Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T09:56:46.704Z Has data issue: false hasContentIssue false

Part III - Climate Change in the Anthropocene

Published online by Cambridge University Press:  25 January 2019

Alison M. Behie
Affiliation:
Australian National University, Canberra
Julie A. Teichroeb
Affiliation:
University of Toronto, Scarborough
Nicholas Malone
Affiliation:
University of Auckland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aktar, W., Sengupta, D. & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1), 112.Google Scholar
Altmann, J. & Alberts, S. C. (2005). Growth rates in a wild primate population: ecological influences and maternal effects. Behavioral Ecology and Sociobiology, 57(5),490501.CrossRefGoogle Scholar
Altmann, J. & Muruthi, P. (1988). Differences in daily life between semiprovisioned and wild-feeding baboons. American Journal of Primatology, 15, 213–21.Google Scholar
Altmann, S. A., Post, D. G. & Klein, D. F. (1987). Nutrients and toxins of plants in Amboseli, Kenya. African Journal of Ecology, 25(4), 279–93.Google Scholar
Altmann, J., Schoeller, D., Altmann, S. A., Muruthi, P. & Sapolsky, R. M. (1993). Body size and fatness of free-living baboons reflect food availability and activity levels. American Journal of Primatology, 30(2), 149–61.Google Scholar
Arroyo-Rodriguez, V. & Dias, P. A. D. (2010). Effects of habitat fragmentation and disturbance on howler monkeys: a review. American Journal of Primatology, 72, 16.Google Scholar
Banks, W. A., Altmann, J., Sapolsky, R. M., Phillips-Conroy, J. E. & Morley, J. E. (2003). Serum leptin levels as a marker for a syndrome x-like condition in wild baboons. Journal of Clinical Endocrinology and Metabolism, 88, 1234–40.Google Scholar
Baranga, D., Chapman, C. A., Mucunguzi, P. & Reyna-Hurtado, R. (2014). Fragments and food: red-tailed monkey abundance in privately owned forest fragments of Central Uganda. In Marsh, L. & Chapman, C. A. (eds) Primates in Fragments: Complexity and Resilience. New York: Springer Science Business, pp. 213–25.Google Scholar
Bicca-Marques, J. C. & Calegaro-Marques, C. (1994). Exotic plant species can serve as staple food sources for wild howler populations. Folia Primatologica, 63, 209–11.Google Scholar
Biegelmeyer, R., Mello Andrade, J. M., Aboy, A. L., et al. (2011). Comparative analysis of the chemical composition and antioxidant activity of red (Psidium cattleianum) and yellow (Psidium cattleianum var. lucidum) strawberry guava fruit. Food Chemistry, 76, C991C996.Google ScholarPubMed
Boyle, S. A. & Smith, A. T. (2010). Can landscape and species characteristics predict primate presence in forest fragments in the Brazilian Amazon? Biological Conservation, 143, 1134–43.Google Scholar
Campera, M., Serra, V., Balestri, M., et al. (2014). Effects of habitat quality and seasonality on ranging patterns of collared brown lemur (Eulemur collaris) in littoral forest fragments. International Journal of Primatology, 35, 957–75.Google Scholar
Cancelliere, E. C., DeAngelis, N., Nkurunungi, J. B., Raubenheimer, D. & Rothman, J. M. (2014). Minerals in the foods eaten by mountain gorillas (Gorilla beringei). PLoS One, 9(11), e112117.Google Scholar
Chapman, C. A., Chapman, L. J., Bjorndal, K. A. & Onderdonk, D. A. (2002). Application of protein-to-fiber ratios to predict colobine abundance on different spatial scales. International Journal of Primatology, 23(2), 283310.Google Scholar
Chapman, C. A., Chapman, L. J., Naughton-Treves, L., Lawes, M. J. & McDowell, L. R. (2004a). Predicting folivorous primate abundance: validation of a nutritional model. American Journal of Primatology, 62(2), 5569.Google Scholar
Chapman, C. A., Chapman, L. J., Struhsaker, T. T., et al. (2004b). A long-term evaluation of fruit phenology: importance of climate change. Journal of Tropical Ecology, 21, 114.Google Scholar
Chapman, C. A., Wasserman, M. D., Gillespie, T. R., et al. (2006). Do nutrition, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments? American Journal of Physical Anthropology, 131, 525–34.Google Scholar
Chapman, C. A., Struhsaker, T. T., Skorupa, J., Snaith, T. V. & Rothman, J. M. (2010). Understanding long-term primate community dynamics: implications for forest change. Ecological Applications, 20, 179–91.CrossRefGoogle ScholarPubMed
Chaves, O. M., Stoner, K. E. & Arroyo-Rodriguez, V. (2012). Differences in diet between spider monkey groups living in forest fragments and continuous forest in Mexico. Biotropica, 44, 105–33.CrossRefGoogle Scholar
Colborn, T., vom Saal, F. S. & Soto, A. M. (1993). Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environmental Health Perspectives, 101, 378–84.Google Scholar
Dela, J. D. S. (2011). Western purple-faced langurs (Semnopithecus vetulus nestor) feed on ripe and ripening fruits in human-modified environments in Sri Lanka. International Journal of Primatology, 33(1), 4072.Google Scholar
Dunbar, R. I. M. (1998). Impact of global warming on the distribution and survival of the gelada baboon: a modeling approach. Global Change Biology, 4, 293304.Google Scholar
Dunham, A., Erhart, E. M. & Wright, P. C. (2011). Global climate cycles and cyclones: consequences for rainfall patterns and lemur reproduction in southeastern Madagascar. Global Change Biology, 17, 219–27.Google Scholar
Eppley, T. M., Donati, G., Ramanamanjato, J. B., et al. (2015). The use of an invasive species habitat by a small folivorous primate: implications for lemur conservation in Madagascar. PLoS One, 10, e0140981.Google Scholar
Fashing, P. J., Nguyen, N., Venkataraman, V. V. & Kerby, JT. (2014). Gelada feeding ecology in an intact ecosystem at Guassa, Ethiopia: variability over time and implications for theropith and hominin dietary evolution. American Journal of Physical Anthropology, 155, 116.Google Scholar
Felton, A. M., Felton, A., Lindenmayer, D. B. & Foley, W. J. (2009a). Nutritional goals of wild primates. Functional Ecology, 23, 70–8.Google Scholar
Felton, A. M., Felton, A., Raubenheimer, D., et al. (2009b). Protein content of diets dictates the daily energy intake of a free-ranging primate. Behavioral Ecology, 20(4), 685–90.Google Scholar
Fuentes, A., Kalchik, S., Gettler, L., et al. (2008). Characterizing human–macaque interactions in Singapore. American Journal of Primatology, 70, 879–83.Google Scholar
Ganzhorn, J. U. (1992). Leaf chemistry and the biomass of folivorous primates in tropical forests: tests of a hypothesis. Oecologia, 91, 540–7.Google Scholar
Gessa, S. J. & Rothman, J. M. (2018). The role of public relations in primate conservation: examples from Uganda. In preparation.Google Scholar
Gogarten, J. F., Guzman, M., Chapman, C. A., et al. (2012). What is the predictive power of the colobine protein-to-fiber model and its conservation value? Tropical Conservation Science, 5, 381–93.Google Scholar
Gogarten, J. F., Jacob, A. L., Ghai, R. R., et al. (2015). Group size dynamics over 15+ years in an African forest primate community. Biotropica, 47, 101–12.CrossRefGoogle Scholar
Hambali, K., Ismail, A., Zulkifli, S. Z. & Amir, A. (2012). Human–macaque conflict and pest behaviors of long-tailed macaques (Macaca fascicularis) in Kuala Selangor Nature Park. Tropical Natural History, 12, 189205.Google Scholar
Harcourt, A. H., Coppeto, S. A. & Parks, S. A. (2002). Rarity, specialization and extinction in primates. Journal of Biogeography, 29, 445–56.Google Scholar
Harcourt, C. (1987). Brief trap/retrap study of the brown mouse lemur (Microcebus rufus). Folia Primatologica, 49, 209–11.Google Scholar
Harris, T. R. & Chapman, C. A. (2007). Variation in diet and ranging of black and white colobus monkeys in Kibale National Park, Uganda. Primates, 48, 208–21.Google Scholar
Hill, C. M. (2017). Primate crop feeding behavior, crop protection, and conservation. International Journal of Primatology, 2, 385400.Google Scholar
IPCC. (2002). Climate Change and Biodiversity. IPCC Technical Paper V. Geneva: IPCC.Google Scholar
Irwin, M. T. (2008). Feeding ecology of Propithecus diadema in forest fragments and continuous forest. International Journal of Primatology, 29, 95115.Google Scholar
Irwin, M. T., Raharison, J. L., Raubenheimer, D., Chapman, C. A. & Rothman, J. M. (2014). Nutritional correlates of the ‘lean season’: effects of seasonality and frugivory on the nutritional ecology of diademed sifakas. American Journal of Physical Anthropology, 153, 7891.CrossRefGoogle ScholarPubMed
Irwin, M. T., Raharison, J. L., Raubenheimer, D. R., Chapman, C. A. & Rothman, J. M. (2015). The nutritional geometry of resource scarcity: effects of lean seasons and habitat disturbance on nutrient intakes and balancing in wild sifakas. PLoS One, 10(6), e0128046.Google Scholar
Johnson, C. A., Raubenheimer, D., Chapman, C. A., et al. (2017). Macronutrient balancing affects patch departure by guerezas (Colobus guereza). American Journal of Primatology, 79, e22495.Google Scholar
Kemnitz, J. W., Sapolsky, R. M., Muruthi, P., Mott, G. E. & Stefanick, M. L. (2002). Effects of food availability on serum insulin and lipid concentrations in free-ranging baboons. American Journal of Primatology, 57, 1319.Google Scholar
King, S. J., Arrigo-Nelson, S., Pochron, S. T., et al. (2005). Dental senescence in a long-lived primate links infant survival to rainfall. Proceedings of the National Academy of Sciences, 102, 16579–83.Google Scholar
Kirkpatrick, R. L. & Pekins, P. J. (2002). Nutritional value of acorns for wildlife. In McShea, W. J. & Healy, W. M. (eds) Oak Forest Ecosystems: Ecology and Management for Wildlife. Baltimore, MD: Johns Hopkins University Press, pp. 173–81.Google Scholar
Krief, S., Cibot, M., Bortolamiol, S., et al. (2014). Wild chimpanzees on the edge: nocturnal activites in croplands. PLoS One, 9, e109925.CrossRefGoogle Scholar
Krief, S., Berny, P., Gumisiriza, F., et al. (2017). Agricultural expansion as risk to endangered wildlife: pesticide exposure in wild chimpanzees and baboons displaying facial dysplasia. Science of the Total Environment, 598, 647–56.Google Scholar
Kurita, H., Sugiyama, Y., Ohsawa, H., Hamada, Y. & Watanabe, T. (2008). Changes in demographic parameters of Macaca fuscata at Takasakiyama in relation to decrease in provisioned foods. International Journal of Primatology, 29, 1189–202.Google Scholar
Lambert, J. E. (2002a). Digestive retention times in forest guenons (Cercopithecus spp.) with reference to chimpanzee (Pan troglodytes). International Journal of Primatology, 23, 1169–85.Google Scholar
Lambert, J. E. (2002b). Resource switching in guenons: a community analysis of dietary flexibility. In Glenn, M. & Cords, M. (eds) The Guenons: Diversity and Adaptation in African Monkeys. New York: Kluwer Academic Press, pp. 303–17.Google Scholar
Lee, J., Jung, W. Y., Lee, G., et al. (2012). Heavy metal concentrations in hair of newly imported China-origin rhesus macaques (Macaca mulatta). Laboratory Animal Research, 28, 151–4.Google Scholar
Mallapur, A. (2013). Macaque tourism: implications for their management and conservation. In Radhakrishna, S. (ed.) The Macaque Connection: Cooperation and Conflict Between Humans and Macaques, London: Springer Science and Businees Media, pp. 93105.Google Scholar
Marechal, L., Semple, S., Majolo, B. & MacLarnon, A. (2016). Assessing the effects of tourist provisioning on the health of wild Barbary macaques in Morocco. PLoS One, 11, e0155920.Google Scholar
Mau, M., Sudekum, K. H., Johann, A., Sliwa, A. & Kaiser, T. M. (2009). Saliva of the graminivorous Theropithecus gelada lacks proline-rich proteins and tannin-binding capacity. American Journal of Primatology, 71, 663–9.Google Scholar
Mbora, D. N. M. & Meikle, D. B. (2004). Forest fragmentation and the distribution, abundance and conservation of the Tana river red colobus. Biological Conservation, 2004, 6777.Google Scholar
McKinney, T. (2011). The effects of provisioning and crop raiding on the diet and foraging activities of human-commensal white-faced capuchins (Cebus capucinus). American Journal of Primatology, 73, 439–48.Google Scholar
McLennan, M. R. & Ganzhorn, J. U. (2017). Nutritional characteristics of wild and cultivated foods for chimpanzees (Pan troglodytes) in agricultural landscapes. International Journal of Primatology, 38, 122–50.Google Scholar
Milton, K. (1999). Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition, 15, 488–98.Google Scholar
Moser, S. C. & Ekstrom, J. A. (2010). A framework to diagnose barriers to climate change. Proceedings of the National Academy of Sciences, 107, 22026–31.Google Scholar
Mostafalou, S. & Abdollahi, M. (2013). Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicology and Applied Pharmacology, 268, 157–77.Google Scholar
Muruthi, P., Altmann, J. & Altmann, S. (1991). Resource base, parity, and reproductive condition affect females’ feeding time and nutrient intake within and between groups of baboon populations. Oecologia, 87, 467–72.Google Scholar
Naughton-Treves, L., Treves, A., Chapman, C. & Wrangham, R. (1998). Temporal patterns of crop-raiding by primates: linking food availability in croplands and adjacent forest. Journal of Applied Ecology, 35, 596606.Google Scholar
O’Leary, H. O. & Fa, J. E. (1993). Effects of tourists on Barbary macaques at Gibraltar. Folia Primatologica, 61, 7791.Google Scholar
Oates, J. F. (1974). The Ecology and Behaviour of the Black-and-White Colobus Monkey (Colobus guereza Ruppell) in East Africa. London: University of London.Google Scholar
Onderdonk, D. A. & Chapman, C. A. (2000). Coping with forest fragmentation: the primates of Kibale National Park, Uganda. International Journal of Primatology, 21, 587611.Google Scholar
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review in Ecolology and Evolutionary Systematics, 37, 637–9.Google Scholar
Parmesan, C. & Yohe, G. A. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 3742.Google Scholar
Pragatheesh, A. (2011). Effect of human feeding on the road mortality of rhesus macaques on National Highway 7 routed along Pench Tiger Reserve, India. Journal of Threatened Taxa, 3, 1656–62.Google Scholar
Rainwater, T. R., Sauther, M. L., Rainwater, K. A. E., et al. (2009). Assessment of organochlorine pesticides and metals in ring-tailed lemurs (Lemur catta) at Beza Mahafaly Special Reserve, Madagascar. American Journal of Primatology, 71, 9981010.Google Scholar
Raubenheimer, D., Simpson, S. J. & Mayntz, D. (2009). Nutrition, ecology and nutritional ecology: toward an integrated framework. Functional Ecology, 23, 416.Google Scholar
Riley, E. P., Tolbert, B. & Farida, W. R. (2013). Nutritional content explains the attractiveness of cacao to crop raiding Tonkean macaques. Current Zoology, 59, 160–9.Google Scholar
Rode, K. D., Chapman, C. A., Chapman, L. J. & McDowell, L. R. (2003). Mineral resource availability and consumption by colobus in Kibale National Park, Uganda. International Journal of Primatology, 24, 541–73.Google Scholar
Rothman, J. M., Dierenfeld, E. S., Molina, D. O., et al. (2006a). Nutritional chemistry of foods eaten by gorillas in Bwindi Impenetrable National Park, Uganda. American Journal of Primatology, 68, 675–91.Google Scholar
Rothman, J. M., Pell, A. N., Nkurunungi, J. B., et al. (2006b). Nutritional aspects of the diet of wild gorillas: how do Bwindi gorillas compare? In Newton-Fisher, N. E., Notman, H., Paterson, J. D. & Reynolds, V. (eds) Primates of Western Uganda. New York: Kluwer Academic, pp.153–69.Google Scholar
Rothman, J. M., Van Soest, P. J. & Pell, A. N. (2006c). Decaying wood is a sodium source for mountain gorillas. Biology Letters, 2, 321–4.Google Scholar
Rothman, J. M., Raubenheimer, D. & Chapman, C. A. (2011). Nutritional geometry: gorillas prioritize non-protein energy while consuming surplus protein. Biology Letters, 7, 847–9.Google Scholar
Rothman, J. M., Makombo, J., Tumwesigye, C., Rwetsiba, A. & Chapman, C. A. (2014). Integrating research into primate conservation: insights from Uganda. American Journal of Physical Anthropology, 153, 225.Google Scholar
Rothman, J. M., Chapman, C. A., Struhsaker, T. T., et al. (2015). Long-term declines in nutritional quality of tropical leaves. Ecology, 96, 873–8.Google Scholar
Saj, T., Sicotte, P. & Paterson, J. D. (1999). Influence of human food consumption on the behaviour of vervets. International Journal of Primatology, 70, 977–94.Google Scholar
Sarnaik, S. S., Kanekar, P. P., Raut, V. M., et al. (2006). Effect of application of different pesticides to soybean on the soil microflora. Journal of Environmental Biology, 37(2), 423–6.Google Scholar
Seiler, N. & Robbins, M. M. (2015). Behavioural flexibility by mountain gorillas when ranging on community land and feeding on crops. Folia Primatologica, 86, 356357.Google Scholar
Seiler, N. & Robbins, M. M. (2016). Factors influencing ranging on community land and crop raiding by mountain gorillas. Animal Conservation, 19, 176–88.Google Scholar
Serio-Silva, J. C., Olguin, E. J., Garcia-Feria, L., Tapia-Fierro, K. & Chapman, C. A. (2015). Cascading impacts of anthropogenically driven habitat loss: deforestation, flooding, and possible lead poisoning in howler monkeys (Alouatta pigra). Primates, 56, 2935.Google Scholar
Sherry, S. P. (1971). The Black Wattle (Acacia mernsii De Wild). Pietermaritzburg: University of Natal Press.Google Scholar
Ssebugere, P., Wasswa, J., Mbabazi, J., et al. (2010). Organochlorine pesticides in soils from south-western Uganda. Chemosphere, 78, 1250–5.Google Scholar
Stephenson, R. A., Kurashina, H., Iverson, T. J. & Chiang, L. N. (2002). Visitors’ perceptions of cultural improprieties in Bali, Indonesia. Journal of National Parks, 12, 156–69.Google Scholar
Strier, K. B. (2009). Seeding the forest through the seeds: mechanisms of primate behavioral diversity from individuals to populations and beyond. Current Anthropology, 50, 213–28.CrossRefGoogle ScholarPubMed
Tan, C. L. (1999). Group composition, home range size, and diet of three sympatric bamboo lemur species (genus Hapalemur) in Ranomafana National Park, Madagascar. International Journal of Primatology, 20, 547–66.Google Scholar
Tecot, S. R. (2007). Seasonality and predictability: the hormonal and behavioral responses of the red-bellied lemur, Eulemur rubriventer, in southeastern Madagascar. PhD dissertation, University of Texas at Austin.Google Scholar
Wimberger, K., Nowak, K. & Hill, R. A. (2017). Reliance on exotic plants by two groups of threatened samango monkeys, Cercopithecus albogularis labiatus, at their southern range limit. International Journal of Primatology, 38, 151–71.Google Scholar
Wong, S. N. P. & Sicotte, P. (2007). Activity budget and ranging patterns of Colobus vellerosus in forest fragments in Central Ghana. Folia Primatologica, 78, 245–54.Google Scholar
Worman, C. O. & Chapman, C. A. (2006). Densities of two frugivorous primates with respect to forest and fragment tree species composition and fruit availability. International Journal of Primatology, 27, 203–25.Google Scholar
Wright, P. C. (2007). Considering climate change effects in lemur ecology and conservation. In Gould, L. & Sauther, M. L. (eds) Lemurs: Ecology and Adapatation. New York: Springer Science and Business Media, pp. 385401.Google Scholar
Yamashita, N. (1996). Seasonality and site specificity of mechanical dietary patterns in two Malagasy lemur families (Lemuridae and Indriidae). International Journal of Primatology, 17(3), 355–87.Google Scholar

References

Baret, S., Cournac, L., Thébaud, C., Edwards, P. & Strasberg, D. (2008). Effects of canopy gap size on recruitment and invasion of the non-indigenous Rubus alceifolius in lowland tropical rain forest on Réunion. Journal of Tropical Ecology, 24, 19.Google Scholar
Behie, A. M. & Pavelka, M. S. M. (2012). Food selection in the black howler monkey following habitat disturbance: implications for the importance of mature leaves. Journal of Tropical Ecology, 28(2), 153–60.CrossRefGoogle Scholar
Brockman, D. K. & Whitten, P. L. (1996). Reproduction in free-ranging Propithecus verreauxi: estrus and the relationship between multiple partner matings and fertilization. American Journal of Physical Anthroplogy, 100, 5769.Google Scholar
Chapman, C. A., Chapman, L. J., Rode, K. D., Hauck, E. M. & McDowell, L. R. (2003). Variation in the nutritional value of primate foods: among trees, time periods, and areas. International Journal of Primatology, 24, 317–33.CrossRefGoogle Scholar
Chazdon, R. L., Letcher, S. G., van Breugel, M., et al. (2007). Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 273–89.Google Scholar
Dewar, R. E. & Richard, A. F. (2007). Evolution in the hypervariable environment of Madagascar. PNAS, 104(34), 13723–7.Google Scholar
Dunham, A. E., Erhart, E. M. & Wright, P. C. (2011). Global climate cycles and cyclones: consequences for rainfall patterns and lemur reproduction in southeastern Madagascar. Global Change Biology, 17(1), 219–27.Google Scholar
Garbulsky, M. F. & Paruelo, J. M. (2004). Remote sensing of protected areas to derive baseline vegetation functioning characteristics. Journal of Vegetation Science, 15, 711–20.Google Scholar
Holben, B. N. (1986). Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing, 7(11), 1417–34.Google Scholar
Jury, M. R., Parker, B. A., Raholijao, N. & Nassor, A. (1995). Variability of summer rainfall over Madagascar: climatic determinants at interannual scales. International Journal of Climatology, 15, 1323–32.Google Scholar
Knutson, T. R., McBride, J. L., Chan, J., et al. (2010). Tropical cyclones and climate change. Nature Geoscience, 3(3), 157–63.Google Scholar
Kull, C. A. (2012). Fire and people in tropical island grassland landscapes: Fiji and Madagascar. The Journal of Pacific Studies, 32, 127–35.Google Scholar
Lawler, R. R., Caswell, H., Richard, A. F., et al. (2009). Demography of Verreaux’s sifaka in a stochastic rainfall environment. Oecologia, 161(3), 491504.Google Scholar
Leimberger, K. G. & Lewis, R. J. (2017). Patterns of male dispersal in Verreaux’s sifaka (Propithecus verreauxi) at Kirindy Mitea National Park. American Journal of Primatology. doi: 10.1002/ajp.22455.Google Scholar
Lewis, R. J. & Bannar-Martin, K. H. (2012). The impact of Cyclone Fanele on a tropical dry forest in Madagascar. Biotropica, 44(2), 135–40.Google Scholar
Lewis, R. J. & Kappeler, P. M. (2005). Seasonality, body condition, and timing of reproduction in Propithecus verreauxi verreauxi in the Kirindy Forest. American Journal of Primatology, 67(3), 347–64.Google Scholar
Lewis, R. J. & Rakotondranaivo, F. (2011). The impact of Cyclone Fanele on sifaka body condition and reproduction in the tropical dry forest of western Madagascar. Journal of Tropical Ecology, 27(4), 429–32.Google Scholar
Lewis, R. J. & van Schaik, C. P. (2007). Bimorphism in male Verreaux’s sifaka in the Kirindy Forest of Madagascar. International Journal of Primatology, 28(1), 159–82.Google Scholar
Lodge, D. J., McDowell, W. H. & McSwiney, C. P. (1994). The importance of nutrient pulses in tropical forests. Trends in Ecology & Evolution, 9(10), 384–7.Google Scholar
Lugo, A. E. (2008). Visible and invisible effects of hurricanes on forest ecosystems: an international review. Austral Ecology, 33(4), 368–98.Google Scholar
Norscia, I., Carrai, V. & Borgognini-Tarli, S. M. (2006). Influence of dry season and food quality and quantity on behavior and feeding strategy of Propithecus verreauxi in Kirindy, Madagascar. International Journal of Primatology, 27(4), 1001–22.Google Scholar
Pavelka, M. S. M. & Behie, A. M. (2005). The short-term effects of a hurricane on the diet and activity of black howlers (Alouatta pigra) in southern Belize. Biotropica, 37(1), 102–8.Google Scholar
Pavelka, M. S. M., Brusselers, O. T., Nowak, D. & Behie, A. M. (2003). Population reduction and social disorganization in Alouatta pigra following a hurricane. International Journal of Primatology, 24(5), 1037–55.Google Scholar
R Core Team (2014). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available at: www.r-project.org.Google Scholar
Rahman, A. F., Sims, D. A., Cordova, V. D. & El-Masri, B. Z. (2005). Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophysical Research Letters, 32(19), 14.Google Scholar
Ramírez-Barajas, P. J., Islebe, G. & Calmé, S. (2012). Impact of Hurricane Dean (2007) on game species of the Selva Maya, Mexico. Biotropica, 44(3), 402–11.CrossRefGoogle Scholar
Rasambainarivo, F. T., Junge, R. E. & Lewis, R. J. (2014). Biomedical evaluation of Verreaux’s sifaka (Propithecus verreauxi) from Kirindy Mitea National Park in Madagascar. Journal of Zoo and Wildlife Medicine, 45(2), 247–55.Google Scholar
Reed, K. E. & Bidner, L. R. (2004). Primate communities: past, present, and possible future. Yearbook of Physical Anthropology, 47, 239.Google Scholar
Richard, A. F., Rakotomanga, P. & Schwartz, M. (1993). Dispersal by Propithecus verreauxi at Beza-Mahafaly, Madagascar: 1984–1991. American Journal of Primatology, 30, 120.Google Scholar
Richard, A. F., Dewar, R. E., Schwartz, M. & Ratsirarson, J. (2002). Life in the slow lane? Demography and life histories of male and female sifaka (Propithecus verreauxi verreauxi). Journal of Zoology, 256(4), 421–36.Google Scholar
Scoccimarro, E., Gualdi, S., Navarra, A., et al. (2017). Tropical cyclone rainfall changes in a warmer climate. In Collins, J. & Walsh, K. (eds) Hurricanes and Climate Change, vol. 3. Cham: Springer, pp. 243–55.Google Scholar
Sobel, A. H., Camargo, S. J., Hall, T. M., et al. (2016). Human influence on tropical cyclone intensity. Science, 353(6296), 242–6.Google Scholar
Sugi, M., Murakami, H. & Yoshida, K. (2017). Projection of future changes in the frequency of intense tropical cyclones. Climate Dynamics, 49, 619–32.Google Scholar
Sussman, R. W., Richard, A. F., Ratsirarson, J., et al. (2012). Beza Mahafaly Special Reserve: long-term research on lemurs in southwestern Madagascar. In Kappeler, P. M. & Watts, D. P. (eds) Long-Term Field Studies of Primates. Berlin: Springer, pp. 4566.Google Scholar
van Schaik, C. P. & van Noordwijk, M. A. (1985). Interannual variability in fruit abundance and the reproductive seasonality in Sumatran long-tailed macaques (Macaca fascicularis). Journal of Zoology, 206, 533–49.Google Scholar
Vandermeer, J., Brenner, A. & Granzow-de la Cerda, I. (1998). Growth rates of tree height six years after hurricane damage at four localities in eastern Nicaragua. Biotropica, 30(4), 502–9.Google Scholar
Vieilledent, G., Grinand, C., Rakotomalala, F. A., et al. (2018). Combining global tree cover loss data with historical national forest-cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. Biological Conservation, 22, 189–97.Google Scholar
Waeber, P. O., Wilmé, L., Ramamonjisoa, B., et al. (2015). Dry forests in Madagascar: neglected and under pressure. International Forestry Review, 17(S2), 127–48.Google Scholar
Whitehurst, A. S., Sexton, J. O. & Dollar, L. (2009). Land cover change in western Madagascar’s dry deciduous forests: a comparison of forest changes in and around Kirindy Mite National Park. Oryx, 43(2), 275–83.Google Scholar
Wilson, R. F., Goosem, M. W. & Wilson, G. W. (2008). Resilience of arboreal folivores to habitat damage by a severe tropical cyclone. Austral Ecology, 33(4), 573–9.Google Scholar
Wright, P. C. (1999). Lemur traits and Madagascar ecology: coping with an island environment. Yearbook of Physical Anthropology, 42, 3172.Google Scholar
Wunderle, J. M. J., Lodge, D. J. & Waide, R. B. (1992). Short-term effects of Hurricane Gilbert on terrestrial bird populations on Jamaica. The Auk, 109(1), 148–66.Google Scholar
Xiao, X., Hollinger, D., Aber, J., et al. (2004). Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 89(4), 519–34.Google Scholar

References

Asensio, N., Korstjens, A. H., Schaffner, C. M. & Aureli, F. (2008). Intragroup aggression, fission–fusion dynamics and feeding competition in spider monkeys. Behaviour, 145, 9831001.Google Scholar
Aureli, F., Schaffner, C. M., Boesch, C., et al. (2008). Fission–fusion dynamics: new research frameworks. Current Anthropology, 49627–54.Google Scholar
Barone, J. A. (1998). Effects of light availability and rainfall on leaf production in a moist tropical forest in central Panama. Journal of Tropical Ecology, 14, 309–21.Google Scholar
Behie, A. M. & Pavelka, M. S. M. (2005). The short-term effect of Hurricane Iris on the diet and activity budget of black howlers (Alouatta pigra) in Monkey River, Belize. Folia Primatologica, 76, 19.Google Scholar
Behie, A. M. & Pavelka, M. S. M. (2015). Fruit as a key factor in howler monkey population density: conservation implications. In Kowalewski, M., Garber, P. A., Cortes-Ortiz, L., Urbani, B. & Youlatos, D. (eds) Howler Monkeys: Behaviour, Ecology and Conservation. New York: Springer, pp. 357–81.Google Scholar
Behie, A. M., Wyman, T. M., Steffens, T. S. & Pavelka, M. S. M. (2015). Hurricanes and coast lines: the role of natural disasters in the evolution of Alouatta pigra. In Behie, A. M. & Oxenham, M. F. (eds) Taxonomic Tapestries: The Threads of Behavioural, Evolutionary and Conservation Research. Canberra: ANUpress, pp. 7591.Google Scholar
Champion, J. (2013). The effects of a hurricane and fire on the feeding ecology, ranging behaviour, activity budget, and social patterns of spider monkeys (Ateles geoffroyi) in Central Belize. Master’s Thesis, University of Calgary.Google Scholar
Di Fiore, A. & Suarez, S. A. (2007). Route-based travel and shared routes in sympatric spider and woolly monkeys: cognitive and evolutionary implications. Animal Cognition, 10, 317–29.Google Scholar
Ford, S. M. (2006). The biogeographic history of Mesoamerican primates. In Estrada, A., Garber, P. A., Pavelka, M. S. M. & Luecke, L. (eds) New Perspectives in the Study of Mesoamerican Primates: Distribution, Ecology, Behaviour, and Conservation. New York: Springer, pp. 81120.Google Scholar
Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78, 1360–80.Google Scholar
Hartwell, K. S., Notman, H., Bonenfant, C. & Pavelka, M. S. M. (2014). Assessing the occurrence of sexual segregation in spider monkeys (Ateles geoffroyi yucatanensis), its mechanisms and function. International Journal of Primatology, 35, 425–44.Google Scholar
IPCC (Intergovernmental Panel on Climate Change). (2014). Synthesis Report. Geneva: IPCC. Available at: www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdfGoogle Scholar
Johns, A. D. & Skorupa, J. P. (1987). Responses in rain-forest primates to habitat disturbance: a review. International Journal of Primatology, 8, 157–91.Google Scholar
Kimberlaine, T. B. (2011). Tropical Cyclone Report: Hurricane Richard. National Hurricane Center. Available at: www.nhc.noaa.gov/data/tcr/AL192010_Richard.pdf.Google Scholar
LaFleur, M. & Gould, L. (2009). Feeding outside the forest: the importance of crop raiding and an invasive weed in the diet of gallery forest ring-tailed lemurs (Lemur catta) following a cyclone at the Beza Mahafaly Special Reserve, Madagascar. Folia Primatologica, 80, 233–46.Google Scholar
Malone, N., Fuentes, A. & White, F. J. (2012). Variation in the social systems of extant hominoids: comparative insight into the social behaviour of early hominins. International Journal of Primatology, 33, 1251–77.Google Scholar
Menon, S. & Poirer, F. E. (1996). Lion-tailed macaques (Macaca silenus) in a disturbed forest fragment: activity patterns and time budget. International Journal of Primatology, 17, 969–85.Google Scholar
Midgley, G. F., Hannah, L., Millar, D., Rutherford, M. C. & Powrie, L. W. (2002). Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hot spot. Global Ecology and Biogeography, 11, 445–51.Google Scholar
NOAA (National Oceanic and Atmosphere Administration) (2016). Historical hurricane tracks. Available at: https://coast.noaa.gov/hurricanes (accessed 20 December 2016).Google Scholar
Pavelka, M. S. M. (2011). Mechanisms of cohesion in black howler monkeys. In Sussman, R. W. & Cloninger, C. R. (eds) Origins of Cooperation and Altruism. New York: Springer, pp. 167–78.Google Scholar
Pavelka, M. S. M. & Behie, A. M. (2005). The effect of Hurricane Iris on the food supply of black howlers (Alouatta pigra) in southern Belize. Biotropica, 37, 102–8.Google Scholar
Pavelka, M. S. M., Brusselers, O. T., Nowak, D. & Behie, A. M. (2003). Population reduction and social disorganization in Alouatta pigra following a hurricane. International Journal of Primatology, 24, 1037–55.Google Scholar
Pavelka, M. S. M., McGoogan, K. C. & Steffens, T. S. (2007). Population size and characteristics of Alouatta pigra before and after a major hurricane. International Journal of Primatology, 28, 919–29.Google Scholar
Ramos-Fernández, G. (2005). Vocal communication in a fission–fusion society: do spider monkeys stay in touch with close associates? International Journal of Primatology, 26, 1077–92.Google Scholar
Ramos-Fernández, G. & Ayala-Orozco, B. (2003). Population size and habitat use of spider monkeys at Punta Laguna, Mexico. In Marsh, L. K. (ed.) Primates in Fragments: Ecology and Conservation. New York: Kluwer Academic/Plenum Publishers, pp. 191209.Google Scholar
Ratsimbazafy, J. H. (2006). Diet composition, foraging and feeding behaviour in relation to habitat disturbance: implications for the adaptability of ruffed lemurs (Varecia v. editorium) in Manombo forest, Madagascar. In Gould, L. & Sauther, M. L. (eds) Lemurs: Ecology and Adaptation. New York: Springer, pp. 403–22.Google Scholar
Ratsimbazafy, J. H., Ramarosandratana, H. V. & Zaonarivelo, R. J. (2002). How do black-and-white ruffed lemurs survive in a highly disturbed habitat? Lemur News, 7, 710.Google Scholar
Saunders, M. A. & Lea, A. S. (2008). Large contribution of sea surface warming to recent increase in Atlantic hurricane activity. Nature, 451, 557–60.Google Scholar
Schaffner, C. M., Rebecchini, L., Ramos-Fernández, G., Vick, L. G. & Aureli, F. (2012). Spider monkeys (Ateles geoffroyi yucatenensis) cope with the negative consequences of hurricanes through changes in diet, activity budget, and fission–fusion dynamics. International Journal of Primatology, 33, 922–36.Google Scholar
Vandermeer, J., Brenner, A. & Cerda, I. G. (1998). Growth rates of tree height six years after hurricane damage at four localities in eastern Nicaragua. Biotropica, 30, 502–9.Google Scholar
Van Roosmalen, M. G. M. (1980). Habitat preferences, diet, feeding strategy and social organisation of the black spider monkey (Ateles paniscus paniscus Linnaeus 1758) in Surinam. Doctoral dissertation, Landbouwhogeschool te Wageningen.Google Scholar
Wright, P. C. (1999). Lemur traits and Madagascar ecology: coping with an island environment. American Journal of Physical Anthropology, 110, 3172.Google Scholar
Wright, P. C. (2006). Considering climate change effects in lemur ecology and conservation. In Gould, L. & Sauther, M. L. (eds) Lemurs: Ecology and Adaptation. New York: Springer, pp. 385401.Google Scholar

References

Asensio, N., Korstjens, A. H., Schaffner, C. M. & Aureli, F. (2008). Intragroup aggression, fission–fusion dynamics and feeding competition in spider monkeys. Behaviour, 145(7), 9831001.Google Scholar
Asensio, N., Korstjens, A. H. & Aureli, F. (2009). Fissioning minimizes ranging costs in spider monkeys: a multiple-level approach. Behavioral Ecology and Sociobiology, 63(5), 649–59.Google Scholar
Bartoń, K. (2016). MuMIn: multi-model inference. R package version 1.15.6.Google Scholar
Beaudrot, L. H. & Marshall, A. J. (2011). Primate communities are structured more by dispersal limitation than by niches. Journal of Animal Ecology, 80(2), 332–41.Google Scholar
Beaudrot, L. H., Struebig, M. J., Meijaard, E., et al. (2013). Co-occurrence patterns of Bornean vertebrates suggest competitive exclusion is strongest among distantly related species. Oecologia, 173(3), 1053–62.Google Scholar
Beaudrot, L. H., Kamilar, J. M., Marshall, A. J. & Reed, K. E. (2014). African primate assemblages exhibit a latitudinal gradient in dispersal limitation. International Journal of Primatology, 35(6), 1088–104.Google Scholar
Behie, A. M. & Pavelka, M. S. (2013). Interacting roles of diet, cortisol levels, and parasites in determining population density of Belizean howler monkeys in a hurricane damaged forest fragment. In Marsh, L. K. & Chapman, C. A. (eds) Primates in Fragments: Complexity and Resilience. New York: Springer, pp. 459–74.Google Scholar
Bettridge, C. M. & Dunbar, R. I. M. (2012). Modeling the biogeography of fossil baboons. International Journal of Primatology, 33(6), 1278–308.Google Scholar
Bettridge, C. M., Lehmann, J. & Dunbar, R. I. M. (2010). Trade-offs between time, predation risk and life history, and their implications for biogeography: a systems modelling approach with a primate case study. Ecological Modelling, 221, 777–90.Google Scholar
Bramer, I. Anderson, B., Bennie, J., et al. (2018). Advances in monitoring and modelling climate at ecologically relevant scales. Advances in Ecological Sciences, 48, 101–61.Google Scholar
Brands, S., Herrera, S., Fernández, J. & Gutiérrez, J. M. (2013). How well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa? Climate Dynamics, 41(3–4), 803–17.Google Scholar
Bruorton, M. R., Davis, C. L. & Perrin, M. R. (1991). Gut microflora of vervet and samango monkeys in relation to diet. Applied and Environmental Microbiology, 57(2), 573–8.Google Scholar
Burnham, K. P. & Anderson, D. R. (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd edn. New York: Springer.Google Scholar
Carne, C., Semple, S. & Lehmann, J. (2012). The effects of climate change on orangutans: a time budget model. In Druyan, L. M. (ed.) Climate Models, Rijeka: InTech, pp. 313–36.Google Scholar
Chapman, C. A., Chapman, L. J., Cords, M., et al. (2002). Variation in the diets of Cercopithecus species: differences within forests, among forests, and across species. In Glenn, M. E. & Cords, M. (eds) The Guenons: Diversity and Adaptation in African Monkeys. New York: Kluwer Academic, pp. 325–50.Google Scholar
Chapman, C. A., Chapman, L. J., Struhsaker, T. T., et al. (2005). A long-term evaluation of fruiting phenology: importance of climate change. Journal of Tropical Ecology, 21(1), 3145.Google Scholar
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024–6.Google Scholar
Chivers, D. J. (1994). Functional anatomy of the gastrointestinal tract. In Davies, A. G. & Oates, J. F. (eds) Colobine Monkeys. Cambridge: Cambridge University Press, pp. 205–27.Google Scholar
Clark, D. A., Clark, D. B. & Oberbauer, S. F. (2013). Field‐quantified responses of tropical rainforest aboveground productivity to increasing CO2 and climatic stress, 1997–2009. Journal of Geophysical Research: Biogeosciences, 118(2), 783–94.Google Scholar
Cohen, J. (1968). Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychological Bulletin, 70(4), 213–20.Google Scholar
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., et al. (2008). Evaluation of HadGEM2 Model. Exeter: Meteorological Office Hadley Centre.Google Scholar
Dunbar, R. I. M. (1992). Time: a hidden constraint on the behavioural ecology of baboons. Behavioral Ecology and Sociobiology, 31(1), 3549.Google Scholar
Dunbar, R. I. M. (1993). Socioecology of the extinct theropiths: a modelling approach. In Jablonski, N. G. (ed.) Theropithecus: The Rise and Fall of a Primate Genus. Cambridge: Cambridge University Press, pp. 465–86.Google Scholar
Dunbar, R. I. M. (1998). Impact of global warming on the distribution and survival of the gelada baboon: a modelling approach. Global Change Biology, 4(3), 293304.Google Scholar
Dunbar, R. I. M. & Dunbar, P. (1988). Maternal time budgets of gelada baboons. Animal Behaviour, 36, 970–80.Google Scholar
Dunbar, R. I. M., Korstjens, A. H. & Lehmann, J. (2009). Time as an ecological constraint. Biological Reviews, 84(3), 413–29.Google Scholar
Dunbar, R. I. M., Gamble, C. & Gowlett, J. A. J. (2014). Lucy to Language: The Benchmark Papers. Oxford: Oxford University Press.Google Scholar
Elith, J. & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology Evolution and Systematics, 40, 677–97.Google Scholar
Estrada, A., Raboy, B. E. & Oliveira, L. C. (2012). Agroecosystems and primate conservation in the tropics: a review. American Journal of Primatology, 74(8), 696711.Google Scholar
Estrada, A., Morales-Castilla, I., Caplat, P. & Early, R. (2016). Usefulness of species traits in predicting range shifts. Trends in Ecology & Evolution, 31(3), 190203.Google Scholar
Fashing, P. J. (2005). African colobine monkeys: patterns of between-group interaction. In Campbell, C. J., Fuentes, A. F., MacKinnon, K. C., Panger, M. & Bearder, S. (eds) Primates in Perspective. Oxford: Oxford University Press, pp. 201–24.Google Scholar
Fashing, P. J., Mulindahabi, F., Gakima, J. B., et al. (2007). Activity and ranging patterns of Colobus angolensis ruwenzorii in Nyungwe forest, Rwanda: possible costs of large group size. International Journal of Primatology, 28(3), 529–50.Google Scholar
Fleagle, J. G. & Reed, K. E. (1996). Comparing primate communities: a multivariate approach. Journal of Human Evolution, 30(6), 489510.Google Scholar
Garcia, R. A., Cabeza, M., Altwegg, R. & Araújo, M. B. (2016). Do projections from bioclimatic envelope models and climate change metrics match?. Global Ecology and Biogeography, 25(1), 6574.Google Scholar
González-Zamora, A., Arroyo-Rodríguez, V., Chaves, O. M., et al. (2011). Influence of climatic variables, forest type, and condition on activity patterns of Geoffroyi’s spider monkeys throughout Mesoamerica. American Journal of Primatology, 73(12), 1189–98.Google Scholar
Gouveia, S. F., Villalobos, F., Dobrovolski, R., Beltrão-Mendes, R. & Ferrari, S. F. (2014). Forest structure drives global diversity of primates. Journal of Animal Ecology, 83, 1523–30.Google Scholar
Graham, T. L., Matthews, H. D. & Turner, S. E. (2016). A global-scale evaluation of primate exposure and vulnerability to climate change. International Journal of Primatology, 37(2), 158–74.Google Scholar
Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. (2014). Unifying niche shift studies: insights from biological invasions. Trends in Ecology & Evolution, 29(5), 260–9.Google Scholar
Hartley, A. J., Nelson, A. & Mayaux, P. (2007). The Assessment of African Protected Areas: A Characterisation of Biodiversity Value, Ecosystems and Threats, to Inform the Effective Allocation of Conservation Funding. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
Hijmans, R. J. & Elith, J. (2016). Species Distribution Modeling with R. n.p.: R CRAN Project.Google Scholar
Hurlbert, A. H. & Jetz, W. (2007). Species richness, hotspots and the scale dependence of range maps in ecology and conservation. PNAS, 104(33), 13384–9.Google Scholar
Hutchinson, G. E. (1978). An Introduction to Population Ecology. New Haven, CT: Yale University Press.Google Scholar
IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Summaries, Frequently Asked Questions, and Cross-Chapter Boxes. A Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: World Meteorological Organization.Google Scholar
IUCN (2017). The IUCN Red List of Threatened Species. Version 2017-3. Available at: www.iucnredlist.org (accessed 19 September 2017).Google Scholar
Iverson, L. R. & McKenzie, D. (2013). Tree-species range shifts in a changing climate: detecting, modeling, assisting. Landscape Ecology, 28(5), 879–89.Google Scholar
Iwamoto, T. & Dunbar, R. I. M. (1983). Thermoregulation, habitat quality and the behavioural ecology of Gelada baboons. Journal of Animal Ecology, 52(2), 357–66.Google Scholar
Kamilar, J. M. & Beaudrot, L. H. (2017). Quantitative methods for primate biogeography and macroecology. In Shaffer, C. A., Dolins, F., Hickey, J. R., Nibbelink, N. P. & Porter, L. M. (eds) GPS and GIS for Primatologists: A Practical Guide to Spatial Analysis. New York: Cambridge University Press.Google Scholar
Kamilar, J. M. & Muldoon, K. M. (2010). The climatic niche diversity of Malagasy primates: a phylogenetic perspective. PLoS One, 5(6), e11073.Google Scholar
Kamilar, J. M. & Tecot, S. R. (2016). Anthropogenic and climatic effects on the distribution of Eulemur species: an ecological niche modeling approach. International Journal of Primatology, 37(1), 4768.Google Scholar
Kingdon, J. & Groves, C. P. (2013a). Genus Colobus black-and-white colobus monkeys. In Butynski, T. M., Kingdon, J. & Kalina, J. (eds) Mammals of Africa: Volume II Primates. London: Bloomsbury Publishing, pp. 95–6.Google Scholar
Kingdon, J. & Groves, C. P. (2013b). Tribe cercopithecini. In Butynski, T. M., Kingdon, J. & Kalina, J. (eds) Mammals of Africa: Volume II Primates. London: Bloomsbury, pp. 245–7.Google Scholar
Korstjens, A. H. (2001). The mob, the secret sorority, and the phantoms: an analysis of the socio-ecological strategies of the three colobines of Taï. PhD Thesis, Utrecht University.Google Scholar
Korstjens, A. H. & Dunbar, R. I. M. (2007). Time constraints limit group sizes and distribution in red and black-and-white colobus monkeys. International Journal of Primatology, 28(3), 551–75.Google Scholar
Korstjens, A. H. & Hillyer, A. P. (2016). Primates and climate change: a review of current knowledge. In Wich, S. A. & Marshall, A. J. (eds) An Introduction to Primate Conservation. Oxford: Oxford University Press, pp. 175–92.Google Scholar
Korstjens, A. H. & Noë, R. (2004). Mating system of an exceptional primate, the olive colobus (Procolobus verus). American Journal of Primatology, 62(4), 261–73.Google Scholar
Korstjens, A. H. & Schippers, E. P. (2003). Dispersal patterns among olive colobus in Taï National Park. International Journal of Primatology, 24(3), 515–40.Google Scholar
Korstjens, A., Sterck, E. H. M. & Noë, R. (2002). How adaptive or phylogenetically inert is primate social behaviour? A test with two sympatric colobines. Behaviour, 139(2), 203–25.Google Scholar
Korstjens, A. H., Nijssen, E. C. & Noë, R. (2005). Inter-group relationships in western black-and-white colobus, Colobus polykomos polykomos. International Journal of Primatology, 26(6), 1267–89.Google Scholar
Korstjens, A. H., Lugo Verhoeckx, I. & Dunbar, R. I. M. (2006). Time as a constraint on group size in spider monkeys. Behavioral Ecology and Sociobiology, 60(5), 683–94.Google Scholar
Korstjens, A. H., Bergmann, K., Deffernez, C., et al. (2007). How small-scale differences in food competition lead to different social systems in three closely related sympatric colobines. In McGraw, S., Zuberbuhler, K. & Noë, R. (eds) The Monkeys of the Taï Forest, Ivory Coast: An African Primate Community. Cambridge: Cambridge University Press, pp. 72108.Google Scholar
Korstjens, A. H., Lehmann, J. & Dunbar, R. I. M. (2010). Resting time as an ecological constraint on primate biogeography. Animal Behaviour, 79(2), 361–74.Google Scholar
Korstjens, A. H., Lehmann, J. & Dunbar, R. I. M. (2018). Time constraints do not limit group size in arboreal guenons but do explain community size and distribution patterns. International Journal of Primatology. https://doi.org/10.1007/s10764-018-0048-4Google Scholar
Lambert, J. E. (1998). Primate frugivory in Kibale National Park, Uganda, and its implications for human use of forest resources. African Journal of Ecology, 36(3), 234–40.Google Scholar
Lambert, J. E. (2002). Resource switching and species coexistence in guenons: a community analysis of dietary flexibility. In Glenn, M. E. & Cords, M. (eds) The Guenons: Diversity and Adaptation in African Monkeys. New York: Springer, pp. 309–23.Google Scholar
Lehman, S. M. & Fleagle, J. G. (2006). Biogeography and primates: a review. In Primate Biogeography: Progress and Prospects, Boston, MA: Springer, pp. 158.Google Scholar
Lehmann, J., Korstjens, A. H. & Dunbar, R. I. M. (2007). Fission–fusion social systems as a strategy for coping with ecological constraints: a primate case. Evolutionary Ecology, 21(5), 613–34.Google Scholar
Lehmann, J., Korstjens, A. H. & Dunbar, R. I. M. (2008a). Time and distribution: a model of ape biogeography. Ethology Ecology & Evolution, 20(4), 337–59.Google Scholar
Lehmann, J., Korstjens, A. H. & Dunbar, R. I. M. (2008b). Time management in great apes: implications for gorilla biogeography. Evolutionary Ecology Research, 10(4), 517–36.Google Scholar
Lehmann, J., Korstjens, A. H. & Dunbar, R. I. M. (2010). Apes in a changing world: the effects of global warming on the behaviour and distribution of African apes. Journal of Biogeography, 37(12), 2217–31.Google Scholar
Liu, C., White, M. & Newell, G. (2011). Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography, 34(2), 232–43.Google Scholar
Maibeche, Y., Moali, A., Yahi, N. & Menard, N. (2015). Is diet flexibility an adaptive life trait for relictual and peri-urban populations of the endangered primate Macaca sylvanus? PLoS One, 10(2), e0118596.Google Scholar
Moss, R., Babiker, M., Brinkman, S., et al. (2008). Towards new scenarios for analysis of emissions, climate change, impacts and response strategies. IPCC Expert Meeting Report.Google Scholar
Nowak, K. & Lee, P. C. (2013). ‘Specialist’ primates can be flexible in response to habitat alteration. In Marsh, K. L. & Chapman, A. C. (eds) Primates in Fragments: Complexity and Resilience. New York: Springer, pp. 199211.Google Scholar
Polansky, L. & Boesch, C. (2013). Long-term changes in fruit phenology in a West African lowland tropical rain forest are not explained by rainfall. Biotropica, 45(4), 434–40.Google Scholar
Pruetz, J. D. (2007). Evidence of cave use by savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal: implications for thermoregulatory behavior. Primates, 48, 316.Google Scholar
QGIS Development Team (2016). QGIS Geographic Information System. Available at: www.qgis.org.Google Scholar
R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Rothman, J. M., Chapman, C. A., Struhsaker, T. T., et al. (2014). Long-term declines in nutritional quality of tropical leaves. Ecology, 96(3), 873–8.Google Scholar
Sato, H. & Ise, T. (2012). Effect of plant dynamic processes on African vegetation responses to climate change: analysis using the spatially explicit individual-based dynamic global vegetation model (SEIB-DGVM). Journal of Geophysical Research, 117(G3), G03017.Google Scholar
Schloss, C. A., Nuñez, T. A. & Lawler, J. J. (2012). Dispersal will limit ability of mammals to track climate change in the western hemisphere. Proceedings of the National Academy of Sciences, 109(22), 8606–11.Google Scholar
Soberón, J. & Arroyo-Peña, B. (2017) Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. PLoS One 12(4): e0175138.Google Scholar
Teichroeb, J. A., Saj, T. L., Paterson, J. D. & Sicotte, P. (2003). Effect of group size on activity budgets of Colobus vellerosus in Ghana. International Journal of Primatology, 24(4), 743–58.Google Scholar
Willems, E. P. & Hill, R. A. (2009). A critical assessment of two species distribution models: a case study of the vervet monkey (Cercopithecus aethiops). Journal of Biogeography, 36(12), 2300–12.Google Scholar
Williamson, D. K. & Dunbar, R. (1999). Energetics, time budgets and group size. In Lee, P. (ed.) Primate Socioecology. Cambridge: Cambridge University Press, pp. 321–38.Google Scholar
Wisz, M. S., Pottier, J., Kissling, W. D., et al. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88(1), 1530.Google Scholar
Zvereva, E. L. & Kozlov, M. V. (2006). Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: a metaanalysis. Global Change Biology, 12(1), 2741.Google Scholar

References

Braverman, I. (2014). Conservation without nature: the trouble with in situ versus ex situ conservation. Geoforum, 51(Supplement C), 4757.Google Scholar
Dore, K. M., Riley, E. P. & Fuentes, A. (eds) (2017). Ethnoprimatology: A Practical Guide to Research at the Human–Nonhuman Primate Interface. Cambridge: Cambridge University Press.Google Scholar
Ellis, E. C. (2015). Ecology in an anthropogenic biosphere. Ecological Monographs, 85(3), 287331.Google Scholar
Fuentes, A. (2012). Ethnoprimatology and the anthropology of the human–primate interface. Annual Review of Anthropology, 41, 101–17.Google Scholar
Fuentes, A. & Baynes-Rock, M. (2017). Anthropogenic landscapes, human action and the process of co-construction with other species: making anthromes in the Anthropocene. Land, 6(1), 15.Google Scholar
Fuentes, A. & Wolfe, L. D. (2002). Primates Face to Face: The Conservation Implications of Human–Nonhuman Primate Interconnections. Cambridge: Cambridge University Press.Google Scholar
Lorimer, J. (2015). Wildlife in the Anthropocene: Conservation After Nature. Minneapolis, MN: University of Minnesota Press.Google Scholar
Malone, N., Wade, A. H., Fuentes, A., et al. (2014). Ethnoprimatology: critical interdisciplinarity and multispecies approaches in anthropology. Critique of Anthropology, 38, 829.Google Scholar
Palmer, A. & Malone, N. (2018). Extending ethnoprimatology: human–alloprimate relationships in managed settings. International Journal of Primatology. DOI: 10.1007/s10764-017-0006-6.Google Scholar
Steffen, W., Crutzen, P. J. & McNeill, J. R. (2007). The Anthropocene: are humans now overwhelming the great forces of nature? AMBIO: A Journal of the Human Environment36(8), 614–21.Google Scholar
Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. (2015). The trajectory of the Anthropocene: the great accelerationThe Anthropocene Review2(1), 8198.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×