Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T05:49:42.406Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

I - The Calculus of variations

from Appendices

Max Born
Affiliation:
Georg-August-Universität, Göttingen, Germany and University of Edinburgh
Emil Wolf
Affiliation:
University of Rochester, New York
Get access

Summary

IT is a general feature of equations of classical physics that they can be derived from variational principles. Two early examples are Fermat's principle in optics (1657) and Maupertuis’ principle in mechanics (1744). The equations of elasticity, hydrodynamics and electrodynamics can also be represented in this way.

However, when one deals with field equations, involving as a rule four or more independent variables x, y, z, t, …, one makes little use, owing to the great complexity of partial differential equations, of the property that the solution expresses stationary values of certain integrals. The only essential advantage of the variational approach in such cases is connected with the derivation of conservation laws — e.g. for energy. The situation is quite different in problems involving one independent variable (time in mechanics, or length of a ray in geometrical optics). Then one deals with a set of ordinary differential equations and it turns out that a study of the behaviour of the solution is greatly facilitated by a variational approach. This approach is in fact a straightforward generalization of ordinary geometrical optics in every detail. Its modern representation owes much to David Hilbert, on whose unpublished lectures, given at Gottingen in about 1903, we base the considerations of the following sections. The theory is presented here for a three-dimensional space (x, y, z) only, but can easily be extended to more dimensions.

Type
Chapter
Information
Principles of Optics
Electromagnetic Theory of Propagation, Interference and Diffraction of Light
, pp. 853 - 872
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The Calculus of variations
  • Max Born, Georg-August-Universität, Göttingen, Germany and University of Edinburgh, Emil Wolf, University of Rochester, New York
  • Book: Principles of Optics
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139644181.025
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The Calculus of variations
  • Max Born, Georg-August-Universität, Göttingen, Germany and University of Edinburgh, Emil Wolf, University of Rochester, New York
  • Book: Principles of Optics
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139644181.025
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The Calculus of variations
  • Max Born, Georg-August-Universität, Göttingen, Germany and University of Edinburgh, Emil Wolf, University of Rochester, New York
  • Book: Principles of Optics
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139644181.025
Available formats
×