Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T02:04:24.563Z Has data issue: false hasContentIssue false

Chapter 9 - Anaerobic respiration

Published online by Cambridge University Press:  04 May 2019

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Liebensteiner, M. G., Tsesmetzis, N., Stams, A. J. M. & Lomans, B. P. (2014). Microbial redox processes in deep subsurface environments and the potential application of (per)chlorate in oil reservoirs. Frontiers in Microbiology 5, 428.CrossRefGoogle ScholarPubMed
Schoepp-Cothenet, B., van Lis, R., Atteia, A., Baymann, F., Capowiez, L., Ducluzeau, A.-L., Duval, S., ten Brink, F., Russell, M. J. & Nitschke, W. (2013). On the universal core of bioenergetics. Biochimica et Biophysica Acta 1827, 7993.CrossRefGoogle ScholarPubMed
Strous, M. & Jetten, M. S. M. (2004). Anaerobic oxidation of methane and ammonium. Annual Review of Microbiology 58, 99117.CrossRefGoogle ScholarPubMed
Teske, A. P. (2005). The deep subsurface biosphere is alive and well. Trends in Microbiology 13, 402404.CrossRefGoogle ScholarPubMed
Warren, L. A. & Kauffman, M. E. (2003). Geoscience: microbial geoengineers. Science 299, 10271029.CrossRefGoogle ScholarPubMed

Secondary Sources

Borrero-de Acuña, J. M., Rohde, M., Wissing, J., Jänsch, L., Schobert, M., Molinari, G., Timmis, K. N., Jahn, M. & Jahn, D. (2016). Protein network of the Pseudomonas aeruginosa denitrification apparatus. Journal of Bacteriology 198, 14011413.CrossRefGoogle ScholarPubMed
Cabello, P., Roldan, M. D. & Moreno-Vivian, C. (2004). Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150, 35273546.CrossRefGoogle ScholarPubMed
Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N. P., Ulloa, O., Canfield, D. E. & DeLong, E. F. (2014). Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. mBio 5, e01966–14.CrossRefGoogle ScholarPubMed
Khan, A. & Sarkar, D. (2012). Nitrate reduction pathways in mycobacteria and their implications during latency. Microbiology 158, 301307.CrossRefGoogle ScholarPubMed
Liu, Y., Ai, G.-M., Miao, L.-L. & Liu, Z.-P. (2016). Marinobacter strain NNA5, a newly isolated and highly efficient aerobic denitrifier with zero N2O emission. Bioresource Technology 206, 915.CrossRefGoogle ScholarPubMed
Mania, D., Heylen, K., van Spanning, R. J. M. & Frostegård, Å. (2016). Regulation of nitrogen metabolism in the nitrate-ammonifying soil bacterium Bacillus vireti and evidence for its ability to grow using N2O as electron acceptor. Environmental Microbiology 18, 29372950.CrossRefGoogle Scholar
Oshiki, M., Shimokawa, M., Fujii, N., Satoh, H. & Okabe, S. (2011). Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinica’. Microbiology 157, 17061713.CrossRefGoogle ScholarPubMed
Park, D., Kim, H. & Yoon, S. (2017). Nitrous oxide reduction by an obligate aerobic bacterium, Gemmatimonas aurantiaca strain T-27. Applied and Environmental Microbiology 83, e00502–17.CrossRefGoogle ScholarPubMed
Park, S., Kim, D.-H., Lee, J.-H. & Hur, H.-G. (2014). Sphaerotilus natans encrusted with nanoball-shaped Fe(III) oxide minerals formed by nitrate-reducing mixotrophic Fe(II) oxidation. FEMS Microbiology Ecology 90, 6877.CrossRefGoogle ScholarPubMed
Philippot, L. (2005). Denitrification in pathogenic bacteria: for better or worse? Trends in Microbiology 13, 191192.CrossRefGoogle ScholarPubMed
Sawers, R. G., Falke, D. & Fischer, M. (2016). Oxygen and nitrate respiration in Streptomyces coelicolor A3(2). Advances in Microbial Physiology 68, 140.CrossRefGoogle ScholarPubMed
Slobodkina, G. B., Mardanov, A. V., Ravin, N. V., Frolova, A. A., Chernyh, N. A., Bonch-Osmolovskaya, E. A. & Slobodkin, A. I. (2017). Respiratory ammonification of nitrate coupled to anaerobic oxidation of elemental sulfur in deep-sea autotrophic thermophilic bacteria. Frontiers in Microbiology 8, 87.CrossRefGoogle ScholarPubMed
Srivastava, M., Kaushik, M. S., Singh, A., Singh, D. & Mishra, A. K. (2016). Molecular phylogeny of heterotrophic nitrifiers and aerobic denitrifiers and their potential role in ammonium removal. Journal of Basic Microbiology 56, 907921.CrossRefGoogle ScholarPubMed
Torregrosa-Crespo, J., Martínez-Espinosa, R. M., Esclapez, J., Bautista, V., Pire, C., Camacho, M., Richardson, D. J. & Bonete, M. J. (2016). Anaerobic metabolism in Haloferax genus: denitrification as case of study. Advances in Microbial Physiology 68, 4185.CrossRefGoogle ScholarPubMed
Ward, B. B. & Jensen, M. M. (2014). The microbial nitrogen cycle. Frontiers in Microbiology 5, 553.CrossRefGoogle ScholarPubMed
Abin, C. A. & Hollibaugh, J. T. (2014). Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism. Environmental Science and Technology 48, 681688.CrossRefGoogle ScholarPubMed
Badalamenti, J. P., Summers, Z. M., Chan, C. H., Gralnick, J. A. & Bond, D. R. (2016). Isolation and genomic characterization of ‘Desulfuromonas soudanensis WTL’, a metal- and electrode-respiring bacterium from anoxic deep subsurface brine. Frontiers in Microbiology 7, 913.CrossRefGoogle ScholarPubMed
Byrne, J. M., Klueglein, N., Pearce, C., Rosso, K. M., Appel, E. & Kappler, A. (2015). Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347, 14731476.CrossRefGoogle ScholarPubMed
Carlson, H. K., Iavarone, A. T., Gorur, A., Yeo, B. S., Tran, R., Melnyk, R. A., Mathies, R. A., Auer, M. & Coates, J. D. (2012). Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. Proceedings of the National Academy of Sciences of the USA 109, 17021707.CrossRefGoogle ScholarPubMed
Denton, K., Atkinson, M., Borenstein, S., Carlson, A., Carroll, T., Cullity, K., DeMarsico, C., Ellowitz, D., Gialtouridis, A., Gore, R., Herleikson, A., Ling, A., Martin, R., McMahan, K., Naksukpaiboon, P., Seiz, A., Yearwood, K., O’Neill, J. & Wiatrowski, H. (2013). Identification of a possible respiratory arsenate reductase in Denitrovibrio acetiphilus, a member of the phylum Deferribacteres. Archives of Microbiology 195, 661670.CrossRefGoogle ScholarPubMed
Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156, 609643.CrossRefGoogle ScholarPubMed
Hau, H. H., Gilbert, A., Coursolle, D. & Gralnick, J. A. (2008). Mechanism and consequences of anaerobic respiration of cobalt by Shewanella oneidensis strain MR-1. Applied and Environmental Microbiology 74, 68806886.CrossRefGoogle ScholarPubMed
Icopini, G. A., Lack, J. G., Hersman, L. E., Neu, M. P. & Boukhalfa, H. (2009). Plutonium(V/VI) reduction by the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1. Applied and Environmental Microbiology 75, 36413647.CrossRefGoogle ScholarPubMed
Kim, B. H., Kim, H. J., Hyun, M. S. & Park, D. H. (1999). Direct electrode reaction of an Fe(III)-reducing bacterium, Shewanella putrefaciens. Journal of Microbiology and Biotechnology 9, 127131.Google Scholar
Marsili, E., Baron, D. B., Shikhare, I. D., Coursolle, D., Gralnick, J. A. & Bond, D. R. (2008). Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences of the USA 105, 39683973.CrossRefGoogle ScholarPubMed
Nancharaiah, Y. V. & Lens, P. N. L. (2015). Ecology and biotechnology of selenium-respiring bacteria. Microbiology and Molecular Biology Reviews 79, 6180.CrossRefGoogle ScholarPubMed
Oni, O. E. & Friedrich, M. W. (2017). Metal oxide reduction linked to anaerobic methane oxidation. Trends in Microbiology 25, 8890.CrossRefGoogle ScholarPubMed
Shi, L., Dong, H., Reguera, G., Beyenal, H., Lu, A., Liu, J., Yu, H.-Q. & Fredrickson, J. K. (2016). Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology 14, 651662.CrossRefGoogle ScholarPubMed
Snider, R. M., Strycharz-Glaven, S. M., Tsoi, S. D., Erickson, J. S. & Tender, L. M. (2012). Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven. Proceedings of the National Academy of Sciences of the USA 109, 1546715472.CrossRefGoogle ScholarPubMed
Sure, S., Ackland, M. L., Torriero, A. A. J., Adholeya, A. & Kochar, M. (2016). Microbial nanowires: an electrifying tale. Microbiology 162, 2017 –2028.CrossRefGoogle ScholarPubMed
Wall, J. D. & Krumholz, L. R. (2006). Uranium reduction. Annual Review of Microbiology 60, 149166.CrossRefGoogle ScholarPubMed
Bradley, A. S., Leavitt, W. D. & Johnston, D. T. (2011). Revisiting the dissimilatory sulfate reduction pathway. Geobiology 9, 446457.CrossRefGoogle ScholarPubMed
Enning, D. & Garrelfs, J. (2014). Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Applied and Environmental Microbiology 80, 12261236.CrossRefGoogle ScholarPubMed
Fauque, G. D. & Barton, L. L. (2012). Hemoproteins in dissimilatory sulfate- and sulfur-reducing prokaryotes. Advances in Microbial Physiology 60, 190.CrossRefGoogle ScholarPubMed
Grein, F., Ramos, A. R., Venceslau, S. S. & Pereira, I. A. C. (2013). Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism. Biochimica et Biophysica Acta 1827, 145160.CrossRefGoogle ScholarPubMed
Hockin, S. and Gadd, G. M. (2006). Removal of selenate from sulphate-containing media by sulphate-reducing bacterial biofilms. Environmental Microbiology 8, 816826.CrossRefGoogle Scholar
Jay, Z. J., Beam, J. P., Dohnalkova, A., Lohmayer, R., Bodle, B., Planer-Friedrich, B., Romine, M. & Inskeep, W. P. (2015). Pyrobaculum yellowstonensis strain WP30 respires on elemental sulfur and/or arsenate in circumneutral sulfidic geothermal sediments of Yellowstone National Park. Applied and Environmental Microbiology 81, 59075916.CrossRefGoogle ScholarPubMed
Krumholz, L. R., Wang, L., Beck, D. A. C., Wang, T., Hackett, M., Mooney, B., Juba, T. R., McInerney, M. J., Meyer, B., Wall, J. D. & Stahl, D. A. (2013). Membrane protein complex of APS reductase and Qmo is present in Desulfovibrio vulgaris and Desulfovibrio alaskensis. Microbiology 159, 21622168.CrossRefGoogle ScholarPubMed
Marietou, A., Griffiths, L. & Cole, J. (2009). Preferential reduction of the thermodynamically less favorable electron acceptor, sulfate, by a nitrate-reducing strain of the sulfate-reducing bacterium Desulfovibrio desulfuricans 27774. Journal of Bacteriology 191, 882889.CrossRefGoogle ScholarPubMed
Meyer, B., Kuehl, J., Deutschbauer, A. M., Price, M. N., Arkin, A. P. and Stahl, D. A. (2013). Variation among Desulfovibrio species in electron transfer systems used for syntrophic growth. Journal of Bacteriology 195, 9901004.CrossRefGoogle ScholarPubMed
Rabus, R., Venceslau, S. S., Wöhlbrand, L., Voordouw, G., Wall, J. D. & Pereira, I. A. C. (2015). A post-genomic view of the ecophysiology, catabolism and biotechnological relevance of sulphate-reducing prokaryotes. Advances in Microbial Physiology 66, 55321.CrossRefGoogle ScholarPubMed
Ramos, A. R., Grein, F., Oliveira, G. P., Venceslau, S. S., Keller, K. L., Wall, J. D. & Pereira, I. A. C. (2015). The FlxABCD-HdrABC proteins correspond to a novel NADH dehydrogenase/heterodisulfide reductase widespread in anaerobic bacteria and involved in ethanol metabolism in Desulfovibrio vulgaris Hildenborough. Environmental Microbiology 17, 22882305.CrossRefGoogle ScholarPubMed
Yan, Z., Wang, M. & Ferry, J. G. (2017). A ferredoxin- and F420H2-dependent, electron-bifurcating, heterodisulfide reductase with homologs in the domains bacteria and archaea. mBio 8, e02285–16.CrossRefGoogle ScholarPubMed
Allen, K. D., Wegener, G. & White, R. H. (2014). Discovery of multiple modified F430 coenzymes in methanogens and anaerobic methanotrophic archaea suggests possible new roles for F430 in nature. Applied and Environmental Microbiology 80, 64036412.CrossRefGoogle ScholarPubMed
Benedict, M. N., Gonnerman, M. C., Metcalf, W. W. & Price, N. D. (2012). Genome-scale metabolic reconstruction and hypothesis testing in the methanogenic archaeon Methanosarcina acetivorans C2A. Journal of Bacteriology 194, 855865.CrossRefGoogle ScholarPubMed
Buan, N. R. & Metcalf, W. W. (2010). Methanogenesis by Methanosarcina acetivorans involves two structurally and functionally distinct classes of heterodisulfide reductase. Molecular Microbiology 75, 843853.CrossRefGoogle ScholarPubMed
Costa, K. C. & Leigh, J. A. (2014). Metabolic versatility in methanogens. Current Opinion in Biotechnology 29, 7075.CrossRefGoogle ScholarPubMed
Greening, C., Ahmed, F. H., Mohamed, A. E., Lee, B. M., Pandey, G., Warden, A. C., Scott, C., Oakeshott, J. G., Taylor, M. C. & Jackson, C. J. (2016). Physiology, biochemistry, and applications of F420- and F0-dependent redox reactions. Microbiology and Molecular Biology Reviews 80, 451493.CrossRefGoogle Scholar
Kaster, A.-K., Moll, J., Parey, K. & Thauer, R. K. (2011). Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proceedings of the National Academy of Sciences of the USA 108, 29812986.CrossRefGoogle ScholarPubMed
Lie, T. J., Costa, K. C., Lupa, B., Korpole, S., Whitman, W. B. & Leigh, J. A. (2012). Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis. Proceedings of the National Academy of Sciences of the USA 109, 1547315478.CrossRefGoogle ScholarPubMed
Matschiavelli, N., Oelgeschläger, E., Cocchiararo, B., Finke, J. & Rother, M. (2012). Function and regulation of isoforms of carbon monoxide dehydrogenase/acetyl coenzyme A synthase in Methanosarcina acetivorans. Journal of Bacteriology 194, 53775387.CrossRefGoogle ScholarPubMed
Purwantini, E., Daniels, L. & Mukhopadhyay, B. (2016). F420H2 is required for phthiocerol dimycocerosate synthesis in mycobacteria. Journal of Bacteriology 198, 20202028.CrossRefGoogle ScholarPubMed
Thauer, R. K., Kaster, A.-K., Seedorf, H., Buckel, W. & Hedderich, R. (2008). Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Reviews Microbiology 6, 579591.CrossRefGoogle ScholarPubMed
Wagner, T., Ermler, U. & Shima, S. (2016). The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 354, 114117.CrossRefGoogle ScholarPubMed
Welte, C. & Deppenmeier, U. (2011). Membrane-bound electron transport in Methanosaeta thermophila. Journal of Bacteriology 193, 28682870.CrossRefGoogle ScholarPubMed
Wongnate, T., Sliwa, D., Ginovska, B., Smith, D., Wolf, M. W., Lehnert, N., Raugei, S. & Ragsdale, S. W. (2016). The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Science 352, 953958.CrossRefGoogle ScholarPubMed
Yan, Z., Wang, M. & Ferry, J. G. (2017). A ferredoxin- and F420H2-dependent, electron-bifurcating, heterodisulfide reductase with homologs in the domains bacteria and archaea. mBio 8, e0228516.CrossRefGoogle ScholarPubMed
Zheng, K., Ngo, P. D., Owens, V. L., Yang, X.-p. & Mansoorabadi, S. O. (2016). The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea. Science 354, 339342.CrossRefGoogle ScholarPubMed
Diender, M., Stams, A. J. M. & Sousa, D. Z. (2015). Pathways and bioenergetics of anaerobic carbon monoxide fermentation. Frontiers in Microbiology 6, 1275.CrossRefGoogle ScholarPubMed
Hess, V., Poehlein, A., Weghoff, M. C., Daniel, R. & Müller, V. (2014). A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui. BMC Genomics 15, 1139.CrossRefGoogle ScholarPubMed
Huang, H., Wang, S., Moll, J. & Thauer, R. K. (2012). Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2. Journal of Bacteriology 194, 36893699.CrossRefGoogle ScholarPubMed
Jeong, J., Bertsch, J., Hess, V., Choi, S., Choi, I.-G., Chang, I. S. & Müller, V. (2015). Energy conservation model based on genomic and experimental analyses of a carbon monoxide-utilizing, butyrate-forming acetogen, Eubacterium limosum KIST612. Applied and Environmental Microbiology 81, 47824790.CrossRefGoogle ScholarPubMed
Köpke, M., Held, C., Hujer, S., Liesegang, H., Wiezer, A., Wollherr, A., Ehrenreich, A., Liebl, W., Gottschalk, G. & Dürre, P. (2010). Clostridium ljungdahlii represents a microbial production platform based on syngas. Proceedings of the National Academy of Sciences of the USA 107, 1308713092.CrossRefGoogle ScholarPubMed
Ljungdahl, L. G. (2009). A life with acetogens, thermophiles, and cellulolytic anaerobes. Annual Review of Microbiology 63, 125.CrossRefGoogle ScholarPubMed
Mock, J., Zheng, Y., Mueller, A. P., Ly, S., Tran, L., Segovia, S., Nagaraju, S., Köpke, M., Dürre, P. & Thauer, R. K. (2015). Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. Journal of Bacteriology 197, 29652980.CrossRefGoogle ScholarPubMed
Schuchmann, K. & Müller, V. (2014). Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nature Reviews Microbiology 12, 809821.CrossRefGoogle Scholar
Spahn, S., Brandt, K. & Müller, V. (2015). A low phosphorylation potential in the acetogen Acetobacterium woodii reflects its lifestyle at the thermodynamic edge of life. Archives of Microbiology 197, 745751.CrossRefGoogle ScholarPubMed
Wang, S., Huang, H., Kahnt, J. & Thauer, R. K. (2013). A reversible electron-bifurcating ferredoxin- and NAD-dependent [FeFe]-hydrogenase (HydABC) in Moorella thermoacetica. Journal of Bacteriology 195, 12671275.CrossRefGoogle ScholarPubMed
Weghoff, M. C., Bertsch, J. & Müller, V. (2015). A novel mode of lactate metabolism in strictly anaerobic bacteria. Environmental Microbiology 17, 670677.CrossRefGoogle ScholarPubMed
Adrian, L., Dudkova, V., Demnerova, K. & Bedard, D. L. (2009). Dehalococcoides” sp. strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture aroclor 1260. Applied and Environmental Microbiology 75, 45164524.CrossRefGoogle ScholarPubMed
Bommer, M., Kunze, C., Fesseler, J., Schubert, T., Diekert, G. & Dobbek, H. (2014). Structural basis for organohalide respiration. Science 346, 455458.CrossRefGoogle ScholarPubMed
Goris, T., Schubert, T., Gadkari, J., Wubet, T., Tarkka, M., Buscot, F., Adrian, L. & Diekert, G. (2014). Insights into organohalide respiration and the versatile catabolism of Sulfurospirillum multivorans gained from comparative genomics and physiological studies. Environmental Microbiology 16, 35623580.CrossRefGoogle ScholarPubMed
Holliger, C., Wohlfarth, G. & Diekert, G. (1999). Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiology Reviews 22, 383398.CrossRefGoogle Scholar
Janssen, D. B. (2004). Evolving haloalkane dehalogenases. Current Opinion in Chemical Biology 8, 150159.CrossRefGoogle ScholarPubMed
Kruse, T., van de Pas, B. A., Atteia, A., Krab, K., Hagen, W. R., Goodwin, L., Chain, P., Boeren, S., Maphosa, F., Schraa, G., de Vos, W. M., van der Oost, J., Smidt, H. & Stams, A. J. M. (2015). Genomic, proteomic, and biochemical analysis of the organohalide respiratory pathway in Desulfitobacterium dehalogenans. Journal of Bacteriology 197, 893904.CrossRefGoogle ScholarPubMed
Kublik, A., Deobald, D., Hartwig, S., Schiffmann, C. L., Andrades, A., von Bergen, M., Sawers, R. G. & Adrian, L. (2016). Identification of a multi-protein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement. Environmental Microbiology 18, 30443056.CrossRefGoogle ScholarPubMed
Lorenz, A. & Löffler, F. E. (eds) (2016). Organohalide-Respiring Bacteria. Berlin: Springer-Verlag.Google Scholar
Smidt, H. & de Vos, W. M. (2004). Anaerobic microbial dehalogenation. Annual Review of Microbiology 58, 4373.CrossRefGoogle ScholarPubMed
Tang, S., Wang, P. H., Higgins, S., Loeffler, F. & Edwards, E. A. (2016). Sister Dehalobacter genomes reveal specialization in organohalide respiration and recent strain differentiation likely driven by chlorinated substrates. Frontiers in Microbiology 7, 100.CrossRefGoogle ScholarPubMed
Arkhipova, O. & Akimenko, V. (2005). Unsaturated organic acids as terminal electron acceptors for reductase chains of anaerobic bacteria. Microbiology-Moscow 74, 629639.CrossRefGoogle ScholarPubMed
Bardiya, N. & Bae, J.-H. (2011). Dissimilatory perchlorate reduction: a review. Microbiological Research 166, 237254.CrossRefGoogle ScholarPubMed
Martínez-Espinosa, R. M., Richardson, D. J. & Bonete, M. J. (2015). Characterisation of chlorate reduction in the haloarchaeon Haloferax mediterranei. Biochimica et Biophysica Acta 1850, 587594.CrossRefGoogle ScholarPubMed
Cao, X., Liu, X. & Dong, X. (2003). Alkaliphilus crotonatoxidans sp. nov., a strictly anaerobic, crotonate-dismutating bacterium isolated from a methanogenic environment. International Journal of Systematic and Evolutionary Microbiology 53, 971975.CrossRefGoogle Scholar
Cheng, Q. & Call, D. F. (2016). Hardwiring microbes via direct interspecies electron transfer: mechanisms and applications. Environmental Science: Processes and Impacts 18, 968980.Google ScholarPubMed
de Bok, F. A. M., Plugge, C. M. & Stams, A. J. M. (2004). Interspecies electron transfer in methanogenic propionate degrading consortia. Water Research 38, 13681375.CrossRefGoogle ScholarPubMed
Gray, N. D., Sherry, A., Grant, R. J., Rowan, A. K., Hubert, C. R. J., Callbeck, C. M., Aitken, C. M., Jones, D. M., Adams, J. J., Larter, S. R. & Head, I. M. (2011). The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes. Environmental Microbiology 13, 29572975.CrossRefGoogle ScholarPubMed
Kung, J. W., Seifert, J., von Bergen, M. & Boll, M. (2013). Cyclohexanecarboxyl-coenzyme A (CoA) and cyclohex-1-ene-1-carboxyl-CoA dehydrogenases, two enzymes involved in the fermentation of benzoate and crotonate in Syntrophus aciditrophicus. Journal of Bacteriology 195, 31933200.CrossRefGoogle ScholarPubMed
Sieber, J. R., McInerney, M. J. & Gunsalus, R. P. (2012). Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annual Review of Microbiology 66, 429452.CrossRefGoogle ScholarPubMed
Storck, T., Virdis, B. & Batstone, D. J. (2016). Modelling extracellular limitations for mediated versus direct interspecies electron transfer. ISME Journal 10, 621631.CrossRefGoogle ScholarPubMed
Summers, Z. M., Fogarty, H. E., Leang, C., Franks, A. E., Malvankar, N. S. & Lovley, D. R. (2010). Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330, 14131415.CrossRefGoogle ScholarPubMed
Abu Laban, N., Selesi, D., Rattei, T., Tischler, P. & Meckenstock, R. U. (2010). Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environmental Microbiology 12, 27832796.CrossRefGoogle ScholarPubMed
Bergmann, F., Selesi, D., Weinmaier, T., Tischler, P., Rattei, T. & Meckenstock, R. U. (2011). Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47. Environmental Microbiology 13, 11251137.CrossRefGoogle ScholarPubMed
Carmona, M., Zamarro, M. T., Blazquez, B., Durante-Rodriguez, G., Juarez, J. F., Valderrama, J. A., Barragan, M. J. L., Garcia, J. L. & Diaz, E. (2009). Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiology and Molecular Biology Reviews 73, 71133.CrossRefGoogle ScholarPubMed
Eberlein, C., Johannes, J., Mouttaki, H., Sadeghi, M., Golding, B. T., Boll, M., & Meckenstock, R. U. (2013). ATP-dependent/-independent enzymatic ring reductions involved in the anaerobic catabolism of naphthalene. Environmental Microbiology 15, 18321841.CrossRefGoogle ScholarPubMed
Jarling, R., Kühner, S., Janke, E. B., Gruner, A., Drozdowska, M., Golding, B. T., Rabus, R. & Wilkes, H. (2015). Versatile transformations of hydrocarbons in anaerobic bacteria: substrate ranges and regio- and stereo-chemistry of activation reactions. Frontiers in Microbiology 6, 880.CrossRefGoogle ScholarPubMed
Khelifi, N., Amin Ali, O., Roche, P., Grossi, V., Brochier-Armanet, C., Valette, O., Ollivier, B., Dolla, A. & Hirschler-Rea, A. (2014). Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus. ISME Journal 8, 21532166.CrossRefGoogle ScholarPubMed
Meckenstock, R. U. & Mouttaki, H. (2011). Anaerobic degradation of non-substituted aromatic hydrocarbons. Current Opinion in Biotechnology 22, 406414.CrossRefGoogle ScholarPubMed
Philipp, B. & Schink, B. (2012). Different strategies in anaerobic biodegradation of aromatic compounds: nitrate reducers versus strict anaerobes. Environmental Microbiology Reports 4, 469478.CrossRefGoogle ScholarPubMed
Porter, A. W. & Young, L. Y. (2014). Benzoyl-CoA, a universal biomarker for anaerobic degradation of aromatic compounds. Advances in Applied Microbiology 88, 167203.CrossRefGoogle ScholarPubMed
Wawrik, B., Marks, C. R., Davidova, I. A., McInerney, M. J., Pruitt, S., Duncan, K., Suflita, J. M. & Callaghan, A. V. (2016). Methanogenic paraffin degradation proceeds via alkane addition to fumarate by “Smithella” spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens. Environmental Microbiology 18, 26042619.CrossRefGoogle ScholarPubMed
Beal, E. J., House, C. H. & Orphan, V. J. (2009). Manganese- and iron-dependent marine methane oxidation. Science 325, 184187.CrossRefGoogle ScholarPubMed
Ettwig, K. F., Zhu, B., Speth, D., Keltjens, J. T., Jetten, M. S. M. & Kartal, B. (2016). Archaea catalyze iron-dependent anaerobic oxidation of methane. Proceedings of the National Academy of Sciences of the USA 113, 1279212796.CrossRefGoogle ScholarPubMed
Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z. & Tyson, G. W. (2013). Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567570.CrossRefGoogle Scholar
Krukenberg, V., Harding, K., Richter, M., Glöckner, F. O., Gruber-Vodicka, H., Adam, B., Berg, J. S., Knittel, K., Tegetmeyer, H. E., Boetius, A. & Wegener, G. (2016). Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environmental Microbiology 18, 3073–3091.CrossRefGoogle ScholarPubMed
Oni, O. E. & Friedrich, M. W. (2017). Metal oxide reduction linked to anaerobic methane oxidation. Trends in Microbiology 25, 8890.CrossRefGoogle ScholarPubMed
Scheller, S., Goenrich, M., Boecher, R., Thauer, R. K. & Jaun, B. (2010). The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465, 606608.CrossRefGoogle ScholarPubMed
Shima, S. & Thauer, R. K. (2005). Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Current Opinion in Microbiology 8, 643648.CrossRefGoogle ScholarPubMed
Esteve-Nunez, A., Caballero, A. & Ramos, J. L. (2001). Biological degradation of 2,4,6-trinitrotoluene. Microbiology and Molecular Biology Reviews 65, 335352.CrossRefGoogle Scholar
Eyers, L., George, I., Schuler, L., Stenuit, B., Agathos, S. N. & El Fantroussi, S. (2004). Environmental genomics: exploring the unmined richness of microbes to degrade xenobiotics. Applied Microbiology and Biotechnology 66, 123130.CrossRefGoogle ScholarPubMed
Yu, H.-Y., Bao, L.-J., Liang, Y. & Zeng, E., Y. (2011). Field validation of anaerobic degradation pathways for dichlorodiphenyltrichloroethane (DDT) and 13 metabolites in marine sediment cores from China. Environmental Science and Technology 45, 52455252.CrossRefGoogle ScholarPubMed
Zhang, C. & Bennett, G. N. (2005). Biodegradation of xenobiotics by anaerobic bacteria. Applied Microbiology and Biotechnology 67, 600618.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×