[1] Aaronson, S. 2007. The learnability of quantum states. Proc. R. Soc. A, 463, 3089–3114.
[2] Aharonov, Y. and Vaidman, L. 1993. Measurement of the Schrödinger wave of a single particle. Phys. Lett. A, 178, 38–12.
[3] Aharonov, Y., Anandan, J., and Vaidman, L. 1993. Meaning of the wave function. Phys. Rev. A, 47, 4616–1626.
[4] Alter, O. and Yamamoto, Y. 1995. Inhibition of the measurement of the wave function of a single quantum system in repeated weak quantum nondemolition measurements. Phys. Rev. Lett., 74, 4106–4109.
[5] Alter, O. and Yamamoto, Y. 1996. Protective measurement of the wave function of a single squeezed harmonic oscillator state. Phys.Rev. A, 53, R2911–R2914.
[6] Alter, O. and Yamamoto, Y. 1997. Reply to “Comment on ‘Protective measurement of the wave function of a single squeezed harmonic oscillator state’”. Phys.Rev.A, 56, 1057–1059.
[7] Bell, J. S. 1964. On the Einstein–Podolsky–Rosen paradox. Physics, 1, 195–200.
[8] Bell, J. S. 1966. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys., 38, 447–152.
[9] Camilleri, K. 2009. A history of entanglement: decoherence and the interpretation problem. Stud. Hist. Phil. Mod. Phys., 40, 290–302.
[10] Chen, J., Dawkins, H., Ji, Z., et al. 2013. Uniqueness of quantum states compatible with given measurement results. Phys. Rev. A, 88, 012109.
[11] Colbeck, R. and Renner, R. 2012. Is a system's wave function in one-to-one correspondence with its elements of reality?Phys. Rev. Lett., 108, 150402.
[12] D'Ariano, G. M. and Yuen, H. P. 1996. Impossibility of measuring the wave function of a single quantum system. Phys. Rev. Lett., 76, 2832–2835.
[13] Dass, N. D. H. and Qureshi, T. 1999. Critique of protective measurements. Phys. Rev. A, 59(4), 2590–2601.
[14] Dickson, M. 1995. An empirical reply to empiricism: protective measurement opens the door for quantum realism. Phil. Sci., 62, 122–140.
[15] Englert, B.-G. 2013. On quantum theory. Eur. Phys.J.D, 67, 238.
[16] Fuchs, C. A. and Schack, R. 2013. Quantum-Bayesian coherence. Rev. Mod. Phys., 85, 1693–1715.
[17] Fuchs, C. A. 2010. QBism, the perimeter of quantum Bayesianism. arXiv: 1003.5209v1 [quant-ph].
[18] Gao, S. 2011. Comment on “How to protect the interpretation of the wave function against protective measurements” by Jos Uffink. philsci-archive.pitt.edu/8942.
[19] Gao, S. 2013a. Distinct quantum states cannot be compatible with a single state of reality. philsci-archive.pitt.edu/9609.
[20] Gao, S. 2013b. On Uffink's criticism of protective measurements. Stud. Hist. Phil. Mod. Phys., 44, 513–518.
[21] Gao, S. 2013c. Protective measurement: a paradigm shift in understanding quantum mechanics. philsci-archive.pitt.edu/9627.
[22] Häffner, H., Hänsel, W., Roos, C. F., et al. 2005. Scalable multiparticle entanglement of trapped ions. Nature, 438, 643–646.
[23] Hardy, L. 2012. Are quantum states real? arXiv:1205.1439v3 [quant-ph].
[24] Heinosaari, T., Mazzarella, L., and Wolf, M. M. 2013. Quantum tomography under prior information. Comm. Math. Phys., 318, 355–374.
[25] İmamoğlu, A. 1993. Logical reversibility in quantum-nondemolition measurements. Phys.Rev.A, 47, R4577–R4580.
[26] Mermin, N. D. 2012. Quantum mechanics: fixing the shifty split. Phys. Today, 65, 8–10.
[27] Pusey, M. F., Barrett, J., and Rudolph, T. 2012. On the reality of the quantum state. Nature Phys., 8, 475–478.
[28] Rovelli, C. 1994. Comment on “Meaning of the wave function.”Phys. Rev. A, 50, 2788–2792.
[29] Samuel, J. and Nityananda, R. 1994. Comment on “Meaning of the wave function.” arXiv:gr-qc/9404051v1.
[30] Schlosshauer, M. 2004. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys., 76, 1267–1305.
[31] Schlosshauer, M. 2007. Decoherence and the Quantum-to-Classical Transition. 1st edn. Berlin/Heidelberg: Springer.
[32] Schlosshauer, M. 2011. Elegance and Enigma: the Quantum Interviews. 1st edn. Berlin/Heidelberg: Springer.
[33] Schlosshauer, M. and Fine, A. 2012. Implications of the Pusey–Barrett–Rudolph quantum no-go theorem. Phys. Rev. Lett, 108, 260404.
[34] Schlosshauer, M. and Fine, A. 2014. No-go theorem for the composition of quantum systems. Phys. Rev. Lett. 112, 070407
[35] Schwinger, J. 1993. Quantum mechanics: not mysterious. Science, 262, 826–827.
[36] Spekkens, R. W. 2007. Evidence for the epistemic view of quantum states: a toy theory. Phys. Rev. A, 75, 032110.
[37] Ueda, M. and Kitagawa, M. 1992. Reversibility in quantum measurement processes. Phys. Rev. Lett., 68, 3424–3427.
[38] Uffink, J. 1999. How to protect the interpretation of the wave function against protective measurements. Phys. Rev. A, 60, 3474–3481.
[39] Uffink, J. 2012. Reply to Gao's “Comment on ‘How to protect the interpretation of the wave function against protective measurements’ ”. philsci-archive.pitt.edu/9286.
[40] Uffink, J. 2013. Reply to Gao's “On Uffink's criticism of protective measurements.”Stud. Hist. Phil. Mod. Phys., 44, 519–523.
[41] Unruh, W. G. 1994. Reality and measurement of the wave function. Phys. Rev. A, 50, 882–887.
[42] Vaidman, L. 2009. Protective measurements. In: Greenberger, D., Hentschel, K., and Weinert, F. (eds.), Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy. Berlin/Heidelberg: Springer, pp. 505–508.
[43] Wallden, P. 2013. Distinguishing initial state-vectors from each other in histories formulations and the PBR argument. Found. Phys., 43, 1502–1525.
[44] Zeh, H. D. 1970. On the interpretation of measurement in quantum theory. Found. Phys., 1, 69–76.