This tract aims at providing a compact introduction to the theory of proximity spaces and their generalizations. It is hoped that a study of the tract will better enable the reader to understand the current literature. In view of the fact that research material on proximity spaces is scattered and growing rapidly, the need for such a survey is apparent. The material herein is self-contained except for a basic knowledge of topological and uniform spaces, as can be found in standard texts such as the one by John L. Kelley; in fact, for the most part, we use Kelley's notation and terminology.
The tract begins with a brief history of the subject. The first two chapters give the fundamentals and the pace of development is rather slow. We have tried to motivate definitions and theorems with the help of metric and uniform spaces; a knowledge of the latter is, however, not necessary in understanding the proofs. The main result in these two chapters is the existence of the Smirnov compactification, which is proved using clusters. Taking advantage of hindsight, several proofs have been considerably simplified.
A reader not acquainted with uniform spaces will find it necessary to become familiar with such spaces before reading the third chapter. In this chapter, the interrelationships between proximity structures and uniform structures are considered and, since proximity spaces are intermediate between topological and uniform spaces, some of the most exciting results are to be found in this part of the tract.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.