Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T10:04:52.860Z Has data issue: false hasContentIssue false

5 - Mechanized Semantic Library

from I - Generic separation logic

Published online by Cambridge University Press:  05 August 2014

Andrew W. Appel
Affiliation:
Princeton University, New Jersey
Robert Dockins
Affiliation:
Portland State University
Aquinas Hobor
Affiliation:
National University of Singapore
Lennart Beringer
Affiliation:
Princeton University, New Jersey
Josiah Dodds
Affiliation:
Princeton University, New Jersey
Gordon Stewart
Affiliation:
Princeton University, New Jersey
Sandrine Blazy
Affiliation:
Université de Rennes I, France
Xavier Leroy
Affiliation:
Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt
Get access

Summary

In constructing program logics for particular applications, for particular languages, 20th-century scientists had particular difficulty with pointers—aliasing and antialiasing, updates to state, commuting of operators; and self-reference—recursive functions, recursive types, functions as first-class values, types and predicates as parameters to functions. The combination of these two was particularly difficult: pointers to mutable records that can contain pointers to function-values that operate on mutable records.

Two strains of late-20th-century logic shed light on these matters.

  • Girard's 1987 linear logic [43] and other substructural logics treat logical assertions as resources that can be created, consumed and (when necessary) duplicated. This kind of thinking led to the Ishtiaq/O'Hearn/Reynolds invention in 2001 of separation logic [56, 79], which is a substructural Hoare logic for reasoning about sharing and antialiasing in pointer-manipulating programs.

  • Scott's 1976 domain theory [84] treats data types as approximations, thereby avoiding paradoxes about recursive types and other recursive definitions/specifications: a type can be defined in terms of more approximate versions of itself, which eventually bottoms out in a type that contains no information at all. These ideas led to the Appel/McAllester/Ahmed invention in 2001 of step-indexing [10, 2] which is a kind of practical domain theory for computations on von Neumann machines.

Many 21st-century scientists have generalized these methods for application to many different program logics (and other applications); and have formalized these methods within mechanical proof assistants.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Mechanized Semantic Library
  • Andrew W. Appel, Princeton University, New Jersey
  • Book: Program Logics for Certified Compilers
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107256552.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Mechanized Semantic Library
  • Andrew W. Appel, Princeton University, New Jersey
  • Book: Program Logics for Certified Compilers
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107256552.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Mechanized Semantic Library
  • Andrew W. Appel, Princeton University, New Jersey
  • Book: Program Logics for Certified Compilers
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107256552.007
Available formats
×