Skip to main content Accessibility help
×
Hostname: page-component-cb9f654ff-mwwwr Total loading time: 0 Render date: 2025-09-02T10:53:51.848Z Has data issue: false hasContentIssue false

Chapter 9 - Collaborating with the Microbiology Laboratory

Published online by Cambridge University Press:  06 April 2018

Tamar F. Barlam
Affiliation:
Boston Medical Center
Melinda M. Neuhauser
Affiliation:
Department of Veteran Affairs
Pranita D. Tamma
Affiliation:
The Johns Hopkins University School of Medicine
Kavita K. Trivedi
Affiliation:
Trivedi Consults, LLC.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Dellit, TH, Owens, RC, McGowan, JE Jr., Gerding, DN, Weinstein, RA, Burke, JP, et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis 2007; 44(2):159177.CrossRefGoogle Scholar
Barlam, TF, Cosgrove, SE, Abbo, LM, MacDougall, C, Schuetz, AN, Septimus, EJ, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 2016; 62(10):e51–77.10.1093/cid/ciw217CrossRefGoogle Scholar
Procop, GW, Winn, W, Microbiology Resource Committee CoAP. Outsourcing microbiology and offsite laboratories. Implications on patient care, cost savings, and graduate medical education. Arch Pathol Lab Med 2003; 127(5):623624.CrossRefGoogle ScholarPubMed
Bauer, KA, Perez, KK, Forrest, GN, Goff, DA. Review of rapid diagnostic tests used by antimicrobial stewardship programs. Clin Infect Dis 2014; 59(Suppl 3):S134–145.CrossRefGoogle ScholarPubMed
Baron, EJ, Miller, JM, Weinstein, MP, Richter, SS, Gilligan, PH, Thomson, RB Jr., et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM). Clin Infect Dis 2013; 57(4):e22e121.CrossRefGoogle Scholar
Park, GE, Kang, CI, Wi, YM, Ko, JH, Lee, WJ, Lee, JY, et al. Case-control study of the risk factors for acquisition of Pseudomonas and Proteus species during tigecycline therapy. Antimicrob Agents Chemother 2015; 59(9):58305833.10.1128/AAC.04865-14CrossRefGoogle ScholarPubMed
Clinical and Laboratory Standards Institute (CaLSI). Analysis and presentation of cumulative antimicrobial susceptibility test data: approved guideline – 4th edition. CLSI document M39–4A, 2014.Google Scholar
Hindler, JF, Stelling, J. Analysis and presentation of cumulative antibiograms: a new consensus guideline from the Clinical and Laboratory Standards Institute. Clin Infect Dis 2007; 44(6):867873.10.1086/511864CrossRefGoogle ScholarPubMed
Magee, JT. Effects of duplicate and screening isolates on surveillance of community and hospital antibiotic resistance. J Antimicrob Chemother 2004; 54(1):155162.10.1093/jac/dkh295CrossRefGoogle ScholarPubMed
Shannon, KP, French, GL. Validation of the NCCLS proposal to use results only from the first isolate of a species per patient in the calculation of susceptibility frequencies. J Antimicrob Chemother 2002; 50(6):965969.10.1093/jac/dkf225CrossRefGoogle ScholarPubMed
Binkley, S, Fishman, NO, LaRosa, LA, Marr, AM, Nachamkin, I, Wordell, D, et al. Comparison of unit-specific and hospital-wide antibiograms: potential implications for selection of empirical antimicrobial therapy. Infect Control Hosp Epidemiol 2006; 27(7):682687.10.1086/505921CrossRefGoogle ScholarPubMed
Kaufman, D, Haas, CE, Edinger, R, Hollick, G. Antibiotic susceptibility in the surgical intensive care unit compared with the hospital-wide antibiogram. Arch Surg 1998; 133(10):10411045.10.1001/archsurg.133.10.1041CrossRefGoogle ScholarPubMed
Saxena, S, Ansari, SK, Raza, MW, Dutta, R. Antibiograms in resource limited settings: are stratified antibiograms better? Infect Dis (London) 2015; 48(4):299302.CrossRefGoogle ScholarPubMed
Zatorski, C, Jordan, JA, Cosgrove, SE, Zocchi, M, May, L. Comparison of antibiotic susceptibility of Escherichia coli in urinary isolates from an emergency department with other institutional susceptibility data. Am J Health Syst Pharm 2015; 72(24):21762180.CrossRefGoogle ScholarPubMed
Dahle, KW, Korgenski, EK, Hersh, AL, Srivastava, R, Gesteland, PH. Clinical value of an ambulatory-based antibiogram for uropathogens in children. J Pediatric Infect Dis Soc 2012; 1(4):333336.10.1093/jpids/pis055CrossRefGoogle ScholarPubMed
McGregor, JC, Bearden, DT, Townes, JM, Sharp, SE, Gorman, PN, Elman, MR, et al. Comparison of antibiograms developed for inpatients and primary care outpatients. Diagn Microbiol Infect Dis 2013; 76(1):7379.10.1016/j.diagmicrobio.2013.01.026CrossRefGoogle ScholarPubMed
Ferrer, R, Martin-Loeches, I, Phillips, G, Osborn, TM, Townsend, S, Dellinger, RP, et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med 2014; 42(8):17491755.CrossRefGoogle ScholarPubMed
Christoff, J, Tolentino, J, Mawdsley, E, Matushek, S, Pitrak, D, Weber, SG. Optimizing empirical antimicrobial therapy for infection due to gram-negative pathogens in the intensive care unit: utility of a combination antibiogram. Infect Control Hosp Epidemiol 2010; 31(3):256261.10.1086/650446CrossRefGoogle ScholarPubMed
Hsu, AJ, Carroll, KC, Milstone, AM, Avdic, E, Cosgrove, SE, Vilasoa, M, et al. The use of a combination antibiogram to assist with the selection of appropriate antimicrobial therapy for carbapenemase-producing Enterobacteriaceae infections. Infect Control Hosp Epidemiol 2015; 36(12):14581460.CrossRefGoogle ScholarPubMed
Randhawa, V, Sarwar, S, Walker, S, Elligsen, M, Palmay, L, Daneman, N. Weighted-incidence syndromic combination antibiograms to guide empiric treatment of critical care infections: a retrospective cohort study. Crit Care 2014; 18(3):R112.CrossRefGoogle ScholarPubMed
Hebert, C, Ridgway, J, Vekhter, B, Brown, EC, Weber, SG, Robicsek, A. Demonstration of the weighted-incidence syndromic combination antibiogram: an empiric prescribing decision aid. Infect Control Hosp Epidemiol 2012; 33(4):381388.CrossRefGoogle ScholarPubMed
Var, SK, Hadi, R, Khardori, NM. Evaluation of regional antibiograms to monitor antimicrobial resistance in Hampton Roads. Virginia. Ann Clin Microbiol Antimicrob 2015; 14:22.10.1186/s12941-015-0080-6CrossRefGoogle ScholarPubMed
Moehring, RW, Hazen, KC, Hawkins, MR, Drew, RH, Sexton, DJ, Anderson, DJ. Challenges in preparation of cumulative antibiogram reports for community hospitals. J Clin Microbiol 2015; 53(9):29772982.CrossRefGoogle ScholarPubMed
Avdic, E, Carroll, KC. The role of the microbiology laboratory in antimicrobial stewardship programs. Infect Dis Clin North Am 2014; 28(2):215235.10.1016/j.idc.2014.01.002CrossRefGoogle Scholar
Forrest, GN. PNA FISH: present and future impact on patient management. Expert Rev Mol Diagn 2007; 7(3):231236.CrossRefGoogle ScholarPubMed
Forrest, GN, Mankes, K, Jabra-Rizk, MA, Weekes, E, Johnson, JK, Lincalis, DP, et al. Peptide nucleic acid fluorescence in situ hybridization-based identification of Candida albicans and its impact on mortality and antifungal therapy costs. J Clin Microbiol 2006; 44(9):33813383.10.1128/JCM.00751-06CrossRefGoogle ScholarPubMed
Forrest, GN, Mehta, S, Weekes, E, Lincalis, DP, Johnson, JK, Venezia, RA. Impact of rapid in situ hybridization testing on coagulase-negative staphylococci positive blood cultures. J Antimicrob Chemother 2006; 58(1):154158.10.1093/jac/dkl146CrossRefGoogle ScholarPubMed
Forrest, GN, Roghmann, MC, Toombs, LS, Johnson, JK, Weekes, E, Lincalis, DP, et al. Peptide nucleic acid fluorescent in situ hybridization for hospital-acquired enterococcal bacteremia: delivering earlier effective antimicrobial therapy. Antimicrob Agents Chemother 2008; 52(10):35583563.10.1128/AAC.00283-08CrossRefGoogle ScholarPubMed
Jabra-Rizk, MA, Johnson, JK, Forrest, G, Mankes, K, Meiller, TF, Venezia, RA. Prevalence of Candida dubliniensis fungemia at a large teaching hospital. Clin Infect Dis 2005; 41(7):10641067.10.1086/432943CrossRefGoogle Scholar
Ly, T, Gulia, J, Pyrgos, V, Waga, M, Shoham, S. Impact upon clinical outcomes of translation of PNA FISH-generated laboratory data from the clinical microbiology bench to bedside in real time. Ther Clin Risk Manag 2008; 4(3):637640.Google ScholarPubMed
Heil, EL, Johnson, JK. Impact of CLSI breakpoint changes on microbiology laboratories and antimicrobial stewardship programs. J Clin Microbiol 2016; 54(4):840844.CrossRefGoogle ScholarPubMed
Holtzman, C, Whitney, D, Barlam, T, Miller, NS. Assessment of impact of peptide nucleic acid fluorescence in situ hybridization for rapid identification of coagulase-negative staphylococci in the absence of antimicrobial stewardship intervention. J Clin Microbiol 2011; 49(4):15811582.10.1128/JCM.02461-10CrossRefGoogle ScholarPubMed
Wong, JR, Bauer, KA, Mangino, JE, Goff, DA. Antimicrobial stewardship pharmacist interventions for coagulase-negative staphylococci positive blood cultures using rapid polymerase chain reaction. Ann Pharmacother 2012; 46(11):14841490.CrossRefGoogle ScholarPubMed
Carver, PL, Lin, SW, DePestel, DD, Newton, DW. Impact of mecA gene testing and intervention by infectious disease clinical pharmacists on time to optimal antimicrobial therapy for Staphylococcus aureus bacteremia at a University Hospital. J Clin Microbiol 2008; 46(7):23812383.10.1128/JCM.00801-08CrossRefGoogle ScholarPubMed
Bauer, KA, West, JE, Balada-Llasat, JM, Pancholi, P, Stevenson, KB, Goff, DA. An antimicrobial stewardship program’s impact with rapid polymerase chain reaction methicillin-resistant Staphylococcus aureus/S. aureus blood culture test in patients with S. aureus bacteremia. Clin Infect Dis 2010; 51(9):10741080.10.1086/656623CrossRefGoogle ScholarPubMed
Nguyen, DT, Yeh, E, Perry, S, Luo, RF, Pinsky, BA, Lee, BP, et al. Real-time PCR testing for mecA reduces vancomycin usage and length of hospitalization for patients infected with methicillin-sensitive staphylococci. J Clin Microbiol 2010; 48(3):785790.10.1128/JCM.02150-09CrossRefGoogle ScholarPubMed
Frye, AM, Baker, CA, Rustvold, DL, Heath, KA, Hunt, J, Leggett, JE, et al. Clinical impact of a real-time PCR assay for rapid identification of staphylococcal bacteremia. J Clin Microbiol 2012; 50(1):127133.10.1128/JCM.06169-11CrossRefGoogle ScholarPubMed
Sharff, KA, Monecke, S, Slaughter, S, Forrest, G, Pfeiffer, C, Ehricht, R, et al. Genotypic resistance testing creates new treatment challenges: two cases of oxacillin-susceptible methicillin-resistant Staphylococcus aureus. J Clin Microbiol 2012; 50(12):41514153.10.1128/JCM.01564-12CrossRefGoogle ScholarPubMed
Sango, A, McCarter, YS, Johnson, D, Ferreira, J, Guzman, N, Jankowski, CA. Stewardship approach for optimizing antimicrobial therapy through use of a rapid microarray assay on blood cultures positive for Enterococcus species. J Clin Microbiol 2013; 51(12):40084011.10.1128/JCM.01951-13CrossRefGoogle ScholarPubMed
Box, MJ, Sullivan, EL, Ortwine, KN, Parmenter, MA, Quigley, MM, Aguilar-Higgins, LM, et al. Outcomes of rapid identification for gram-positive bacteremia in combination with antibiotic stewardship at a community-based hospital system. Pharmacotherapy 2015; 35(3):269276.CrossRefGoogle Scholar
Beal, SG, Thomas, C, Dhiman, N, Nguyen, D, Qin, H, Hawkins, JM, et al. Antibiotic utilization improvement with the Nanosphere Verigene Gram-Positive Blood Culture assay. Proc (Bayl Univ Med Cent) 2015; 28(2):139143.Google ScholarPubMed
Bork, JT, Leekha, S, Heil, EL, Zhao, L, Badamas, R, Johnson, JK. Rapid testing using the Verigene Gram-negative blood culture nucleic acid test in combination with antimicrobial stewardship intervention against Gram-negative bacteremia. Antimicrob Agents Chemother 2015; 59(3):15881595.10.1128/AAC.04259-14CrossRefGoogle ScholarPubMed
Suzuki, H, Hitomi, S, Yaguchi, Y, Tamai, K, Ueda, A, Kamata, K, et al. Prospective intervention study with a microarray-based, multiplexed, automated molecular diagnosis instrument (Verigene system) for the rapid diagnosis of bloodstream infections, and its impact on the clinical outcomes. J Infect Chemother 2015; 21(12):849856.10.1016/j.jiac.2015.08.019CrossRefGoogle ScholarPubMed
Rand, KH, Delano, JP. Direct identification of bacteria in positive blood cultures: comparison of two rapid methods, FilmArray and mass spectrometry. Diagn Microbiol Infect Dis 2014; 79(3):293297.10.1016/j.diagmicrobio.2014.03.014CrossRefGoogle ScholarPubMed
Rand, KH, Tremblay, EE, Hoidal, M, Fisher, LB, Grau, KR, Karst, SM. Multiplex gastrointestinal pathogen panels: implications for infection control. Diagn Microbiol Infect Dis 2015; 82(2):154157.10.1016/j.diagmicrobio.2015.01.007CrossRefGoogle ScholarPubMed
Rhein, J, Bahr, NC, Hemmert, AC, Cloud, JL, Bellamkonda, S, Oswald, C, et al. Diagnostic performance of a multiplex PCR assay for meningitis in an HIV-infected population in Uganda. Diagn Microbiol Infect Dis 2016; 84(3):268273.CrossRefGoogle Scholar
Pardo, J, Klinker, KP, Borgert, SJ, Butler, BM, Giglio, PG, Rand, KH. Clinical and economic impact of antimicrobial stewardship interventions with the FilmArray blood culture identification panel. Diagn Microbiol Infect Dis 2016; 84(2):159164.10.1016/j.diagmicrobio.2015.10.023CrossRefGoogle ScholarPubMed
Ray, ST, Drew, RJ, Hardiman, F, Pizer, B, Riordan, A. Rapid identification of microorganisms by FilmArray(R) blood culture identification panel improves clinical management in children. Pediatr Infect Dis J 2016; 35(5):e134–138.10.1097/INF.0000000000001065CrossRefGoogle Scholar
Banerjee, R, Teng, CB, Cunningham, SA, Ihde, SM, Steckelberg, JM, Moriarty, JP, et al. Randomized trial of rapid multiplex polymerase chain reaction-based blood culture identification and susceptibility testing. Clin Infect Dis 2015; 61(7):10711080.10.1093/cid/civ447CrossRefGoogle ScholarPubMed
Laakso, S, Kirveskari, J, Tissari, P, Maki, M. Evaluation of high-throughput PCR and microarray-based assay in conjunction with automated DNA extraction instruments for diagnosis of sepsis. PLoS One 2011; 6(11):e26655.10.1371/journal.pone.0026655CrossRefGoogle ScholarPubMed
Tang, YW, Kilic, A, Yang, Q, McAllister, SK, Li, H, Miller, RS, et al. StaphPlex system for rapid and simultaneous identification of antibiotic resistance determinants and Panton-Valentine leukocidin detection of staphylococci from positive blood cultures. J Clin Microbiol 2007; 45(6):18671873.10.1128/JCM.02100-06CrossRefGoogle ScholarPubMed
Duncan, R, Kourout, M, Grigorenko, E, Fisher, C, Dong, M. Advances in multiplex nucleic acid diagnostics for blood-borne pathogens: promises and pitfalls. Expert Rev Mol Diagn 2016; 16(1):8395.CrossRefGoogle ScholarPubMed
Patel, R. Matrix-assisted laser desorption ionization-time of flight mass spectrometry in clinical microbiology. Clin Infect Dis 2013; 57(4):564572.10.1093/cid/cit247CrossRefGoogle ScholarPubMed
Tan, KE, Ellis, BC, Lee, R, Stamper, PD, Zhang, SX, Carroll, KC. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J Clin Microbiol 2012; 50(10):33013308.10.1128/JCM.01405-12CrossRefGoogle Scholar
March-Rossello, GA, Munoz-Moreno, MF, Garcia-Loygorri-Jordan de Urries, MC, Bratos-Perez, MA. A differential centrifugation protocol and validation criterion for enhancing mass spectrometry (MALDI-TOF) results in microbial identification using blood culture growth bottles. Eur J Clin Microbiol Infect Dis 2013; 32(5):699704.10.1007/s10096-012-1797-1CrossRefGoogle ScholarPubMed
Prod’hom, G, Bizzini, A, Durussel, C, Bille, J, Greub, G. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J Clin Microbiol 2010; 48(4):14811483.10.1128/JCM.01780-09CrossRefGoogle ScholarPubMed
Clerc, O, Prod’hom, G, Vogne, C, Bizzini, A, Calandra, T, Greub, G. Impact of matrix-assisted laser desorption ionization time-of-flight mass spectrometry on the clinical management of patients with Gram-negative bacteremia: a prospective observational study. Clin Infect Dis 2013; 56(8):11011107.CrossRefGoogle ScholarPubMed
Perez, KK, Olsen, RJ, Musick, WL, Cernoch, PL, Davis, JR, Land, GA, et al. Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch Pathol Lab Med 2013; 137(9):12471254.CrossRefGoogle ScholarPubMed
Huang, AM, Newton, D, Kunapuli, A, Gandhi, TN, Washer, LL, Isip, J, et al. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin Infect Dis 2013; 57(9):12371245.10.1093/cid/cit498CrossRefGoogle ScholarPubMed
Tamma, PD, Tan, K, Nussenblatt, VR, Turnbull, AE, Carroll, KC, Cosgrove, SE. Can matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) enhance antimicrobial stewardship efforts in the acute care setting? Infect Control Hosp Epidemiol 2013; 34(9):990995.10.1086/671731CrossRefGoogle ScholarPubMed
Vlek, AL, Bonten, MJ, Boel, CH. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia. PLoS One 2012; 7(3):e32589.10.1371/journal.pone.0032589CrossRefGoogle ScholarPubMed
Wenzler, E, Goff, DA, Mangino, JE, Reed, EE, Wehr, A, Bauer, KA. Impact of rapid identification of Acinetobacter Baumannii via matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with antimicrobial stewardship in patients with pneumonia and/or bacteremia. Diagn Microbiol Infect Dis 2016; 84(1):6368.10.1016/j.diagmicrobio.2015.09.018CrossRefGoogle ScholarPubMed
Timbrook, TT, Morton, JB, McConeghy, KW, Caffrey, AR, Mylonakis, E, LaPlante, KL. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis 2017; 64(1):1523.10.1093/cid/ciw649CrossRefGoogle ScholarPubMed
Mancini, N, Carletti, S, Ghidoli, N, Cichero, P, Burioni, R, Clementi, M. The era of molecular and other non-culture-based methods in diagnosis of sepsis. Clin Microbiol Rev 2010; 23(1):235251.10.1128/CMR.00043-09CrossRefGoogle ScholarPubMed
Lehmann, LE, Hunfeld, KP, Emrich, T, Haberhausen, G, Wissing, H, Hoeft, A, et al. A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples. Med Microbiol Immunol 2008; 197(3):313324.10.1007/s00430-007-0063-0CrossRefGoogle ScholarPubMed
Dark, P, Wilson, C, Blackwood, B, McAuley, DF, Perkins, GD, McMullan, R, et al. Accuracy of LightCycler(R) SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review protocol. BMJ Open 2012; 2(1):e000392.10.1136/bmjopen-2011-000392CrossRefGoogle ScholarPubMed
Mancini, N, Sambri, V, Corti, C, Ghidoli, N, Tolomelli, G, Paolucci, M, et al. Cost-effectiveness of blood culture and a multiplex real-time PCR in hematological patients with suspected sepsis: an observational propensity score-matched study. Expert Rev Mol Diagn 2014; 14(5):623632.CrossRefGoogle Scholar
Suberviola, B, Marquez-Lopez, A, Castellanos-Ortega, A, Fernandez-Mazarrasa, C, Santibanez, M, Martinez, LM. Microbiological diagnosis of sepsis: polymerase chain reaction system versus blood cultures. Am J Crit Care 2016; 25(1):6875.10.4037/ajcc2016728CrossRefGoogle ScholarPubMed
Tafelski, S, Nachtigall, I, Adam, T, Bereswill, S, Faust, J, Tamarkin, A, et al. Randomized controlled clinical trial evaluating multiplex polymerase chain reaction for pathogen identification and therapy adaptation in critical care patients with pulmonary or abdominal sepsis. J Int Med Res 2015; 43(3):364377.10.1177/0300060514561135CrossRefGoogle ScholarPubMed
Dark, P, Blackwood, B, Gates, S, McAuley, D, Perkins, GD, McMullan, R, et al. Accuracy of LightCycler® SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review and meta-analysis. Intensive Care Med 2015; 41(1):2133.10.1007/s00134-014-3553-8CrossRefGoogle ScholarPubMed
Neely, LA, Audeh, M, Phung, NA, Min, M, Suchocki, A, Plourde, D, et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci Transl Med 2013; 5(182):182ra54.10.1126/scitranslmed.3005377CrossRefGoogle ScholarPubMed
Mylonakis, E, Clancy, CJ, Ostrosky-Zeichner, L, Garey, KW, Alangaden, GJ, Vazquez, JA, et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis 2015; 60(6):892899.10.1093/cid/ciu959CrossRefGoogle ScholarPubMed
Douglas, IS, Price, CS, Overdier, KH, Wolken, RF, Metzger, SW, Hance, KR, et al. Rapid automated microscopy for microbiological surveillance of ventilator-associated pneumonia. Am J Respir Crit Care Med 2015; 191(5):566573.CrossRefGoogle ScholarPubMed
Metzger, S, Frobel, RA, Dunne, WM Jr. Rapid simultaneous identification and quantitation of Staphylococcus aureus and Pseudomonas aeruginosa directly from bronchoalveolar lavage specimens using automated microscopy. Diagn Microbiol Infect Dis 2014; 79(2):160165.10.1016/j.diagmicrobio.2013.11.029CrossRefGoogle ScholarPubMed
Assicot, M, Gendrel, D, Carsin, H, Raymond, J, Guilbaud, J, Bohuon, C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 1993; 341(8844):515518.10.1016/0140-6736(93)90277-NCrossRefGoogle ScholarPubMed
Barassi, A, Pallotti, F, Melzi d’Eril, G. Biological variation of procalcitonin in healthy individuals. Clin Chem 2004; 50(10):1878.10.1373/clinchem.2004.037275CrossRefGoogle ScholarPubMed
Cheval, C, Timsit, JF, Garrouste-Orgeas, M, Assicot, M, De Jonghe, B, Misset, B, et al. Procalcitonin (PCT) is useful in predicting the bacterial origin of an acute circulatory failure in critically ill patients. Intensive Care Med 2000; 26(Suppl 2):S153–158.10.1007/s001340051135CrossRefGoogle ScholarPubMed
Simon, L, Gauvin, F, Amre, DK, Saint-Louis, P, Lacroix, J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis 2004; 39(2):206217.10.1086/421997CrossRefGoogle ScholarPubMed
Uzzan, B, Cohen, R, Nicolas, P, Cucherat, M, Perret, GY. Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med 2006; 34(7):19962003.10.1097/01.CCM.0000226413.54364.36CrossRefGoogle ScholarPubMed
Schuetz, P, Christ-Crain, M, Thomann, R, Falconnier, C, Wolbers, M, Widmer, I, et al. Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. JAMA 2009; 302(10):10591066.10.1001/jama.2009.1297CrossRefGoogle ScholarPubMed
Giamarellou, H, Giamarellos-Bourboulis, EJ, Repoussis, P, Galani, L, Anagnostopoulos, N, Grecka, P, et al. Potential use of procalcitonin as a diagnostic criterion in febrile neutropenia: experience from a multicentre study. Clin Microbiol Infect 2004; 10(7):628633.10.1111/j.1469-0691.2004.00883.xCrossRefGoogle ScholarPubMed
Robinson, JO, Lamoth, F, Bally, F, Knaup, M, Calandra, T, Marchetti, O. Monitoring procalcitonin in febrile neutropenia: what is its utility for initial diagnosis of infection and reassessment in persistent fever? PLoS One 2011; 6(4):e18886.10.1371/journal.pone.0018886CrossRefGoogle ScholarPubMed
Schuetz, P, Albrich, W, Christ-Crain, M, Chastre, J, Mueller, B. Procalcitonin for guidance of antibiotic therapy. Expert Rev Anti Infect Ther 2010; 8(5):575587.10.1586/eri.10.25CrossRefGoogle ScholarPubMed
Schuetz, P, Briel, M, Christ-Crain, M, Stolz, D, Bouadma, L, Wolff, M, et al. Procalcitonin to guide initiation and duration of antibiotic treatment in acute respiratory infections: an individual patient data meta-analysis. Clin Infect Dis 2012; 55(5):651662.10.1093/cid/cis464CrossRefGoogle ScholarPubMed
Schuetz, P, Christ-Crain, M, Wolbers, M, Schild, U, Thomann, R, Falconnier, C, et al. Procalcitonin guided antibiotic therapy and hospitalization in patients with lower respiratory tract infections: a prospective, multicenter, randomized controlled trial. BMC Health Serv Res 2007; 7:102.10.1186/1472-6963-7-102CrossRefGoogle ScholarPubMed
Schuetz, P, Muller, B, Christ-Crain, M, Stolz, D, Tamm, M, Bouadma, L, et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Evid Based Child Health 2013; 8(4):12971371.CrossRefGoogle ScholarPubMed
Shehabi, Y, Sterba, M, Garrett, PM, Rachakonda, KS, Stephens, D, Harrigan, P, et al. Procalcitonin algorithm in critically ill adults with undifferentiated infection or suspected sepsis. A randomized controlled trial. Am J Respir Crit Care Med 2014; 190(10):11021110.10.1164/rccm.201408-1483OCCrossRefGoogle ScholarPubMed
Burkhardt, O, Ewig, S, Haagen, U, Giersdorf, S, Hartmann, O, Wegscheider, K, et al. Procalcitonin guidance and reduction of antibiotic use in acute respiratory tract infection. Eur Respir J 2010; 36(3):601607.10.1183/09031936.00163309CrossRefGoogle ScholarPubMed
Christ-Crain, M, Muller, B. Procalcitonin in bacterial infections – hype, hope, more or less? Swiss Med Wkly 2005; 135(31–32):451460.10.4414/smw.2005.11169CrossRefGoogle ScholarPubMed
Kristoffersen, KB, Sogaard, OS, Wejse, C, Black, FT, Greve, T, Tarp, B, et al. Antibiotic treatment interruption of suspected lower respiratory tract infections based on a single procalcitonin measurement at hospital admission–a randomized trial. Clin Microbiol Infect 2009; 15(5):481487.CrossRefGoogle ScholarPubMed
Stolz, D, Christ-Crain, M, Bingisser, R, Leuppi, J, Miedinger, D, Muller, C, et al. Antibiotic treatment of exacerbations of COPD: a randomized, controlled trial comparing procalcitonin-guidance with standard therapy. Chest 2007; 131(1):919.10.1378/chest.06-1500CrossRefGoogle ScholarPubMed
Bouadma, L, Luyt, CE, Tubach, F, Cracco, C, Alvarez, A, Schwebel, C, et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet 2010; 375(9713):463474.CrossRefGoogle Scholar
Hochreiter, M, Kohler, T, Schweiger, AM, Keck, FS, Bein, B, von Spiegel, T, et al. Procalcitonin to guide duration of antibiotic therapy in intensive care patients: a randomized prospective controlled trial. Crit Care 2009; 13(3):R83.10.1186/cc7903CrossRefGoogle ScholarPubMed
Nobre, V, Harbarth, S, Graf, JD, Rohner, P, Pugin, J. Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med 2008; 177(5):498505.10.1164/rccm.200708-1238OCCrossRefGoogle ScholarPubMed
Oliveira, CF, Botoni, FA, Oliveira, CR, Silva, CB, Pereira, HA, Serufo, JC, et al. Procalcitonin versus C-reactive protein for guiding antibiotic therapy in sepsis: a randomized trial. Crit Care Med 2013; 41(10):23362343.10.1097/CCM.0b013e31828e969fCrossRefGoogle ScholarPubMed
Rodriguez, AH, Aviles-Jurado, FX, Diaz, E, Schuetz, P, Trefler, SI, Sole-Violan, J, et al. Procalcitonin (PCT) levels for ruling-out bacterial coinfection in ICU patients with influenza: A CHAID decision-tree analysis. J Infect 2015.Google Scholar
Stocker, M, Fontana, M, El Helou, S, Wegscheider, K, Berger, TM. Use of procalcitonin-guided decision-making to shorten antibiotic therapy in suspected neonatal early-onset sepsis: prospective randomized intervention trial. Neonatology 2010; 97(2):165174.10.1159/000241296CrossRefGoogle ScholarPubMed
Wacker, C, Prkno, A, Brunkhorst, FM, Schlattmann, P. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis 2013; 13(5):426435.10.1016/S1473-3099(12)70323-7CrossRefGoogle ScholarPubMed
Newton, J, Lim, C., Robinson, S, Kuper, K, Garey, K.W., Trivedi, K.K. Impact of procalcitonin (PCT) guidance on antimicrobial stewardship in a community hospital. Open forum Infect Dis 2015; 2(Supp1 1):217.10.1093/ofid/ofv133.1060CrossRefGoogle Scholar

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×