic imager (HMI) onboard the Solar Dynamics Observatory (SDO). Solar Physics, 275(1–2), 327355.CrossRefGoogle Scholar
Seifert, W. and Furtig, W. (1994). Polarization optics for FORS. Astronomische Gesellschaft Abstract Series, 10, 240.Google Scholar
Semel, M. (2003). Spectropolarimetry and polarization-dependent fringes. Astronomy and Astrophysics, 401, 114.CrossRefGoogle Scholar
Semel, M., Donati, J-F., and Rees, D. E. (1993). Zeeman-Doppler imaging of active stars. 3: Instrumental and technical considerations. Astronomy and Astrophysics, 278, 231237.Google Scholar
Snik, F., Karalidi, T., and Keller, C. U. (2009). Spectral modulation for full linear polarimetry. Applied Optics, 48(7), 13371346.CrossRefGoogle ScholarPubMed
Snik, F., Rietjens, J. H., Van Harten, G.et al. (2010). SPEX: The spectropolarimeter for planetary exploration. In SPIE Astronomical Telescopes and Instrumentation: Observational Frontiers of Astronomy for the New Decade. Bellingham WA: International Society for Optics and Photonics, p. 77311B.Google Scholar
Snik, F., Kochukhov, O., Piskunov, N.et al. (2011). The HARPS Polarimeter. Solar Polarization 6. Proceedings of a conference held in Maui, Hawaii, United States on May 30 to June 4, 2010. (Ed. J. R. Kuhn, D. M. Harrington, H. Lin, S. V. Berdyugina, J. Trujillo-Bueno, S. L. Keil, and T. Rimmele.) San Francisco, CA: Astronomical Society of the Pacific, p. 237.Google Scholar
Snik, F. and Keller, C. U. (2013). Astronomical polarimetry: Polarized views of stars and planets. In Oswalt, T.D., Bond, H., et al., eds., Planets, Stars and Stellar Systems. New York: Springer, pp. 175221.CrossRefGoogle Scholar
Socas-Navarro, H., Elmore, D., Pietarila, A.et al. (2006). Spinor: Visible and infrared spectro-polarimetry at the National Solar Observatory. Solar Physics, 235, 5573.CrossRefGoogle Scholar
Socas-Navarro, H., Elmore, D., Asensio-Ramos, A., and Harrington, D. M. (2011). Characterization of telescope polarization properties across the visible and near-infrared spectrum. Case study: The Dunn Solar Telescope. Astronomy and Astrophysics, 531, 2.CrossRefGoogle Scholar
Sparks, W., Germer, T. A., MacKenty, J. W., and Snik, F. (2012). Compact and robust method for full stokes spectropolarimetry. Applied Optics, 51, 54955551.CrossRefGoogle ScholarPubMed
Steele, I. A., Bates, S. D., Carter, D.et al. (2006). RINGO: A novel ring polarimeter for rapid GRB followup. In Ground-based and Airborne Instrumentation for Astronomy. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 6269. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Tanré, D., Bréon, F. M., Deuzé, J. L.et al. (2011). Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: The PARASOL mission. Atmospheric Measurement Techniques Discussions, 4(2), 20372069.Google Scholar
Thalmann, C., Schmid, H. M., Boccaletti, A.et al. (2008). SPHERE ZIMPOL: Overview and performance simulation. In Ground-based and Airborne Instrumentation for Astronomy II. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7014. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Tinbergen, J. (1996). Astronomical Polarimetry. Cambridge University Press.CrossRefGoogle Scholar
Tinbergen, J. (2007). Accurate optical polarimetry on the Nasmyth platform. Publications of the Astronomical Society of the Pacific, 119, 13711384.CrossRefGoogle Scholar
Tomasko, M. G., Doose, L. R., Dafoe, L. E., and See, C. (2009). Limits on the size of aerosols from measurements of linear polarization in Titan’s atmosphere. Icarus, 204(1), 271283.CrossRefGoogle Scholar
Tomczyk, S., Card, G. L., Darnell, T.et al. (2008). An instrument to measure coronal emission line polarization. Solar Physics, 247, 411428.CrossRefGoogle Scholar
Tomczyk, S., Casini, R., de Wijn, A. G., and Nelson, P. G. (2010). Wavelength-diverse polarization modulators for Stokes polarimetry. Applied Optics, 49, 35803586.CrossRefGoogle ScholarPubMed
Tsuneta, S., Ichimoto, K., Katsukawa, Y.et al. (2008). The solar optical telescope for the Hinode mission: An overview. Solar Physics, 249(2), 167196.CrossRefGoogle Scholar
Tyo, J. S., Goldstein, D. L., Chenault, D. B., and Shaw, J. A. (2006). Review of passive imaging polarimetry for remote sensing applications. Applied Optics, 45, 54535469.CrossRefGoogle ScholarPubMed
Uribe-Patarroyo, N., Alvarez-Herrero, A., Garca Parejo, P.et al. (2011). Space-qualified liquid-crystal variable retarders for wide-field-of-view coronagraphs. In Solar Physics and Space Weather Instrumentation IV. SPIE, Vol. 8148. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Van Harten, G., Snik, F., and Keller, C. U. (2009). Polarization properties of real aluminum mirrors, I. Influence of the aluminum oxide layer. Publications of the Astronomical Society of the Pacific, 121, 377383.CrossRefGoogle Scholar
Van Harten, G., Snik, F., Rietjens, J. H.et al. (2011). Prototyping for the Spectropolarimeter for Planetary EXploration (SPEX): Calibration and sky measurements. In SPIE Optical Engineering + Applications. Bellingham WA: International Society for Optics and Photonics, p. 81600Z.Google Scholar
Van Harten, G., Snik, F., Rietjens, J. H., Smit, J. M., and Keller, C. U. (2014). Spectral line polarimetry with a channeled polarimeter. Applied Optics, 53, 41874194.CrossRefGoogle Scholar
Walsh, J. R. (2001). Polarization Properties of ACS. Instrument Science Report ACS 2001-01. Space Telescope Science Institute. Available online at: www.stsci.edu/hst/acs/documents/isrs/isr0101.pdf (accessed January 27, 2015).Google Scholar
West, R., Knowles, B., Birath, E.et al. (2010). In-flight calibration of the Cassini imaging science sub-system cameras. Planetary and Space Science, 58(11), 14751488.CrossRefGoogle Scholar
Whittet, D. C. B., Martin, P. G., Hough, J. H., Rouse, M. F., Bailey, J. A., and Axon, D. J. (1992). Systematic variations in the wavelength dependence of interstellar linear polarization. The Astrophysical Journal, 386, 562577.CrossRefGoogle Scholar
Wiktorowicz, S. J. and Matthews, K. (2008). A high-precision optical polarimeter to measure inclinations of high-mass X-ray binaries. Publications of the Astronomical Society of the Pacific, 120, 12821297.CrossRefGoogle Scholar
Witzel, G., Eckart, A., Buchholz, R. M.et al. (2011). The instrumental polarization of the Nasmyth focus polarimetric differential imager NAOS/CONICA (NACO) at the VLT. Implications for time-resolved polarimetric measurements of Sagittarius A*. Astronomy and Astrophysics, 525, id. A130, 15 pp.CrossRefGoogle Scholar
Wolf, E. (2007). Introduction to the Theory of Coherence and Polarization of Light. Cambridge University Press.Google Scholar
Xu, C., Qu, Z., Zhang, X., Jin, C., and Yan, X. (2006). Polarimeter with two ferroelectric liquid-crystal modulators attached to the Yunnan solar tower, Applied Optics, 45, 84288433.CrossRefGoogle Scholar
Yun, G., Crabtree, K., and Chipman, R. (2011). Three-dimensional polarization ray-tracing calculus I: definition and diattenuation, Applied Optics, 50, 28552865.CrossRefGoogle ScholarPubMed

References

Akimov, L. A. and Shkuratov, Y. G. (1983). Optical research on lunar soil samples of different degrees of maturity. Solar System Research, 17, 152158.Google Scholar
Arago, F. (1858, posthumous). Astronomie populaire, Livre XVII, Les Comètes. Paris: Gide Editeur.Google Scholar
Barucci, M. A., Fornasier, S., Dotto, E.et al. (2008). Asteroids 2867 Steins and 21 Lutetia: Surface composition from far infrared observations with the Spitzer space telescope. Astronomy and Astrophysics, 477, 665670.CrossRefGoogle Scholar
Blum, J. and Schräpler, R. (2004). Structure and mechanical properties of high-porosity macroscopic agglomerates formed by random ballistic deposition. Physical Review Letters, 93, 14.CrossRefGoogle ScholarPubMed
Brissaud, O., Schmitt, B., Bonnefoy, N.et al. (2004). Spectrogonio radiometer for the study of the bidirectional reflectance and polarization functions of planetary surfaces. 1. Design and tests. Applied Optics, 43, 19261934.CrossRefGoogle Scholar
Dollfus, A. and Bowell, E. (1971). Polarimetric properties of the lunar surface and its interpretation. Part I. Telescopic observations. Astronomy and Astrophysics, 10, 2953.Google Scholar
Dollfus, A. and Geake, J. (1975). Polarimetric properties of the lunar surface and its interpretation. Part VII. Other solar system objects. In Proceedings of the 6th Lunar Science Conference. Lunar Science Institute, pp. 27492768.Google Scholar
Dollfus, A. and Geake, J. (1977). Polarimetric and photometric studies of lunar samples. Philosophical Transactions of the Royal Society London, A285, 397402.Google Scholar
Dollfus, A. and Titulaer, C. (1971). Polarimetric properties of the lunar surface and its interpretation. Part III. Volcanic samples in several wavelengths. Astronomy and Astrophysics, 12, 199209.Google Scholar
Dollfus, A. and Zellner, B. (1979). Optical polarimetry of asteroids and laboratory samples. In Gehrels, T., ed., Asteroids. Tucson: University Arizona Press, pp. 170183.Google Scholar
Dollfus, A., Bowell, E., and Titulaer, C. (1971a). Polarimetric properties of the lunar surface and its interpretation. Part II. Terrestrial samples in orange light. Astronomy and Astrophysics, 10, 450466.Google Scholar
Dollfus, A., Geake, J. E., and Titulaer, C. (1971b). Polarimetric properties of the lunar surface and its interpretation. Apollo 11 and Apollo 12 lunar samples. In Proceedings of the Second Lunar Science Conference, Vol. 3. The MIT Press, pp. 22852300.Google Scholar
Dollfus, A., Mandeville, J. C., and Duseaux, M. (1979). The nature of the M-type asteroids from optical polarimetry. Icarus, 37(1), 124132.CrossRefGoogle Scholar
Francis, M., Renard, J.-B., Hadamcik, E.et al. (2011). New studies on scattering properties of different kinds of soot. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 17661775.CrossRefGoogle Scholar
Fulle, M., Levasseur-Regourd, A. C., McBride, N., and Hadamcik, E. (2000). In-situ dust measurements from within the coma of 1P/Halley: First order approximation with a dust dynamical model. The Astronomical Journal, 119, 19681977.CrossRefGoogle Scholar
Garlick, G. F., Steigmann, G. A., Lamb, W. E., and Geake, J. E. (1973). Fluidization of lunar dust layers and effect on optical polarization of the diffuse reflectance of light. Proceedings of the 4th Lunar Science Conference. Lunar Science Institute, pp. 31753180.Google Scholar
Geake, J. E. and Dollfus, A. (1986). Planetary surface texture and albedo from parameter plots of optical polarization data. Monthly Notices of the Royal Astronomical Society, 218, 7591.CrossRefGoogle Scholar
Geake, J. and Geake, M. (1990). A remote-sensing method for subwavelength grains on planetary surfaces by optical polarimetry. Monthly Notices of the Royal Astronomical Society, 245, 4655.CrossRefGoogle Scholar
Geake, J. E., Dollfus, A., Garlick, G.F.et al. (1970). Luminescence, electron paramagnetic resonance, and optical properties of lunar material. Science, 167, 717720.CrossRefGoogle ScholarPubMed
Geake, J., Geake, M., and Zellner, B. (1984). Experiments to test theoretical models of the polarization of light by rough surfaces. Monthly Notices of the Royal Astronomical Society, 210, 89112.CrossRefGoogle Scholar
Giese, R. H., Weiss, K., Zerull, R. H., and Ono, T. (1978). Large fluffy particles: A possible explanation of the optical properties of interplanetary dust. Astronomy and Astrophysics, 65, 265272.Google Scholar
Greenberg, J. M. and Gustafson, B. Å. S. (1981). A comet fragment model for zodiacal light particles. Astronomy and Astrophysics, 93, 3542.Google Scholar
Greenberg, J. M., Pedersen, N. E., and Pedersen, J. C. (1961). Microwave analog to the scattering of light by non spherical particles. Journal of Applied Physics, 32, 233242.CrossRefGoogle Scholar
Gustafson, B. Å. S. (2000). Microwave analog to light scattering measurements. In Mishchenko, M. I., Hovenier, J. W., and Travis, L. D., eds., Light Scattering by Nonspherical Particles. San Diego CA: Academic Press, pp. 367390.CrossRefGoogle Scholar
Gustafson, B. Å. S. (2009). Scaled analog experiments in electromagnetic scattering. In Kokhanovsky, A. A. ed., Light Scattering Reviews 4. Berlin: Springer, pp. 330.CrossRefGoogle Scholar
Hadamcik, E., Levasseur-Regourd, A. C., Renard, J.-B., and Worms, J. C. (1996). Grains in Earth and microgravity conditions. In Gustafson, B. Å. S. and Hanner, M. S., eds., Physics, Chemistry and Dynamics of Interplanetary Dust. San Francisco CA: Astronomical Society of the Pacific, pp. 391394.Google Scholar
Hadamcik, E., Renard, J.-B., Worms, J. C., Levasseur-Regourd, A. C., and Masson, M. (2002). Polarization of light scattered by fluffy particles (PROGRA2 experiment). Icarus, 155, 497508.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Levasseur-Regourd, A. C., and Lasue, J. (2006). Light scattering by fluffy particles with the PROGRA2 experiment: Mixtures of materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 143156.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Lasue, J.et al. (2007a). Light scattering by low density agglomerates of micron-sized grains with the PROGRA2 experiment. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 7489.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Rietmeijer, F. J. M.et al. (2007b). Light scattering by fluffy Mg-Fe-SiO and C mixtures as cometary analogs (PROGRA2 experiment). Icarus, 190, 660671.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Levasseur-Regourd, A. C., and Worms, J. C. (2009a). Laboratory measurements of the light scattered by clouds of solid particles by imaging technique. In A. A. Kokhanovsky, ed., Light Scattering Reviews 4. Berlin: Springer, pp. 3170.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Alcouffe, G.et al. (2009b). Laboratory light-scattering measurements with Titan’s aerosols analogues produced by a dusty plasma. Planetary and Space Science, 57, 16311641.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Levasseur-Regourd, A. C.et al. (2009c). Light scattering by agglomerates: Interconnecting size and absorption effects (PROGRA2 experiment). Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 17551770.CrossRefGoogle Scholar
Hadamcik, E., Renard, J. B., Alcouffe, G., Cernogora, G., Levasseur-Regourd, A. C., and Szopa, C. (2009d). Laboratory light-scattering measurements with Titan’s aerosols analogues produced by a dusty plasma. Planetary and Space Science, 57(13), 16311641.CrossRefGoogle Scholar
Hadamcik, E., Levasseur-Regourd, A. C., and Renard, J.-B. (2010). Observations and laboratory simulations of asteroids by polarization measurements. In K. Muinonen, A. Penttilä, and H. Lindqvist eds., Electromagnetic and Light Scattering XII. Helsinki: University of Helsinki, pp. 7073.Google Scholar
Hadamcik, E., Renard, J.-B., Levasseur-Regourd, A. C., and Lasue, J. (2011a). Laboratory measurements of light scattered by clouds and layers of solid particles using an imaging technique. In M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, eds., Polarimetric Detection, Characterization, and Remote Sensing. Dordrecht: Springer, pp. 137175.CrossRefGoogle Scholar
Hadamcik, E., Levasseur-Regourd, A. C., Renard, J.-B., Lasue, J., and Sen, A. K. (2011b). Polarimetric observations and laboratory simulations of asteroidal surfaces: The case of 21 Lutetia. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 18811890.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Szopa, C.et al. (2011c). Light scattering by organic materials in dust clouds when approaching the Sun, laboratory simulations. EPSC-DPS joint meeting 2011 abstracts, 1827.Google Scholar
Hanner, M. S., Giese, R. H., Weiss, K., and Zerull, R. (1981). On the definition of albedo and application to irregular particles. Astronomy and Astrophysics, 104, 4246.Google Scholar
Hansen, J. E. and Hovenier, J. W. (1974). Interpretation of the polarization of Venus. Journal of the Atmospheric Sciences, 31, 11371160.2.0.CO;2>CrossRefGoogle Scholar
Haudebourg, V. (2000). Propriétés de diffusion lumineuse de particules en suspension: transition du régime de Mie à celui d’agrégats: expérience spatiale CODAG/LSU. Ph.D. thesis, UPMC, Paris.Google Scholar
Kvaratskhelia, O. I. (1988). Spectropolarimetry of the lunar surface and samples of the lunar soil. Bulletin of Abastumari Astrophysical Observatory, 64, 1312 [in Russian].Google Scholar
Kvaratskhelia, O. I. and Kolokolova, L. O. (1987). The difference between natural lunar surface material and lunar soil samples obtained by spacecraft. Kinematika i Fizika Nebesnykh Tel, 3, 9092 [in Russian].Google Scholar
Lasue, J. and Levasseur-Regourd, A. C. (2007). Cosmic dust optical properties, numerical simulations and future laboratory measurements in microgravity. Advances in Space Research, 39, 345350.CrossRefGoogle Scholar
Lasue, J., Levasseur-Regourd, A. C., Hadamcik, E., and Renard, J.-B. (2007a). Light scattering by coated spheres: Experimental results and numerical simulations. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 212224.CrossRefGoogle Scholar
Lasue, J., Levasseur-Regourd, A. C., Fray, N., and Cottin, H. (2007b). Inferring the interplanetary dust properties from remote observations and simulation. Astronomy and Astrophysics, 473, 642649.CrossRefGoogle Scholar
Lasue, J., Levasseur-Regourd, A. C., Hadamcik, E., and Alcouffe, G. (2009). Cometary dust properties retrieved from polarization observations: Application to C/1995 O1 Hale–Bopp and 1P/Halley. Icarus, 199, 129144.CrossRefGoogle Scholar
Levasseur-Regourd, A. C. (2003). Cosmic dust physical properties and the ICAPS facility on board the ISS. Advances in Space Research, 31, 25992606.CrossRefGoogle Scholar
Levasseur-Regourd, A. C. (2004). Polarimetry of dust in the solar system: Remote observations, in-situ measurements and experimental simulations. In G. Videen, Y. Yatskiv, and M. Mishchenko, eds., Photopolarimetry in Remote Sensing. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 393410.Google Scholar
Levasseur-Regourd, A. C. (2010). Inferring properties of dust within solar system small bodies through observations and simulations of the linear polarization of scattered solar-light. In M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, eds., Polarimetric Detection, Characterization, and Remote Sensing. Dordrecht, the Netherlands: Springer, pp. 295312.Google Scholar
Levasseur-Regourd, A. C., Cabane, M., Worms, J. C., and Haudebourg, V. (1997). Physical properties of dust in the solar system: Relevance of the computational approach and of measurements under microgravity conditions. Advances in Space Research, 20, 15851594.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Cabane, M., Haudebourg, V., and Worms, J. C. (1998). Light scattering experiments under microgravity conditions. Earth, Moon, and Planets, 80, 343368.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Cabane, M., Chassefière, E., Haudebourg, V., and Worms, J. C. (1999). The LS-CODAG experiment for light scattering measurements by dust particles and their aggregates. Advances in Space Research, 23, 12711277.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Hadamcik, E., and Lasue, J. (2005). Light scattering as a clue to cometary dust structure. Highlights of Astronomy, 13, 498500.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Zolensky, M., and Lasue, J. (2008). Dust in cometary comae: Present understanding of the structure and composition of dust particles. Planetary and Space Science, 56, 17191724.CrossRefGoogle Scholar
Lyot, B. (1929). Recherche sur la polarisation de la lumière des planètes et de quelques substances terrestres. Thesis, Paris.Google Scholar
Lyot, B. (1934). Polarisation de la lumière des petites planets. Comptes Rendus de l’Académie des sciences, 199, 774782.Google Scholar
McFadden, L. A., Ammonito, E., Cloutis, E. A.et al. (2009). Coordinated laboratory studies of meteorites supporting Rosetta mission’s asteroid flyby target: 2867 Steins. In 40th Lunar and Planetary Sciences Conference, 2887. Houston TX: LPI.Google Scholar
Mikrenska, M., Koulev, P., Renard, J.-B., Hadamcik, E., and Worms, J. C. (2006). Direct simulation Monte Carlo ray tracing model of light scattering by a class of real particles and comparison with PROGRA2 experimental results. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 256267.CrossRefGoogle Scholar
Muinonen, K. (1989). Electromagnetic scattering by two interacting dipoles. In Proceedings of the 1989 URSI International Symposium on Electromagnetic Theory. Stockholm, pp. 428430.Google Scholar
Muñoz, O. and Hovenier, J. W. (2011). Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air: A review. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 16461657.CrossRefGoogle Scholar
Muñoz, O., Volten, H, de Haan, J., Vassen, W., and Hovenier, J. (2000). Experimental determination of scattering matrices of olivine and Allende meteorite particles. Astronomy and Astrophysics, 360, 777788.Google Scholar
Nelson, R. M., Hapke, B. W., Smythe, W. D., and Horn, L. J. (1998). Phase curves of selected particulate materials: The contribution of coherent backscattering to the opposition surge. Icarus, 131, 223230.CrossRefGoogle Scholar
Nelson, R., Hapke, B., Smyth, W.et al. (1999). The reflectance phase curves at very small phase angle: A comparative study of two goniometers. In 30th Lunar and Planetary Sciences Conference, 2068. Houston TX: LPI.Google Scholar
Ovcharenko, A. A., Bondarenko, S. Y., Zubko, E. S.et al. (2006). Particle size effect on the opposition spike and negative polarization. Journal of Quantitative Spectroscopy and Radiative Transfer, 101, 394403.CrossRefGoogle Scholar
Penttilä, A., Lumme, K., Worms, J.C.et al. (2003). Theoretical analysis of the particle properties and polarization measurements made in microgravity. Journal of Quantitative Spectroscopy and Radiative Transfer, 79–80, 10431049.CrossRefGoogle Scholar
Petrov, D., Shkuratov, Y., and Videen, G. (2011). An analytical approach to electromagnetic wave scattering from particles of arbitrary shapes. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 16361645.CrossRefGoogle Scholar
Petrov, D., Shkuratov, Y, and Videen, G. (2012). Light scattering by arbitrary shaped particles with rough surfaces. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 24062418.CrossRefGoogle Scholar
Provostaye, M. F. and Desain, P. (1852). Mémoire sur la diffusion de la chaleur. Annales de Chimie et de Physique, 3(34), 192226.Google Scholar
Psarev, V., Ovcharenko, A., Shkuratov, Y., Belskaya, I., and Videen, G. (2007). Photometry of surfaces with complicated structure at extremely small phase angles. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 455463.CrossRefGoogle Scholar
Reid, J. P. (2009). Particle levitation and laboratory scattering. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 12931306.CrossRefGoogle Scholar
Renard, J.-B., Worms, J.-C., Lemaire, T., Hadamcik, E., and Huret, N. (2002). Light scattering by dust particles in microgravity: Polarization and brightness imaging with the new version of the PROGRA2 instrument. Applied Optics, 41, 609618.CrossRefGoogle ScholarPubMed
Renard, J.-B., Daugeron, D., Personne, P.et al. (2005). Optical properties of randomly distributed soot: Improved polarimetric and intensity scattering functions. Applied Optics, 44, 591596.CrossRefGoogle ScholarPubMed
Renard, J.-B., Brogniez, C., Berthet, G.et al. (2008). Vertical distribution of the different types of aerosols in the stratosphere: Detection of solid particles and analysis of their spatial variability. Journal of Geophysical Research D, 113, D21303.CrossRefGoogle Scholar
Renard, J.-B., Francis, M., Hadamcik, E.et al. (2010). Scattering properties of sands. 2 Results for sands from different origins. Applied Optics, 49(18), 35523559.CrossRefGoogle ScholarPubMed
Renard, J.-B., Hadamcik, E., Couté, B., Jeannot, M., and Levasseur-Regoud, A. C. (2014). Wavelength dependence of linear polarization in the visible and near infrared domain for large levitating grains (PROGRA2 instruments). Journal of Quantitative Spectroscopy and Radiative Transfer, 146, 424430.CrossRefGoogle Scholar
Shepard, M. K. and Arvidson, R. E. (1999). The opposition surge and photopolarimetry of fresh and coated basalts. Icarus, 141, 172178.CrossRefGoogle Scholar
Shkuratov, Y. G. (1985). On the origin of the opposition effect and negative polarization for cosmic bodies with solid surface. In Astronomicheskii Circular, 1400. Moscow: Sternberg State Astron. Inst., pp. 36 [in Russian].Google Scholar
Shkuratov, Y. G. (1987). Negative polarization of sunlight scattered from celestial bodies: Interpretation of the wavelength dependence. Soviet Astronomy Letters, 13(3), 182183.Google Scholar
Shkuratov, Y. G. and Akimov, L. A. (1987). Laboratory studies of the negative polarization. Consequences for atmosphereless cosmic bodies. 1. Kinematics and Physics of Celestial Bodies, 3, 2227 [in Russian].Google Scholar
Shkuratov, Y. G. and Opanasenko, N. V. (1992). Polarimetric and photometric study of the Moon: Telescope observation and laboratory simulation. 2. The positive polarization. Icarus, 99, 468484.CrossRefGoogle Scholar
Shkuratov, Y. G. and Ovcharenko, A. (2002). Experimental modeling of opposition effect and negative polarization of regolith-like surfaces. In G. Videen and M. Kocifaj, eds., Optics of Cosmic Dust. London: Kluwer Academic Publishers, pp. 225238.CrossRefGoogle Scholar
Shkuratov, Y. G., Akimov, L. A., and Tishkovets, V. P. (1984). Negative polarization does not confirm the existence of dust on the surface of atmosphereless celestial bodies. Soviet Astronomy Letters, 10, 797799.Google Scholar
Shkuratov, Y. G., Akimov, L. A., Stankevich, N. P.et al. (1987). Laboratory studies of the negative polarization. Consequences for atmosphereless cosmic bodies. 2. Kinematics and Physics of Celestial Bodies, 3, 3237 [in Russian].Google Scholar
Shkuratov, Y. G., Melkumova, L. Y., and Badukov, D. D. (1988). Laboratory studies of the negative polarization. Consequences for atmosphereless cosmic bodies. 3. Kinematics and Physics of Celestial Bodies, 4, 1118 [in Russian].Google Scholar
Shkuratov, Y. G., Muinonen, K., Bowell, E.et al. (1994). A critical review of theoretical models for the negative polarization of light scattered by atmosphereless solar system bodies. Earth, Moon, and Planets, 65, 201246.CrossRefGoogle Scholar
Shkuratov, Y. G., Ovcharenko, A., Zubko, E.et al. (2002). The opposition effect and negative polarization of structurally simulated planetary regoliths. Icarus, 159, 396416.CrossRefGoogle Scholar
Shkuratov, Y. G., Ovcharenko, A., Zubko, E.et al. (2004). The negative polarization of light scattered from particulate surfaces and of independently scattering particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 88, 267284.CrossRefGoogle Scholar
Shkuratov, Y. G., Bondarenko, S., Ovcharenko, A.et al. (2006). Comparative studies of the reflectance and degree of linear polarization of particulate surfaces and independently scattering particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 340358.CrossRefGoogle Scholar
Shkuratov, Y. G., Bondarenko, S., Kaydash, V.et al. (2007a). Photometry and polarimetry of particulate surfaces and aerosol particles over a wide range of phase angles. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 487508.CrossRefGoogle Scholar
Shkuratov, Y. G., Ovcharenko, A. A., Psarev, V. A., and Bondarenko, S. Y. (2007b). Laboratory measurements of reflected light intensity and polarization for selected particulate surfaces. In A. A. Kokhanovsky, ed., Light Scattering Reviews, 3. Berlin: Springer, pp. 383402.Google Scholar
Shkuratov, Y. G., Kaydash, V., Korokhin, V.et al. (2011). Optical measurements of the Moon as a tool to study its surface. Planetary and Space Science, 59, 13261371.CrossRefGoogle Scholar
Tomasko, M. G. and Smith, P. H. (1982). Photometry and polarimetry of Titan: Pioneer 11 observations and their implications for aerosol properties. Icarus, 51, 6595.CrossRefGoogle Scholar
Umov, N. (1905). Chromatische depolarisation durch Lichtzerstreung. Physikalische Zeitschrift, 6, 674676.Google Scholar
Vaillon, R. and Geffrin, J. M. (2014). Recent advances in microwave analog to light scattering experiments. Journal of Quantitative Spectroscopy and Radiative Transfer, 146, 100105.CrossRefGoogle Scholar
Vaillon, R., Geffrin, J. M., Eyraud, C.et al. (2011). A new implementation of a microwave analog to light scattering measurement device. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 17531760.CrossRefGoogle Scholar
Weiss-Wrana, K. (1983). Optical properties of interplanetary dust: Comparison with light scattering by larger meteoritic and terrestrial grains. Astronomy and Astrophysics, 126, 240250.Google Scholar
West, R. A., Lane, A. L., Hart, H.et al. (1983). Voyager 2 photopolarimeter observations of Titan. Journal of Geophysical Research, 88, 86998708.CrossRefGoogle Scholar
Worms, J.-C., Renard, J.-B., Hadamcik, E., Levasseur-Regourd, A. C., and Gayet, J.-F. (1999a). Results of the PROGRA2 experiment: An experimental study in microgravity of scattered polarized light by dust particles with large size parameter. Icarus, 142, 281297.CrossRefGoogle Scholar
Worms, J.-C., Renard, J.-B., Levasseur-Regourd, A. C., and Hadamcik, E. (1999b). Light scattering by dust particles in microgravity: The PROGRA2 achievements and results. Advances in Space Research, 23(7), 12571266.CrossRefGoogle Scholar
Worms, J. C., Renard, J.-B., Hadamcik, E., Brun-Huret, N., and Levasseur-Regourd, A. C. (2000). Light scattering by dust particles with the PROGRA2 instrument – comparative measurements between clouds under microgravity and layers on the ground. Planetary and Space Science, 48, 493505.CrossRefGoogle Scholar
Zerull, R. H., Giese, R. H., and Weiss, K. (1977). Scattering functions of nonspherical dielectric and absorbing particles vs. Mie theory. Applied Optics, 16, 777778.CrossRefGoogle ScholarPubMed
Zubko, E., Shkuratov, Y., Mishchenko, M., and Videen, G. (2008). Light scattering in a finite multi-particle system. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 21952206.CrossRefGoogle Scholar
Zubko, E., Videen, G., Shkuratov, Y., Muinonen, K., and Yamamoto, T. (2011). The Umov effect for single irregularly shaped particles with sizes comparable with wavelength. Icarus, 212, 403415.CrossRefGoogle Scholar

References

Abbas, M. M., Craven, P. D., Spann, J. F.et al. (2004). Laboratory experiments on rotation and alignment of the analogs of interstellar dust grains by radiation. The Astrophysical Journal, 614, 781795.CrossRefGoogle Scholar
Alves, F.O., Frau, P., Girat, J. M.et al. (2014). On the radiation driven alignment of dust grains: Detection of the polarization hole in a starless core. Astronomy and Astrophysics, 569, L1.CrossRefGoogle Scholar
Andersson, B-G (2012). Interstellar grain alignment – observational status. arXiv:1208.4393.Google Scholar
Andersson, B-G and Potter, S. B. (2005). A high sampling-density polarization study of the Southern Coalsack. Monthly Notices of the Royal Astronomical Society, 356, 1088.CrossRefGoogle Scholar
Andersson, B-G and Potter, S. B. (2007). Observational constraints on interstellar grain alignment. The Astrophysical Journal, 665, 369.CrossRefGoogle Scholar
Andersson, B-G and Potter, S. B. (2010). Observational constraints on interstellar grain alignment near HD 97300. The Astrophysical Journal, 720, 1045.CrossRefGoogle Scholar
Andersson, B-GPintado, O., Potter, S. B., Straizys, V., and Charcos-Llorens, M. (2011). Angle-dependent radiative grain alignment. Confirmation of a magnetic field – radiation anisotropy angle dependence on the efficiency of interstellar grain alignment. Astronomy and Astrophysics, 534, A19.CrossRefGoogle Scholar
Andersson, B-GPiirola, V., De Buizer, J.et al. (2013). Evidence for H2 formation driven dust grain alignment in IC 63. The Astrophysical Journal, 775, 84.CrossRefGoogle Scholar
Arce, H. G., Goodman, A., Bastien, P.et al. (1998). The polarizing power of the interstellar medium in Taurus. The Astrophysical Journal, 499, L93L97.CrossRefGoogle Scholar
Bastien, P., Jenness, T., and Molnar, J. (2005). A polarimeter for SCUBA-2. In Astronomical Polarimetry, Current Status and Future Directions. ASP Conference Series, Vol. 343. San Francisco CA: Astronomical Society of the Pacific, p. 69.Google Scholar
Behr, A. (1959). Kurze Mitteilung. Beobachtungen zur Wellenlängenabhängigkeit der interstellaren Polarisation. Zeitschrift fuer Astrophysik, 47, 54.Google Scholar
Belley, F., Ferré, E. C., Martiní-Hernández, F.et al. (2009). The magnetic properties of natural and synthetic (Fex, Mg1x)2 SiO4 olivines. Earth and Planetary Science Letters, 284, 516526.CrossRefGoogle Scholar
Bethell, T. J., Chepurnov, A., Lazarian, A., and Kim, J. (2007). Polarization of dust emission in clumpy molecular clouds and cores. The Astrophysical Journal, 663, 1055.CrossRefGoogle Scholar
Bierman, E. M., Matsumura, T., Dowell, C. D.et al. (2011). A millimeter-wave galactic plane survey with the BICEP polarimeter. The Astrophysical Journal, 741, 81.CrossRefGoogle Scholar
Bradley, J. P. (1994). Chemically anomalous, preaccretionally irradiated grains in inter-planetary dust from comets. Science, 265, 925.CrossRefGoogle Scholar
Cardelli, J. A., Clayton, G. C., and Mathis, J. S. (1989). The relationship between infrared, optical, and ultraviolet extinction. The Astrophysical Journal, 345, 245.CrossRefGoogle Scholar
Cashman, L. R. and Clemens, D. P. (2014). The magnetic field of cloud 3 in L204. The Astrophysical Journal, 793(2), id. 126, 10 pp.CrossRefGoogle Scholar
Chandrasekhar, S. and Fermi, E. (1953). Magnetic fields in spiral arms. The Astrophysical Journal, 118, 113.CrossRefGoogle Scholar
Chiar, J. E., Adamson, A. J., Whittet, D. C. Bet al. (2006). Spectropolarimetry of the 3.4 m feature in the diffuse ISM toward the galactic center quintuplet cluster. The Astrophysical Journal, 651, 268.CrossRefGoogle Scholar
Cho, J. and Lazarian, A. (2005). Grain alignment by radiation in dark clouds and cores. The Astrophysical Journal, 631, 361.CrossRefGoogle Scholar
Cho, J. and Lazarian, A. (2007). Grain alignment and polarized emission from magnetized T Tauri disks. The Astrophysical Journal, 669, 10851097.CrossRefGoogle Scholar
Chrysostomou, A., Hough, J. H., Whittet, D. C. B.et al. (1996). Interstellar polarization from CO and XCN mantled grains: A severe test for grain alignment mechanisms. The Astrophysical Journal Letters, 465, L61.CrossRefGoogle Scholar
Clayton, G. C., Anderson, C. M., Magalhaes, A. M.et al. (1992). The first spectropolarimetric study of the wavelength dependence of interstellar polarization in the ultraviolet. The Astrophysical Journal, 385, L53.CrossRefGoogle Scholar
Clayton, G. C., Wolff, M. J., Allen, R. G., and Lupie, O. L. (1995). Ultraviolet interstellar linear polarization. 2: The wavelength dependence. The Astrophysical Journal, 445, 947.CrossRefGoogle Scholar
Clayton, G. C., Wolff, M. J., Sofia, U. J., Gordon, K. D., and Misselt, K. A. (2003). Dust grain size distributions from MRN to MEM. The Astrophysical Journal, 588, 871.CrossRefGoogle Scholar
Codina-Landaberry, S. and Magalhaes, A. M. (1976). On the polarizing interstellar dust. Astronomy and Astrophysics, 49, 407.Google Scholar
Crutcher, R. M. (2012). Magnetic fields in molecular clouds. Annual Review of Astronomy and Astrophysics, 50, 2963.CrossRefGoogle Scholar
Davis, L. and Greenstein, J. L. (1951). The polarization of starlight by aligned dust grains. The Astrophysical Journal, 114, 206.CrossRefGoogle Scholar
Dickinson, C., Davies, R. D., Allison, J. R.et al. (2009). Anomalous microwave emission from the H II Region RCW175. The Astrophysical Journal, 690, 1585.CrossRefGoogle Scholar
Dolginov, A. Z. and Mytrophanov, I. G. (1976). Orientation of cosmic dust grains. Astrophysics and Space Science, 43, 291.CrossRefGoogle Scholar
Draine, B. (1989). On the interpretation of the lambda 2175 Å feature. In Interstellar Dust: Proceedings of the 135th Symposium of the International Astronomical Union, p. 313.CrossRefGoogle Scholar
Draine, B. T. (1996). Optical and magnetic properties of dust grains. In W. G. Roberge and D. C. B. Whittet, eds., Polarimetry of the Interstellar Medium. ASP Conference Series, Vol. 97. San Francisco: ASP, p. 16.Google Scholar
Draine, B. and Flatau, P. (1994). Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America A, 11, 1491.CrossRefGoogle Scholar
Draine, B. T. and Fraisse, A. A. (2009). Polarized far-infrared and submillimeter emission from interstellar dust. The Astrophysical Journal, 696, 1.CrossRefGoogle Scholar
Draine, B. T. and Lazarian, A. (1998a). Diffuse galactic emission from spinning dust grains. The Astrophysical Journal, 494, L19.CrossRefGoogle Scholar
Draine, B. T. and Lazarian, A. (1998b). Electric dipole radiation from spinning dust grains. The Astrophysical Journal, 508, 157.CrossRefGoogle Scholar
Draine, B. T. and Li, A. (2007). Infrared emission from interstellar dust. IV. The silicate-graphite-PAH model in the post-Spitzer era. The Astrophysical Journal, 657, 810.CrossRefGoogle Scholar
Draine, B. T. and Weingartner, J. C. (1996). Radiative torques on interstellar grains. I. Superthermal spin-up. The Astrophysical Journal, 470, 551565 (DW96).CrossRefGoogle Scholar
Draine, B. and Weingartner, J. (1997). Radiative torques on interstellar grains. II. Grain alignment. The Astrophysical Journal, 480, 633 (DW97).CrossRefGoogle Scholar
Gehrels, T. (1960). The wavelength dependence of polarization. II. Interstellar polarization. The Astronomical Journal, 65, 470.CrossRefGoogle Scholar
Gerakines, P. A., Whittet, D. C. B., and Lazarian, A. (1995). Grain alignment in the Taurus dark cloud. The Astrophysical Journal Letters, 455, L171.Google Scholar
Gold, T. (1952a). Polarization of starlight. Nature, 169, 322.CrossRefGoogle Scholar
Gold, T. (1952b). The alignment of galactic dust. Monthly Notices of the Royal Astronomical Society, 112, 215.CrossRefGoogle Scholar
Goodman, A. A. and Whittet, D. C. B. (1995). A point in favor of the superparamagnetic grain hypothesis. The Astrophysical Journal Letters, 455, L181.Google Scholar
Hall, J. (1949). Observations of the polarized light from stars. Science, 109, 166.CrossRefGoogle ScholarPubMed
Heiles, C. (2000). 9286 Stars: An agglomeration of stellar polarization catalogs. The Astronomical Journal, 119, 923927.CrossRefGoogle Scholar
Hiltner, W. A. (1949). Polarization of radiation from distant stars by the interstellar medium. The Astrophysical Journal, 109, 471480.CrossRefGoogle Scholar
Hildebrand, R. H. (1988). Magnetic fields and stardust. Quarterly Journal of the Royal Astronomical Society, 29, 327.Google Scholar
Hildebrand, R. H., Dotson, J. L., Dowell, C. D.Schleuning, D. A., and Vaillancourt, J. E. (1999). The far-infrared polarization spectrum: First results and analysis. The Astrophysical Journal, 516, 834.CrossRefGoogle Scholar
Hildebrand, R. H., Davidson, J. A., Dotson, J. L.et al. (2000). A primer on far-infrared polarimetry. Publications of the Astronomical Society of the Pacific, 112, 12151235.CrossRefGoogle Scholar
Hoang, T. and Lazarian, A. (2008). Radiative torque alignment: Essential physical processes. Monthly Notices of the Royal Astronomical Society, 388, 117 (HL08).CrossRefGoogle Scholar
Hoang, T. and Lazarian, A. (2009a). Radiative torques alignment in the presence of pinwheel torques. The Astrophysical Journal, 695, 14571476 (HL09a).CrossRefGoogle Scholar
Hoang, T. and Lazarian, A. (2009b). Grain alignment induced by radiative torques: Effects of internal relaxation of energy and complex radiation field. The Astrophysical Journal, 697, 1316 (HL09b).CrossRefGoogle Scholar
Hoang, T. and Lazarian, A. (2012). Spinning dust emission from wobbling grains: Important physical effects and implications. Advances in Astronomy, 1, 44.Google Scholar
Hoang, T. and Lazarian, A. (2014). Grain alignment by radiative torques in special conditions and implications. Monthly Notices of the Royal Astronomical Society, 438, 680703.CrossRefGoogle Scholar
Hoang, T., Draine, B. T., and Lazarian, A. (2010). Improving the model of emission from spinning dust: Effects of grain wobbling and transient spin-up. The Astrophysical Journal, 715, 14621485.CrossRefGoogle Scholar
Hoang, T., Lazarian, A., and Draine, B. T. (2011). Spinning dust emission: Effects of irregular grain shape, transient heating, and comparison with Wilkinson microwave anisotropy probe results. The Astrophysical Journal, 741, 87.CrossRefGoogle Scholar
Hoang, T., Lazarian, A., and Schlickeiser, R. (2012). Revisiting acceleration of charged grains in magnetohydrodynamic turbulence. The Astrophysical Journal, 747, 54.CrossRefGoogle Scholar
Hoang, T., Lazarian, A., and Martin, P. G. (2013). Constraint on the polarization of electric dipole emission from spinning dust. The Astrophysical Journal, 779, 152.CrossRefGoogle Scholar
Hoang, T., Lazarian, A., and Martin, P. G. (2014). Paramagnetic alignment of small grains: A novel method for measuring interstellar magnetic fields. The Astrophysical Journal, 790(1), id. 6, 22 pp., arXiv: 1312.2106v1.CrossRefGoogle Scholar
Hoang, T., Lazarian, A., and Andersson, B-G. (2015). Modelling grain alignment by radiative torques and hydrogen formation torques in reflection nebula. Monthly Notices of the Royal Astronomical Society, 448(2), 11781198.CrossRefGoogle Scholar
Hollenbach, D., Kaufman, M. J., Bergin, E. A., and Melnick, G. J. (2009). Water, O2, and ice in molecular clouds. The Astrophysical Journal, 690, 1497.CrossRefGoogle Scholar
Hough, J. H., Sato, S., Tamura, M.et al. (1988). Spectropolarimetry of the 3-micron ice band in Elias 16 (Taurus Dark Cloud). Monthly Notices of the Royal Astronomical Society, 230, 107115.CrossRefGoogle Scholar
Hough, J. H., Aitken, D. K., Whittet, D. C. B., Adamson, A. J., and Chrysostomou, A. (2008). Grain alignment in denseinterstellar environments: spectropolarimetry of the 4.67-m CO-ice feature in the field star Elias 16 (Taurus dark cloud). Monthly Notices of the Royal Astronomical Society, 387, 797.CrossRefGoogle Scholar
Jenkins, E. B. (2009). A unified representation of gas-phase element depletions in the interstellar medium. The Astrophysical Journal, 700, 1299.CrossRefGoogle Scholar
Jones, T. J. (1989). Infrared polarimetry and the interstellar magnetic field. The Astrophysical Journal, 346, 728734.CrossRefGoogle Scholar
Jones, T. J., Hyland, A. R., and Bailey, J. (1984). The inner core of a BOK globule. The Astrophysical Journal, 282, 675.CrossRefGoogle Scholar
Jones, T. J., Hyland, A. R., Harvey, P. M., Wilking, B. A., and Joy, M. (1985). The Chamaeleon dark cloud complex. II – A deep survey around HD 97300. The Astronomical Journal, 90, 1191.CrossRefGoogle Scholar
Jones, T. J., Klebe, D., and Dickey, J. M. (1992). Infrared polarimetry and the galactic magnetic field. II – improved models. The Astrophysical Journal, 389, 602615.CrossRefGoogle Scholar
Jones, T. J., Krejny, M., Andersson, B-G, and Bastien, P. (2011). Grain alignment in starless cores. Bulletin of the American Astronomical Society, 43, 251.22.Google Scholar
Jones, T. J., Bagley, M., Krejny, M., Andersson, B-G, and Bastien, P. (2015). Grain Alignment in Starless Cores. The Astronomical Journal, 149, 31.CrossRefGoogle Scholar
Jones, R. V. and Spitzer Jr., L., (1967). Magnetic alignment of interstellar grains. The Astrophysical Journal, 147, 943.CrossRefGoogle Scholar
Jordan, M. E. and Weingartner, J. C. (2009). Electric dipole moments and disalignment of interstellar dust grains. Monthly Notices of the Royal Astronomical Society, 400, 536.CrossRefGoogle Scholar
Kim, S.-H. and Martin, P. G. (1995). The size distribution of interstellar dust particles as determined from polarization: Spheroids. The Astrophysical Journal, 444, 293305.CrossRefGoogle Scholar
Kogut, A., Fixsen, D. J., Levin, S. M.et al. (2011). ARCADE 2 observations of galactic radio emission. The Astrophysical Journal, 734, 4.CrossRefGoogle Scholar
Lazarian, A. (1994). Gold-type mechanisms of grain alignment. Monthly Notices of the Royal Astronomical Society, 268, 713.CrossRefGoogle Scholar
Lazarian, A. (1995a). Mechanical alignment of suprathermally rotating grains. The Astrophysical Journal, 453, 229.CrossRefGoogle Scholar
Lazarian, A. (1995b). Alignment of suprathermally rotating grains. Monthly Notices of the Royal Astronomical Society, 277, 1235.CrossRefGoogle Scholar
Lazarian, A. (1997). Paramagnetic alignment of thermally rotating dust. Monthly Notices of the Royal Astronomical Society, 288, 609.CrossRefGoogle Scholar
Lazarian, A. (2003). Magnetic fields via polarimetry: Progress of grain alignment theory. Journal of Quantitative Spectroscopy and Radiative Transfer, 79–80, 881902.CrossRefGoogle Scholar
Lazarian, A. (2007). Tracing magnetic fields with aligned grains. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 225.CrossRefGoogle Scholar
Lazarian, A. (2008). Grain alignment and CMB polarization studies. arXiv: 0811.1020.Google Scholar
Lazarian, A. and Draine, B. T. (1997). Disorientation of suprathermally rotating grains and the grain alignment problem. The Astrophysical Journal, 487, 248.CrossRefGoogle Scholar
Lazarian, A. and Draine, B. T. (1999a). Thermal flipping and thermal trapping: new elements in grain dynamics. The Astrophysical Journal, 516, L37.CrossRefGoogle Scholar
Lazarian, A. and Draine, B. T. (1999b). Nuclear spin relaxation within interstellar grains. The Astrophysical Journal, 520, L67.CrossRefGoogle Scholar
Lazarian, A. and Draine, B. T. (2000). Resonance paramagnetic relaxation and alignment of small grains. The Astrophysical Journal, 536, L15.CrossRefGoogle ScholarPubMed
Lazarian, A. and Efroimsky, M. (1999). Inelastic dissipation in a freely rotating body: Application to cosmic dust alignment. Monthly Notices of the Royal Astronomical Society, 303, 673.CrossRefGoogle Scholar
Lazarian, A. and Hoang, T. (2007a). Radiative torques: analytical model and basic properties. Monthly Notices of the Royal Astronomical Society, 378, 910946 (LH07a).CrossRefGoogle Scholar
Lazarian, A. and Hoang, T. (2007b). Subsonic mechanical alignment of irregular grains. The Astrophysical Journal Letters, 669, L77 (LH07b).CrossRefGoogle Scholar
Lazarian, A. and Hoang, T. (2008). Alignment of dust with magnetic inclusions: Radiative torques and superparamagnetic Barnett and nuclear relaxation. The Astrophysical Journal Letters, 676, L25L28 (LH08).CrossRefGoogle Scholar
Lazarian, A. and Roberge, W. G. (1997). Barnett relaxation in thermally rotating grains. The Astrophysical Journal, 484, 230.CrossRefGoogle Scholar
Lazarian, A. and Yan, H. (2002). Grain dynamics in magnetized interstellar gas. The Astrophysical Journal, 566, L105L108.CrossRefGoogle Scholar
Lazarian, A., Goodman, A. A., and Myers, P. C. (1997). On the efficiency of grain alignment in dark clouds. The Astrophysical Journal, 490, 273.CrossRefGoogle Scholar
López-Caraballo, C. H., Rubĩno-Martín, J. A., Rebolo, R., and Génova-Santos, R. (2011). Constraints on the polarization of the anomalous microwave emission in the Perseus molecular complex from seven-year WMAP data. The Astrophysical Journal, 729, 25.CrossRefGoogle Scholar
Luhman, K. L. (2004). A census of the Chamaeleon I star-forming region. The Astrophysical Journal, 602, 816.CrossRefGoogle Scholar
Macellari, N., Pierpaoli, E., Dickinson, C., and Vaillancourt, J. E. (2011). Galactic foreground contributions to the 5-year Wilkinson Microwave Anisotropy Probe maps. Monthly Notices of the Royal Astronomical Society, 418, 888.CrossRefGoogle Scholar
Martin, P. G. (1974). Interstellar polarization from a medium with changing grain alignment. The Astrophysical Journal, 187, 461.CrossRefGoogle Scholar
Martin, P. G. (1995). On the value of GEMS (glass with embedded metal and sulphides). The Astrophysical Journal, 445, L63L66.CrossRefGoogle Scholar
Martin, P. G. and Angel, J. R. P. (1976). Systematic variations in the wavelength dependence of interstellar circular polarization. The Astrophysical Journal, 207, 126.CrossRefGoogle Scholar
Martin, P. G., Clayton, G. C., and Wolff, M. J. (1999). Ultraviolet interstellar linear polarization. v. analysis of the final data set. The Astrophysical Journal, 510, 905.CrossRefGoogle Scholar
Mason, B. S., Robishaw, T., Heiles, C., Finkbeiner, D., and Dickinson, C. (2009). A limit on the polarized anomalous microwave emission of lynds 1622. The Astrophysical Journal, 697, 11871193.CrossRefGoogle Scholar
Mathis, J. S. (1986). The alignment of interstellar grains. The Astrophysical Journal, 308, 281287.CrossRefGoogle Scholar
Mathis, J. S., Rumpl, W., and Nordsieck, K. H. (1977). The size distribution of interstellar grains. The Astrophysical Journal, 217, 425.CrossRefGoogle Scholar
Matsumura, M., Kameura, Y., Kawabata, K. S.et al. (2011). Correlation between interstellar polarization and dust temperature: Is the alignment of grains by radiative torques ubiquitous?Publications of the Astronomical Society of Japan, 63, L43.CrossRefGoogle Scholar
Morata, O. and Herbst, E. (2008). Time-dependent models of dense PDRs with complex molecules. Monthly Notices of the Royal Astronomical Society, 390, 1549.Google Scholar
Murakawa, K., Tamura, M., and Nagata, T. (2000). 1–4 micron spectrophotometry of dust in the Taurus dark cloud: Water ice distribution in Heiles cloud 2. The Astrophysical Journal Supplement Series, 128, 603.CrossRefGoogle Scholar
Myers, P. C. and Goodman, A. A. (1991). On the dispersion in direction of interstellar polarization. The Astrophysical Journal, 373, 509.CrossRefGoogle Scholar
Ostriker, E. C., Stone, J. M., and Gammie, C. F. (2001). Density, velocity, and magnetic field structure in turbulent molecular cloud models. The Astrophysical Journal, 546, 980.CrossRefGoogle Scholar
Planck Collaboration, Ade, P. A. R., Aghanim, N., Arnaud, M.et al. (2011). Planck early results. XX. New light on anomalous microwave emission from spinning dust grains. Astronomy and Astrophysics, 536, A20.Google Scholar
Planck Collaboration, Ade, P. A. R., Aghanim, N.et al. (2014). Planck intermediate results. XV. A study of anomalous microwave emission in Galactic clouds. Astronomy and Astrophysics, 565, A103, arXiv:1309.1357.Google Scholar
Purcell, E. M. (1975). Interstellar grains as pinwheels. In The Dusty Universe, (A76-15076 04-90) New York: Neale Watson, p. 155.Google Scholar
Purcell, E. (1979). Suprathermal rotation of interstellar grains. The Astrophysical Journal, 231, 404416.CrossRefGoogle Scholar
Roberge, W. G. (1996). Grain alignment in molecular clouds. In Polarimetry of the Interstellar Medium. Astronomical Society of the Pacific Conference Series, Vol. 97. San Francisco: Astronomical Society of the Pacific, p. 401.Google Scholar
Roberge, W. G. and Lazarian, A. (1999). Davis–Greenstein alignment of oblate spheroidal grains. Monthly Notices of the Royal Astronomical Society, 305, 615.CrossRefGoogle Scholar
Roberge, W., DeGraff, T. A., and Flatherty, J. E. (1993). The Langevin equation and its application to grain alignment in molecular clouds. The Astrophysical Journal, 418, 287.CrossRefGoogle Scholar
Rosenbush, V. K., Kolokolova, L., Lazarian, A., Shakhovskoy, N., and Kiselev, N. (2007). Circular polarization in comets: Observations of Comet C/1999 S4 (LINEAR) and tentative interpretation. Icarus, 186, 317330.CrossRefGoogle Scholar
Serezhkin, Y. (2000). Formation of ordered structures of charged microparticles in near-surface cometary gas-dusty atmosphere. In R. Hoover, ed., Instruments, Methods, and Missions for Astrobiology III. Proceedings of the SPIE, Vol. 4137. Bellingham WA: International Society for Optics and Photonics, p. 1.Google Scholar
Serkowski, K. (1973). Interstellar polarization (review). In J. M. Greenberg and H. C. Van de Hulst, eds., IAU Symposium 52, Interstellar Dust and Related Topics. Dordrecht, the Netherlands: Kluwer Academic Publishers, p. 145.CrossRefGoogle Scholar
Serkowski, K., Mathewson, D. S., and Ford, V. L. (1975). Wavelength dependence of interstellar polarization and ratio of total to selective extinction. The Astrophysical Journal, 196, 261.CrossRefGoogle Scholar
Smith, C. H., Wright, C. M., Aitken, D. K., Roche, P. F., and Hough, J. H. (2000). Studies in mid-infrared spectropolarimetry – II. An atlas of spectra. Monthly Notices of the Royal Astronomical Society, 312, 327.CrossRefGoogle Scholar
Spitzer, L. and McGlynn, T. (1979). Disorientation of interstellar grains in suprathermal rotation. The Astrophysical Journal, 231, 417.CrossRefGoogle Scholar
Tibbs, C. T., Paladini, R., Compiègne, M.et al. (2012). A multi-wavelength investigation of RCW175: An H II region harboring spinning dust emission. The Astrophysical Journal, 754, 94.CrossRefGoogle Scholar
Vaillancourt, J. E. (2002). Analysis of the far-infrared/submillimeter polarization spectrum based on temperature maps of Orion. The Astrophysical Journal Supplement Series, 142, 53.CrossRefGoogle Scholar
Vaillancourt, J. E. and Matthews, B. C. (2012). Submillimeter polarization of galactic clouds: A comparison of 350 μm and 850 μm data. The Astrophysical Journal Supplement Series, 201, 13.CrossRefGoogle Scholar
Vaillancourt, J. E., Dowell, C. D., Hildebrand, R. H.et al. (2008). New results on the submillimeter polarization spectrum of the Orion molecular cloud. The Astrophysical Journal Letters, 679, L25.CrossRefGoogle Scholar
van Dishoeck, E. F. (2004). ISO spectroscopy of gas and dust: From molecular clouds to protoplanetary disks. The Annual Review of Astronomy and Astrophysics, 42, 119.CrossRefGoogle Scholar
Van Eck, C. L., Brown, J. C., Stil, J. M.et al. (2011). Modeling the magnetic field in the galactic disk using new rotation measure observations from the very large array. The Astrophysical Journal, 728, 97.CrossRefGoogle Scholar
Voshchinnikov, N. V., Henning, T., Prokopjeva, M. S., and Das, H. K. (2012). Interstellar polarization and grain alignment: the role of iron and silicon. Astronomy and Astrophysics, 541, A52.CrossRefGoogle Scholar
Ward-Thompson, D., Kirk, J. M., Crutcher, R. M.et al. (2000). First observations of the magnetic field geometry in prestellar cores. The Astrophysical Journal, 537, L135L138.CrossRefGoogle Scholar
Weingartner, J. C. (2009). Thermal flipping of interstellar grains. The Astrophysical Journal, 690, 875878.CrossRefGoogle Scholar
Weingartner, J. and Draine, B. (2003). Radiative torques on interstellar grains. III. Dynamics with thermal relaxation. The Astrophysical Journal, 589, 289.CrossRefGoogle Scholar
Whittet, D. C. B. (2003). Dust in the Galactic Environment, 2nd edn. Series in Astronomy and Astrophysics. Bristol: Institute of Physics (IoP) Publishing. ISBN 0750306246.Google Scholar
Whittet, D. C. B. and van Breda, I. G. (1978). The correlation of the interstellar extinction law with the wavelength of maximum polarization. Astronomy and Astrophysics, 66, 57.Google Scholar
Whittet, D. C. B., Adamson, A. J., Duley, W. W., Geballe, T. R., and McFadzean, A. D. (1989). Infrared spectroscopy of dust in the Taurus dark clouds – Solid carbon monoxide. Monthly Notices of the Royal Astronomical Society, 241, 707.CrossRefGoogle Scholar
Whittet, D. C. B., Martin, P. G., Hough, J. H.et al. (1992). Systematic variations in the wavelength dependence of interstellar linear polarization. The Astrophysical Journal, 386, 562.CrossRefGoogle Scholar
Whittet, D. C. B., Gerakines, P. A., Hough, J. H., and Snenoy, S. S. (2001). Interstellar extinction and polarization in the Taurus dark clouds: The optical properties of dust near the diffuse/dense cloud interface. The Astrophysical Journal, 547, 872.CrossRefGoogle Scholar
Whittet, D. C. B, Hough, J. H, Lazarian, A., and Hoang, T. (2008). The efficiency of grain alignment in dense interstellar clouds: A reassessment of constraints from near-infrared polarization. The Astrophysical Journal, 674, 304315.CrossRefGoogle Scholar
Whittet, D. C. B., Goldsmith, P. F., and Pineda, J. L. (2010). The uptake of interstellar gaseous CO into icy grain mantles in a quiescent dark cloud. The Astrophysical Journal, 720, 259.CrossRefGoogle Scholar
Wilking, B. A., Lebofsky, M. J., Kemp, J. C., Martin, P. G., and Rieke, G. H. (1980). The wavelength dependence of interstellar linear polarization. The Astrophysical Journal, 235, 905.CrossRefGoogle Scholar
Wilking, B. A., Lebofsky, M. J., and Rieke, G. H. (1982). The wavelength dependence of interstellar linear polarization – Stars with extreme values of lambda/max/. The Astronomical Journal, 87, 695.CrossRefGoogle Scholar
Wolff, M. J., Clayton, G. C., and Meade, M. R. (1993). Ultraviolet interstellar linear polarization. I – Applicability of current dust grain models. The Astrophysical Journal, 403, 722735.CrossRefGoogle Scholar
Wolff, M. J., Clayton, G. C., Kim, S. H.et al. (1997). Ultraviolet interstellar linear polarization. III. Features. The Astrophysical Journal, 478, 395402.CrossRefGoogle Scholar
Wolstencroft, R. D. (1987). Magnetic fields in spiral galaxies. Quarterly Journal of the Royal Astronomical Society, 28, 209.Google Scholar
Wolstencroft, R. D. and Kemp, J. C. (1972). Circular polarization of the nightsky radiation. The Astrophysical Journal, 177, L137.CrossRefGoogle Scholar
Yan, H. and Lazarian, A. (2003). Grain acceleration by magnetohydrodynamic turbulence: Gyroresonance mechanism. The Astrophysical Journal, 592(1), L33L36.CrossRefGoogle Scholar
Yan, H. and Lazarian, A. (2006). Polarization of absorption lines as a diagnostics of circumstellar, interstellar, and intergalactic magnetic fields: Fine-structure atoms. The Astrophysical Journal, 653, 12921313.CrossRefGoogle Scholar
Yan, H., Lazarian, A., and Draine, B. T. (2004). Dust dynamics in compressible magnetohydrodynamic turbulence. The Astrophysical Journal, 616, 895.CrossRefGoogle Scholar
Zeng, L., Bennett, C. L., Chapman, N. L.et al. (2013). The submillimeter polarization spectrum of M17. The Astrophysical Journal, 773, 29.CrossRefGoogle Scholar

References

Bagnulo, S., Boehnhardt, H., Muinonen, K.et al. (2006). Exploring the surface structure of transneptunian objects and Centaurs with polarimetric FORS1/VLT observations. Astronomy and Astrophysics, 450, 12391248.CrossRefGoogle Scholar
Bagnulo, S., Belskaya, I., Muinonen, K.et al. (2008). Discovery of two distinct polarimetric behaviours of trans-Neptunian objects. Astronomy and Astrophysics, 491, L33L36.CrossRefGoogle Scholar
Barabanenkov, Y. N., Kravtsov, Y. A., Ozrin, V. D., and Saichev, A. I. (1991). II Enhanced Backscattering in Optics. Progress in Optics, 29, 65197.CrossRefGoogle Scholar
Belskaya, I. N., Shevchenko, V. G., Efimov, Yu. S.et al. (2002). Opposition polarimetry and photometry of the low albedo asteroid 419 Aurelia. In Proceedings of Asteroids, Comets, Meteors 2002. Berlin, Germany: ESA Publishing Division, pp. 489491.Google Scholar
Belskaya, I. N., Shevchenko, V. G., Kiselev, N. N.et al. (2003). Opposition polarimetry and photometry of S and E-type asteroids. Icarus, 166, 276284.CrossRefGoogle Scholar
Belskaya, I. N., Shkuratov, Yu. G., Efimov, Yu. S.et al. (2005). The F-type asteroids with small inversion angles of polarization. Icarus, 178, 213221.CrossRefGoogle Scholar
Belskaya, I., Bagnulo, S., Muinonen, K.et al. (2008). Polarimetry of the dwarf planet (136199) Eris. Astronomy and Astrophysics, 479, 265269.CrossRefGoogle Scholar
Belskaya, I. N., Bagnulo, S., Stinson, A.et al. (2012). Polarimetry of transneptunian objects (136472) Makemake and (90482) Orcus. Astronomy and Astrophysics, 547, A101.CrossRefGoogle Scholar
Boehnhardt, H., Bagnulo, S., Muinonen, K.et al. (2004). Surface characterization of 28978 Ixion (2001 KX76). Astronomy and Astrophysics, 415, L21L25.CrossRefGoogle Scholar
Bowell, E., Hapke, B., Domingue, D.et al. (1989). Application of photometric models to asteroids. In R. P. Binzel, T. Gehrels, and Matthews, M. S., eds., Asteroids II. Tucson AZ: University of Arizona Press, pp. 524556.Google Scholar
Chernova, G. P., Lupishko, D. F., and Shevchenko, V. G. (1994). Photometry and polarimetry of asteroid 24 Themis. Kinematika i Fizika Nebesnykh Tel, 10(2), 4549.Google Scholar
de Wolf, D. A. (1971). Electromagnetic reflections from an extended turbulent medium: Cumulative forward-scatter single backscatter approximation. IEEE Transactions on Antennas and Propagation, 19, 254262.CrossRefGoogle Scholar
Dlugach, J. M., Mishchenko, M. I., Liu, L., and Mackowski, D. W. (2011). Numerically exact computer simulations of light scattering by densely packed random particulate media. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 20682078.CrossRefGoogle Scholar
Dollfus, A., Wolff, M., Geake, J. E., Lupishko, D. F., and Dougherty, L. M. (1989). Photopolarimetry of asteroids. In R. P. Binzel, T. Gehrels, and M. Matthews, eds., Asteroids II. Tucson: University of Arizona Press, pp. 594616.Google Scholar
Ermutlu, M., Muinonen, K., Lumme, K., Lindell, I., and Sihvola, A. (1995). Scattering by a small object close to an interface. III: Buried object. Journal of the Optical Society of America A, 12, 13101315.CrossRefGoogle Scholar
Franklin, F. A. and Cook, A. F. (1965). Optical properties of Saturn’s rings. II. Two-color phase curves of the two bright rings. The Astronomical Journal, 70, 704720.CrossRefGoogle Scholar
Gehrels, T. (1956). Photometric studies of asteroids. V. The light-curve and phase function of 20 Massalia. The Astrophysical Journal, 123, 331338.CrossRefGoogle Scholar
Hapke, B. (1990). Coherent backscatter and the radar characteristics of outer planet satellites. Icarus, 88, 407417.CrossRefGoogle Scholar
Hapke, B. W., Nelson, R. M., and Smythe, W. D. (1993). The opposition effect of the moon — the contribution of coherent backscatter. Science, 260, 509511.CrossRefGoogle ScholarPubMed
Harris, A. W., Young, J. W., Bowell, E.et al. (1989a). Photoelectric observation of asteroids 3, 24, 60, 261, 863. Icarus, 77, 171186.CrossRefGoogle Scholar
Harris, A. W., Young, J. W., Contreiras, L.et al. (1989b). Phase relations of high-albedo asteroids: The unusual opposition brightening of 44 Nysa and 64 Angelina. Icarus, 81, 365374.CrossRefGoogle Scholar
Kimura, H., Kolokolova, L., and Mann, I. (2003). Optical properties of cometary dust. Constraints from numerical studies on light scattering by aggregate particles. Astronomy and Astrophysics, 407, L5L8.CrossRefGoogle Scholar
Kolokolova, L. and Kimura, H. (2010). Effects of electromagnetic interaction in the polarization of light scattered by cometary and other types of cosmic dust. Astronomy and Astrophysics, 513, A40.CrossRefGoogle Scholar
Kolokolova, L. and Mackowski, D. (2012). Polarization of light scattered by large aggregates. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 25672572.CrossRefGoogle Scholar
Kuga, Y. and Ishimaru, A. (1984). Retroreflectance from a dense distribution of spherical particles. Journal of the Optical Society of America A, 1, 831835.CrossRefGoogle Scholar
Lindell, I. V., Sihvola, A. H., Muinonen, K., and Barber, P. W. (1991). Scattering by a small object close to an interface. I: Exact image theory formulation. Journal of the Optical Society of America A, 8, 472476.CrossRefGoogle Scholar
Lumme, K. and Rahola, J. (1994). Light scattering by porous dust particles in the discrete-dipole approximation. The Astrophysical Journal, 425, 653667.CrossRefGoogle Scholar
Lumme, K. and Rahola, J. (1997). Light scattering by dense clusters of spheres. Icarus, 126, 455469.CrossRefGoogle Scholar
Lumme, K. and Penttilä, A. (2011). Model of light scattering by dust particles in the solar system: Applications to cometary comae and planetary regoliths. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 16581670.CrossRefGoogle Scholar
Lumme, K. and Rahola, J. (1998). Comparison of light scattering by stochastically rough spheres, best-fit spheroids and spheres. Journal of Quantitative Spectroscopy and Radiative Transfer, 60, 439450.CrossRefGoogle Scholar
Lupishko, D. F., Kiselev, N. N., Chernova, G. P., Shakhovskoj, N. M., and Vasilyev, S. V. (1994). Polarization phase dependences of asteroids 55 Pandora and 704 Interamnia. Kinematika i Fizika Nebesnykh Tel, 10(2), 4044.Google Scholar
Lyot, B. (1929). Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres. Annales de l'Observatoire de Paris, section de Meudon, 8(1), 1161.Google Scholar
Mackowski, D. W. (1994). Calculation of total cross sections of multiple sphere clusters. Journal of the Optical Society of America A, 11, 28512861.CrossRefGoogle Scholar
Mackowski, D. W. and Mishchenko, M. I. (1996). Calculation of the T-matrix and the scattering matrix for ensembles of spheres. Journal of the Optical Society of America A, 13, 22662278.CrossRefGoogle Scholar
Mackowski, D. W. and Mishchenko, M. I. (2011). A multiple sphere T-matrix FORTRAN code for use on parallel computer clusters. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 21822192.CrossRefGoogle Scholar
Mackowski, D. W., Kolokolova, L., and Sparks, W. (2011). T-matrix approach to calculating circular polarization of aggregates made of optically active materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 17261732.CrossRefGoogle Scholar
Mishchenko, M. I. (1993). On the nature of the polarization opposition effect exhibited by Saturn’s rings. The Astrophysical Journal, 411, 351361.CrossRefGoogle Scholar
Mishchenko, M. I. and Dlugach, J. M. (1993). Coherent backscatter and the opposition effect for E-type asteroids. Planetary and Space Science, 41, 173181.CrossRefGoogle Scholar
Mishchenko, M. I., Tishkovets, V., and Litvinov, P. (2002). Exact results of the vector theory of coherent backscattering from discrete random media: An overview. In G. Videen and M. Kocifaj, eds., Optics of Cosmic Dust. NATO Science Series, II, Mathematics, Physics and Chemistry, Vol. 79. Dordrecht: Kluwer, pp. 239260.CrossRefGoogle Scholar
Mishchenko, M. I., Travis, L. D., and Lacis, A. A. (2006). Multiple Scattering of Light by Particles. Cambridge University Press.Google Scholar
Mishchenko, M. I., Liu, L., Mackowski, D. W., Cairns, B., and Videen, G. (2007). Multiple scattering by random particulate media: Exact 3D results. Optics Express, 15, 28222836.CrossRefGoogle ScholarPubMed
Mishchenko, M. I., Dlugach, J. M., and Liu, L. (2009a). Azimuthal asymmetry of the coherent backscattering cone: Theoretical results. Physical Review A, 80, 053824.CrossRefGoogle Scholar
Mishchenko, M. I., Dlugach, J. M., Liu, L.et al. (2009b). Direct solutions of the Maxwell equations explain opposition phenomena observed for high-albedo solar system objects. The Astrophysical Journal, 705, L118.CrossRefGoogle Scholar
Mishchenko, M. I., Rosenbush, V. K., Kiselev, N. N.et al. (2010). Polarimetric Remote Sensing of Solar System Objects. Kyiv: Akademperiodyka.CrossRefGoogle Scholar
Muinonen, K. (1989). Electromagnetic scattering by two interacting dipoles. In Proceedings of the 1989 URSI Electromagnetic Theory Symposium. Stockholm, pp. 428430.Google Scholar
Muinonen, K. (1990). Light scattering by inhomogeneous media: Backward enhancement and reversal of polarization. Ph.D. thesis, University of Helsinki, Finland.Google Scholar
Muinonen, K. (1994). Coherent backscattering by solar system dust particles. In A. Milani, M. Di Martino, and A. Cellino, eds., Asteroids, Comets and Meteors 1993. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 271296.CrossRefGoogle Scholar
Muinonen, K. (2004). Coherent backscattering of light by complex random media of spherical scatterers: Numerical solution. Waves Random Media, 14(3), 365388.CrossRefGoogle Scholar
Muinonen, K. and Videen, G. (2012). A phenomenological single scatterer for studies of complex particulate media. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 23852390.CrossRefGoogle Scholar
Muinonen, K., Sihvola, A. H., Lindell, I. V., and Lumme, K. (1991). Scattering by a small object close to an interface. II: Study of backscattering. Journal of the Optical Society of America A, 8, 477482.CrossRefGoogle Scholar
Muinonen, K., Piironen, J., Shkuratov, Yu. G., Ovcharenko, A., and Clark, B. (2002a). Asteroid photometric and polarimetric phase effects. In W. Bottke, R. P. Binzel, A. Cellino, and P. Paolicchi, eds., Asteroids III. Tucson: University of Arizona Press, pp. 123138.CrossRefGoogle Scholar
Muinonen, K., Videen, G., Zubko, E., and Shkuratov, Yu. G. (2002b). Numerical techniques for backscattering by random media. In G. Videen and M. Kocifaj, eds., Optics of Cosmic Dust. NATO Science Series, II. Mathematics, Physics and Chemistry, Vol. 79. Dordrecht: Kluwer, pp. 261282.CrossRefGoogle Scholar
Muinonen, K., Zubko, E., Tyynelä, J., Shkuratov, Yu. G., and Videen, G. (2007). Light scattering by Gaussian random particles with discrete-dipole approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 360377.CrossRefGoogle Scholar
Muinonen, K., Tyynelä, J., Zubko, E.et al. (2011). Polarization of light backscattered by small particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(13), 21932212.CrossRefGoogle Scholar
Muinonen, K., Mishchenko, M. I., Dlugach, J. M.et al. (2012). Coherent backscattering numerically verified for a finite volume of spherical particles. The Astrophysical Journal, 760, 118128.CrossRefGoogle Scholar
Müller, G. (1893). Helligkeitsbestimmungen der grossen Planeten und einiger Asteroiden. Publikationen des Astrophysikalischen Observatoriums zu Potsdam, 30(8), 193389.Google Scholar
Muñoz, O., Volten, H., de Haan, J. F., Vassen, W., and Hovenier, J. W. (2000). Experimental determination of scattering matrices of olivine and Allende meteorite particles. Astronomy and Astrophysics, 360, 777788.Google Scholar
Nousiainen, T. (2009). Optical modeling of mineral dust particles: A review. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 12611279.CrossRefGoogle Scholar
Okada, Y., Mann, I., Mukai, T., and Köhler, M. (2008). Extended calculation of polarization and intensity of fractal aggregates based on rigorous method for light scattering simulations with numerical orientation averaging. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 26132627.CrossRefGoogle Scholar
Petrova, E. V. and Tishkovets, V. P. (2011). Light scattering by aggregates of varying porosity and the opposition phenomena observed in the low-albedo particulate media. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 22262233.CrossRefGoogle Scholar
Petrova, E. V., Jockers, K., and Kiselev, N. N. (2000). Light scattering by aggregates with sizes comparable to the wavelength: An application to cometary dust. Icarus, 148, 526536.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in Fortran, The Art of Scientific Computing, 2nd edn. Cambridge University Press.Google Scholar
Rosenbush, V., Kiselev, N., Avramchuk, V., and Mishchenko, M. (2002). Photometric and polarimetric opposition phenomena exhibited by solar system bodies. In G. Videen and M. Kocifaj, eds., Optics of Cosmic Dust. NATO Science Series, II. Mathematics, Physics and Chemistry, Vol. 79. Dordrecht: Kluwer, pp. 191224.CrossRefGoogle Scholar
Rosenbush, V. K., Kiselev, N. N., Shevchenko, V. G.et al. (2005). Polarization and brightness opposition effects for the E-type asteroid 64 Angelina. Icarus, 178, 222234.CrossRefGoogle Scholar
Rotundi, A. and Rietmeijer, F. (2008). Carbon in meteoroids: Wild 2 dust analyses. IDPs and Cometary Dust Analogues, Earth, Moon, and Planets, 102, 473483.Google Scholar
Rougier, G. (1933). Photometrie photoelectrique globale de la lune. Annales de 1'Observatoire de Strasbourg, 203339.Google Scholar
Shevchenko, V. G., Krugly, Yu. N., Lupishko, D. F., Harris, A. W., and Chernova, G. P. (1993). Lightcurves and phase relations of asteroid 55 Pandora. Astronomicheskii Vestnik, 27(3), 7580.Google Scholar
Shkuratov, Yu. G. (1988). Diffractional model of the brightness surge of complex structures. Kinematika i Fizika Nebesnykh Tel, 4, 6066.Google Scholar
Shkuratov, Yu. G. (1989). A new mechanism of the negative polarization of light scattered by the surfaces of atmosphereless celestial bodies. Astronomicheskii Vestnik, 23, 176180.Google Scholar
Shkuratov, Yu. G., Muinonen, K., Bowell, E.et al. (1994). A critical review of theoretical models for the negative polarization of light scattered by atmosphereless solar system bodies. Earth Moon Planets, 65, 201246.CrossRefGoogle Scholar
Shkuratov, Y., Ovcharenko, A., Zubko, E.et al. (2002). The opposition effect and negative polarization of structural analogs. Icarus, 159, 396416.CrossRefGoogle Scholar
Shkuratov, Y., Bondarenko, S., Ovcharenko, A.et al. (2006). Comparative studies of the reflectance and degree of linear polarization of particulate surfaces and independently scattering particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 340358.CrossRefGoogle Scholar
Stankevich, D., Istomina, L., Shkuratov, Y., and Videen, G. (2007). The scattering matrix of random media consisting of large opaque spheres calculated using ray tracing and accounting for coherent backscattering enhancement. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 509519.CrossRefGoogle Scholar
Tedesco, E. F., Taylor, R. C., Drummond, J.et al. (1983). Worldwide photometry and lightcurve observations of 1 Ceres during the 1975–1976 apparition. Icarus, 54, 2329.CrossRefGoogle Scholar
Thompson, D. T. and Lockwood, G. W. (1992). Photoelectric photometry of Europa and Callisto 1976–1991. Journal of Geophysical Research Planets, 97, 1476114772.CrossRefGoogle Scholar
Tishkovets, V. P. and Petrova, E. V. (2013). Light scattering by densely packed systems of particles: Near-field effects. In Light Scattering Reviews, 7. Berlin: Springer, pp. 336.CrossRefGoogle Scholar
Tyynelä, J., Zubko, E., Videen, G., and Muinonen, K. (2007). Interrelating angular scattering characteristics to internal electric fields for wavelength-scale spherical particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 520534.CrossRefGoogle Scholar
Tyynelä, J., Muinonen, K., Zubko, E., and Videen, G. (2008). Interrelating scattering characteristics to internal electric fields for Gaussian-random-sphere particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 22072218.CrossRefGoogle Scholar
Tyynelä, J., Zubko, E., Muinonen, K., and Videen, G. (2010). Interpretation of negative polarization at intermediate scattering angles. Applied Optics, 49, 52845296.CrossRefGoogle ScholarPubMed
van Albada, M. P. and Lagendijk, A. (1985). Observation of weak localization of light in a random medium. Physical Review Letters, 55, 26922695.CrossRefGoogle Scholar
van Albada, M. P., van der Mark, M. B., and Lagendijk, A. (1988). Polarisation effects in weak localisation of light. Journal of Physics D: Applied Physics, 21, S28S31.CrossRefGoogle Scholar
Videen, G. and Kocifaj, M., eds. (2002). Optics of Cosmic Dust. Dordrecht: Kluwer.CrossRefGoogle Scholar
Virkki, A., Muinonen, K., and Penttilä, A. (2013). Circular polarization of spherical-particle aggregates at backscattering. Journal of Quantitative Spectroscopy and Radiative Transfer, 126, 150159.CrossRefGoogle Scholar
von Seeliger, H. (1887). Zur Theorie der Beleuchtung der grossen Planeten, insbesondere des Saturn. Abh. Bayer. Akad. Wiss. Math. Naturwiss. Kl. 16, 405516.Google Scholar
Waterman, P. C. (1965). Matrix formulation of electromagnetic scattering. Proceedings of the IEEE, 53(8), 805812.CrossRefGoogle Scholar
Watson, K. M. (1969). Multiple scattering of electromagnetic waves in an underdense plasma. Journal of Mathematical Physics, 10, 688702.CrossRefGoogle Scholar
Wolf, P.-E. and Maret, G. (1985). Weak localization and coherent backscattering of photons in disordered media. Physical Review Letters, 55, 26962699.CrossRefGoogle ScholarPubMed
Yurkin, M. A., Maltsev, V. P., and Hoekstra, A. G. (2007). The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 546557.CrossRefGoogle Scholar
Zellner, B. and Gradie, J. (1976). Minor planets and related objects. XX. Polarimetric evidence for the albedos and compositions of 94 asteroids. The Astronomical Journal, 81, 262280.CrossRefGoogle Scholar
Zellner, B., Gehrels, T., and Gradie, J. (1974). Minor planets and related objects. XVI. Polarimetric diameters. The Astronomical Journal, 79, 11001110.CrossRefGoogle Scholar
Zubko, E., Muinonen, K., Shkuratov, Yu. G., Videen, G., and Nousiainen, T. (2007). Scattering of light by roughened Gaussian random particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 604615.CrossRefGoogle Scholar

References

Banin, A., Han, F. X., Kan, I., and Cicelsky, A. (1997). Acidic volatiles and the Mars soil. Journal of Geophysical Research, 102, 1334113356.CrossRefGoogle Scholar
Baran, A. J. (2009). A review of the light scattering properties of cirrus. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 12391260.CrossRefGoogle Scholar
Barkey, B. and Liou, K. N. (2001). Polar nephelometer for light-scattering measurements of ice crystals. Optics Letters, 26, 232234.CrossRefGoogle ScholarPubMed
Barkey, B., Liou, K. N., Gellerman, W., and Sokolsky, P. (1999). An analog light scattering experiment of hexagonal icelike particles. Part I: Experimental apparatus and test measurements. Journal of the Atmospheric Sciences, 56, 605612.2.0.CO;2>CrossRefGoogle Scholar
Bi, L., Yang, P., Kattawar, G. W., and Kahn, R. (2010). Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra. Applied Optics, 49(3), 334341.CrossRefGoogle ScholarPubMed
Bohren, C. F. and Huffman, D. R. (1983). Absorption and Scattering of Light by Small Particles. New York: Wiley.Google Scholar
Braak, C. J., de Haan, J.F., van der Mee, C. V. M., Hovenier, J. W., and Travis, L. D. (2001). Parameterized scattering matrices for small particles in planetary atmospheres. Journal of Quantitative Spectroscopy and Radiative Transfer, 69, 585604.CrossRefGoogle Scholar
Chernova, G. P., Kiselev, N. N., and Jockers, K. (1993). Polarimetric characteristics of dust particles as observed in 13 comets: Comparisons with asteroids. Icarus, 103, 144158.CrossRefGoogle Scholar
Clancy, R. T., Lee, S. W., Gladstone, G. R., McMillan, W. W., and Roush, T. (1995). A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos. Journal of Geophysical Research, 100(E3), 52515263.CrossRefGoogle Scholar
Curtis, D. B., Aycibin, M., Young, M. A., Grassian, V. H., and Kleiber, P. D. (2007). Simultaneous measurement of light-scattering properties and particle size distribution for aerosols: Application to ammonium sulfate and quartz aerosol particles. Atmospheric Environment, 41, 47484758.CrossRefGoogle Scholar
Dabrowska, D. D., Muñoz, O., Moreno, F.et al. (2013). Experimental and simulated scattering matrices of small calcite particles at 647 nm. Journal of Quantitative Spectroscopy and Radiative Transfer, 124, 6278.CrossRefGoogle Scholar
Dubovik, O., Sinyuk, A., Lapyonok, T.et al. (2006). Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. Journal of Geophysical Research, 111, D11208.CrossRefGoogle Scholar
Gayet, J. F., Crepel, O., Fournol, J. F., and Oshepkov, S. (1997). A new airborne polar nephelometer for the measurement of optical and microphysical cloud properties. I. Theoretical design. Annals of Geophysics, 15, 451459.CrossRefGoogle Scholar
Greenberg, J. M., Pedersen, N. E., and Pedersen, J. C. (1961). Microwave analog to the scattering of light by nonspherical particles. Journal of Applied Physics, 32, 233242.CrossRefGoogle Scholar
Gustafson, B. A. S. (2000). Microwave analog to light scattering measurements. In M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. San Diego: Academic Press.Google Scholar
Hadamcik, E. and Levasseur-Regourd, A. C. (2003). Imaging polarimetry of cometary dust: different comets and phase angles. Journal of Quantitative Spectroscopy and Radiative Transfer, 79–80, 661678.CrossRefGoogle Scholar
Hansen, J. E. and Hovenier, J. W. (1974). Interpretation of the polarization of Venus. Journal of the Atmospheric Sciences, 31, 11371160.2.0.CO;2>CrossRefGoogle Scholar
Herman, M., Deuzé, J. L., Marchand, A., Roger, B., and Lallart, P. (2005). Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval using a nonspherical particle model. Journal of Geophysical Research, 110(D10), CiteID D10S02.CrossRefGoogle Scholar
Holmes, A. W. (1981). Light scattering from ammonia and water crystals. Ph.D. dissertation, University of Arizona, Tucson.Google Scholar
Holland, A. C. and Gagne, G. (1970). The scattering of polarized light by polydisperse systems of irregular particles. Applied Optics, 9, 11131121.CrossRefGoogle ScholarPubMed
Hovenier, J. W. (2000). Measuring scattering matrices of small particles at optical wavelengths. In M. I. Mishchenko, J. W. Hovenier, and L.D. Travis, eds., Light Scattering by Nonspherical Particles. San Diego CA: Academic Press, pp. 355365.CrossRefGoogle Scholar
Hovenier, J. W. and van der Mee, C. V. M. (1996). Testing scattering matrices, a compendium of recipes. Journal of Quantitative Spectroscopy and Radiative Transfer, 55, 649661.CrossRefGoogle Scholar
Hovenier, J. W., Volten, H., Muñoz, O., van der Zande, W. J., and Waters, L. B. F. M. (2003). Laboratory studies of scattering matrices for randomly oriented particles. Potentials, problems, and perspectives. Journal of Quantitative Spectroscopy and Radiative Transfer, 79–80, 741755.CrossRefGoogle Scholar
Hovenier, J. W., van der Mee, C. V. M., and Domke, H. (2004). Transfer of Polarized Light in Planetary Atmospheres: Basic Concepts and Practical Methods. Dordrecht: Kluwer/Springer.CrossRefGoogle Scholar
Hunt, A. J. and Huffman, D. R. (1973). A new polarization-modulated light scattering instrument. Review of Scientific Instruments, 44 (12), 17531762.CrossRefGoogle Scholar
Kahnert, M. and Nousiainen, T. (2006). Uncertainties in measured and modeled asymmetry parameters of mineral dust. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 173178.CrossRefGoogle Scholar
Kahnert, M. and Nousiainen, T. (2007). Variational data-analysis method for combining laboratory-measured light-scattering phase functions and forward scattering computations. Journal of Quantitative Spectroscopy and Radiative Transfer, 103, 2742.CrossRefGoogle Scholar
Kikuchi, S. (2006). Linear polarimetry of five comets. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 179190.CrossRefGoogle Scholar
Kikuchi, S., Mikami, Y., Mukai, T., Mukai, S., and Hough, J. H. (1987). Polarimetry of Comet P/Halley. Astronomy and Astrophysics, 187, 689692.Google Scholar
Kiselev, N., Rosenbush, V., Jockers, K., Velichko, S., and Kikuchi, S. (2005). Database of comet polarimetry: Analysis and some results. Earth, Moon, and Planets, 97 (3–4), 365378.CrossRefGoogle Scholar
Kolokolova, L. and Kimura, H. (2010). Comet dust as a mixture of aggregates and solid particles: Model consistent with ground based and space mission results. Earth, Planets and Space, 62 (1), 1721.CrossRefGoogle Scholar
Kolokolova, L., Hanner, M. S., Levasseur-Regourd, A. C., and Gustafson, B. A. S. (2004). Physical properties of cometary dust from light scattering and thermal emission. In M. Festou, H. U. Keller, and H. A. Weaver, eds., Comets II. Tucson: University of Arizona Press, pp. 577604.CrossRefGoogle Scholar
Konert, M. and Vandenberghe, J. (1997). Comparison of laser grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction. Sedimentology, 44: 523535.CrossRefGoogle Scholar
Kuik, F. (1992). Single scattering by ensembles of particles with various shapes. Ph.D. dissertation. Free University, Amsterdam.Google Scholar
Laan, E. C., Volten, H., Stam, D. M.et al. (2009). Scattering matrices and expansion coefficients of Martian analogue palagonite particles. Icarus, 199, 219230.CrossRefGoogle Scholar
Liu, L., Mishchenko, M. I., Hovenier, J. W., Volten, H., and Muñoz, O. (2003). Scattering matrix of quartz aerosols: Comparison and synthesis of laboratory and Lorenz Mie results. Journal of Quantitative Spectroscopy and Radiative Transfer, 79/80, 911920.CrossRefGoogle Scholar
Martin, E., Hesse, E., Hough, J. W.et al. (2010). Polarized optical scattering signatures from biological materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 111: 24442459.CrossRefGoogle Scholar
McCrowey, C. J., Soseala, T. S., Calderon, G., Koo, J. E., and Curtis, D. D. (2013). A portable high-resolution polar nephelometer for measurements of the angular scattering properties of atmospheric aerosol: Design and validation. Aerosol Science and Technology, 47(6), 592605.CrossRefGoogle Scholar
Miffre, A., Gregory, D., Benjamin, T., and Rairoux, P. (2011). Atmospheric non-spherical particles optical properties from UV-polarization lidar and scattering matrix. Geophysical Research Letters, 38(16), 17.CrossRefGoogle Scholar
Min, M., Hovenier, J. W., and de Koter, A. (2005). Modeling optical properties of cosmic dust grains using a distribution of hollow spheres. Astronomy and Astrophysics, 432(3), 909920.CrossRefGoogle Scholar
Mishchenko, M. I., Travis, L. D., and Lacis, A. A. (2002). Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press.Google Scholar
Mishchenko, M. I., Rosenbush, V. K., Kiselev, N. N.et al. (2010). Polarimetric Remote Sensing of Solar System Objects. Kyiv: Akademperiodyka.CrossRefGoogle Scholar
Moreno, F., Muñoz, O., López-Moreno, J. J., Molina, A., and Ortiz, J. L. (2002). A Monte Carlo code to compute energy fluxes in cometary nuclei. Icarus, 156(2), 474484.CrossRefGoogle Scholar
Moreno, F., Muñoz, O., Guirado, D., and Vilaplana, R. (2007). Comet dust as a size distribution of irregularly shaped, compact particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 106(1–3), 348359.CrossRefGoogle Scholar
Muinonen, K., Nousiainen, T., Lindqvist, H., Muñoz, O., and Videen, G. (2009). Light scattering by Gaussian particles with internal inclusions and roughened surfaces using ray optics. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 16281639.CrossRefGoogle Scholar
Muñoz, O., Volten, H., de Haan, J. F., Vassen, W., and Hovenier, J. W. (2000). Experimental determination of scattering matrices of olivine and Allende meteorite particles. Astronomy and Astrophysics, 360, 777788.Google Scholar
Muñoz, O., Volten, H., Hovenier, J. W.et al. (2004). Scattering matrices of volcanic ash particles of Mount St. Helens, Redoubt, and Mount Spurr volcanoes. Journal of Geophysical Research, 109, D16201.CrossRefGoogle Scholar
Muñoz, O., Moreno, F., Guirado, D.et al. (2010). The new IAA light scattering apparatus. Journal of Quantitative Spectroscopy and Radiative Transfer, 111, 187196.CrossRefGoogle Scholar
Muñoz, O., Moreno, F., Guirado, D.et al. (2011). The IAA cosmic dust laboratory: Experimental scattering matrices of clay particles. Icarus, 211, 894900.CrossRefGoogle Scholar
Muñoz, O., Moreno, F., Dabrowska, D. D., Volten, H., and Hovenier, J. W. (2012). The Amsterdam–Granada light scattering database. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 565574.CrossRefGoogle Scholar
Nousiainen, T. (2009). Optical modeling of mineral dust particles, a review. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 12611279.CrossRefGoogle Scholar
Pope, S. K. (1991). Laboratory measurements of the single scattering properties of ammonia ice crystals. Ph.D. dissertation, University of Arizona, Tucson.Google Scholar
Pope, S. K., Tomasko, M. G., Williams, M. S.et al. (1992). Clouds of ammonia ice: Laboratory measurements of the single-scattering properties. Icarus, 100, 203220.CrossRefGoogle Scholar
Pritchard, B. S. and Elliott, W. G. (1960). Two instruments for atmospheric optics measurements. Journal of the Optical Society of America, 50, 191202.CrossRefGoogle Scholar
Roush, T. L. and Bell, J. F. (1995). Thermal emission measurements 2000–400/cm (5–25 micrometers) of Hawaiian palagonitic soils and their implications for Mars. Journal of Geophysical Research, 100, 53095317.CrossRefGoogle Scholar
Sassen, K. and Liou, K. N. (1979). Scattering of polarized light by water droplet, mixed-phase and ice crystal clouds. Part I: Angular scattering patterns. Journal of the Atmospheric Sciences, 36, 838851.2.0.CO;2>CrossRefGoogle Scholar
Stammes, P. (1989). Light scattering properties of aerosols and the radiation inside a planetary atmosphere. Ph.D. dissertation, Free University, Amsterdam.Google Scholar
Vaillon, R., Geffrin, J. M., Eyraud, C.et al. (2011). A novel implementation of a microwave analog to light scattering measurement device. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(11), 17531760.CrossRefGoogle Scholar
Van de Hulst, H. C. (1957). Light Scattering by Small Particles. New York: John Wiley and Sons Inc.; Also New York: Dover Publications Inc., 1981.CrossRefGoogle Scholar
Volten, H. (2001). Light scattering by small planetary particles. An experimental study. Ph.D. dissertation, Free University, Amsterdam.Google Scholar
Volten, H., de Haan, J. F., Hovenier, J. W.et al. (1998). Laboratory measurements of angular distributions of light scattered by phytoplankton and silt. Limnology and Oceanography, 43, 11801197.CrossRefGoogle Scholar
Volten, H., Muñoz, O., Rol, E.et al. (2001). Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm. Journal of Geophysical Research, 106, 1737517401.CrossRefGoogle Scholar
Volten, H., Muñoz, O., Hovenier, J. W.et al. (2005). WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm. Journal of Quantitative Spectroscopy and Radiative Transfer, 90 (2), 191206.CrossRefGoogle Scholar
Volten, H., Muñoz, O., Hovenier, J. W.et al. (2006a). Scattering matrices and reflectance spectra of forsterite particles with different size distributions. Journal of Quantitative Spectroscopy and Radiative Transfer, 100(1–3), 429436.CrossRefGoogle Scholar
Volten, H., Muñoz, O., Hovenier, J.W., and Waters, L. B. F. M. (2006b). An update of the Amsterdam light scattering database. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 437443.CrossRefGoogle Scholar
Volten, H., Muñoz, O., Hovenier, J. W.et al. (2007). Experimental light scattering by fluffy aggregates of magnesiosilica, ferrosilica, and alumina cosmic dust analogs. Astronomy and Astrophysics, 470, 377386.CrossRefGoogle Scholar
Weiss-Wrana, K. (1983). Optical properties of interplanetary dust: Comparison with light scattering by larger meteoritic and terrestrial grains. Astronomy and Astrophysics, 126, 240250.Google Scholar
West, R. A. and Smith, P. H. (1991). Evidence for aggregate particles in the atmospheres of Titan and Jupiter. Icarus, 90, 330333.CrossRefGoogle Scholar
West, R. A., Doose, L. R., Eibl, A. M., Tomasko, M. G., and Mishchenko, M. I. (1997). Laboratory measurements of mineral dust scattering phase function and linear polarization. Journal of Geophysical Research, 102(D14), 1687116881.CrossRefGoogle Scholar
Wolff, M. J. and Clancy, R. T. (2003). Constraints on the size of Martian aerosols from thermal emission Spectrometer observations. Journal of Geophysical Research, 108(E9), 5097, doi:10.1029/2003JE002057.CrossRefGoogle Scholar
Yang, P. and Liou, K. N. (2006). Light scattering and absorption by nonspherical ice crystals. In A. A. Kokhanovsky, ed., Light Scattering Reviews. Springer, pp. 3164.CrossRefGoogle Scholar
Zerull, R. and Giese, R. H. (1974). Microwave analog studies. In T. Gehrels, ed., Planets, Stars, and Nebulae Studied with Photopolarimetry. Tucson AZ: University of Arizona Press, pp. 901915.Google Scholar
Zubko, E., Muinonen, K., Shkuratov, Y.et al. (2012). Evaluating the carbon depletion found by the Stardust mission in Comet 81 P/Wild 2. Astronomy and Astrophysics, 544, L8.CrossRefGoogle Scholar
Zubko, E., Muinonen, K., Shkuratov, Y., and Videen, G. (2013). Characteristics of cometary dust in the innermost coma derived from polarimetry by Giotto. Monthly Notices of the Royal Astronomical Society, 430, 11181124.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×