from Part I - Background
Published online by Cambridge University Press: 06 July 2010
The purpose of this chapter is to provide an introduction to the basics of statistical analysis, to discuss the ideas of probability density function (PDF), characteristic function (CF), and moments. Our goal is to show how the characteristic function can be used to obtain the PDF and moments of functions of statistically related variables. This subject is useful for the study of quantization noise.
PROBABILITY DENSITY FUNCTION
Figure 3.1(a) shows an ensemble of random time functions, sampled at time instant t = t1 as indicated by the vertical dashed line. Each of the samples is quantized in amplitude. A “histogram” is shown in Fig. 3.1(b). This is a “bar graph” indicating the relative frequency of the samples falling within the given quantum box. Each bar can be constructed to have an area equal to the probability of the signal falling within the corresponding quantum box at time t = t1. The sum of the areas must total to 1. The ensemble should have an arbitrarily large number of member functions. As such, the probability will be equal to the ratio of the number of “hits” in the given quantum box divided by the number of samples. If the quantum box size is made smaller and smaller, in the limit the histogram becomes fx(x), the probability density function (PDF) of x, sketched in Fig. 3.1(c).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.