Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T14:58:30.467Z Has data issue: false hasContentIssue false

Preface to this edition

Published online by Cambridge University Press:  05 November 2015

Paolo Mancosu
Affiliation:
none
Get access

Summary

Proofs and Refutations is one of the undeniable classics of the philosophy of mathematics. Fifty years have passed since the publication of the articles that make up its central core, but the book has lost neither its freshness nor its provocative vitality. It takes the form of a classroom dialogue in which a group of students and their teacher investigate the problem of whether there is a relation that holds between the number of vertices V, the number of edges E, and the number of faces F of regular polyhedra (e.g. the five Platonic solids). At the outset of the dialogues they have arrived at the formula VE + F = 2. They conjecture that the result might extend to any polyhedron (Euler's conjecture), and this is the starting point of a riveting development that carries the reader through the rational reconstruction, as embodied in the class dialogue, of the history of Euler's conjecture, culminating in Poincaré's proof. The reconstruction, in strong contrast to a piece of axiomatic mathematics, features contradictions, monsters, counterexamples, conjectures, concept-stretchings, hidden lemmas, proofs, and a wide range of informal moves meant to account for the rationality of the process leading to concept-formation and conjectures/proofs in mathematical practice.

Yet Euler's conjecture is just a case-study displaying Lakatos's highly original approach to the philosophy of mathematics. A starker contrast with the formalist foundational approach dominant up to the 1960s (and embodied in philosophies of mathematics of neo-positivist inspiration) can scarcely be imagined. Whereas the latter, inspired by Euclid's infallibilist dogmatic style, thought of mathematical theories statically as axiomatic systems, Lakatos was after an account of informal mathematics as a fallible dynamic body of knowledge. Rejecting the positivist distinction between context of discovery and context of justification, he claimed that mathematical practice and its history are not the domain of the irrational but rather display an objectivity and rationality that any philosophy of mathematics worth its name should account for. The tools for addressing the rationality of mathematical growth could not, however, be those of formal logic, whose ‘deductivist style’ could only address issues of the static variety and was thus unable to account for concept-formation and the rational dynamics driving the development of informal mathematics. Rather, Lakatos found inspiration in Polya's work on mathematical heuristics, Hegel's dialectic, and Popperian conjecture and refutation.

Type
Chapter
Information
Proofs and Refutations
The Logic of Mathematical Discovery
, pp. vii - viii
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×