Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-14T21:38:49.320Z Has data issue: false hasContentIssue false

9 - The special link to other geosciences

Published online by Cambridge University Press:  03 December 2009

Fiona Simpson
Affiliation:
Georg-August-Universität, Göttingen, Germany
Karsten Bahr
Affiliation:
Georg-August-Universität, Göttingen, Germany
Get access

Summary

Is ‘tectonic interpretation of conductivity anomalies’ a useful concept? Probably yes, if over-simplifications are avoided. For example, there are cases where a high-conductivity layer in the mid crust also exhibits anomalously high reflectivity, and the combination electromagnetics and seismics has been advocated as a tool for ‘detecting’ water in the crust. However, application of the techniques described in Chapter 8 and petrological considerations suggest that, in old, stable regions, the lower crust is generally dry.

The combination of long-period MT and surface-wave seismology have revealed concomitant directions of seismic and electrical anisotropy, apparently supporting a hypothesis involving alignment of olivine crystals. How is such an alignment realised and maintained?

A collaborative project involving geodynamics, seismology and long-period MT sounding has been established in search for an intra-plate plume under Central Europe. The seismological part of the experiment suggests some evidence for a 150–200 K temperature increase in the uppermost 200 km within a 100 km by 100 km region. However, not only is the electrical conductivity within that volume only moderately increased, but also the strongest conductivity increase occurs outside the velocity anomaly. In addition, the electrical anomaly exhibits strong electrical anisotropy. Is this another hint that if melt is present, then this melt is not the dominant conductor, and that the bulk conductivity of the mantle is more strongly influenced by another conductive phase?

Few ocean-bottom MT studies have been performed and investigations into possible differences between the physical compositions of oceanic and continental mantle have begun only recently.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×