Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-19T11:17:53.243Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 August 2020

Witold A. Jacak
Affiliation:
Politechnika Wroclawska, Poland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Barnes, W. L., Dereux, A., and Ebbesen, T. W., ‘Surface plasmon subwavelength optics’, Nature 424, 824, 2003.Google Scholar
[2] Atwater, H. A. and Polman, A., ‘Plasmonics for improved photovoltaic devices’, Nat. Materi. 9, 205, 2010.Google Scholar
[3] Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, Berlin, 2007.Google Scholar
[4] de Abajo, F. J. G., ‘Optical excitations in electron microscopy’, Rev. Mod. Phys. 82, 209, 2010.Google Scholar
[5] Pitarke, J. M., Silkin, V. M., Chulkov, E. V., and Echenique, P. M., ‘Theory of surface plasmons and surface-plasmon polaritons’, Rep. Prog. Phys. 70, 1, 2007.Google Scholar
[6] Berini, P., ‘Long-range surface plasmon polaritons’, Adv. Opt. Photonics 1, 484, 2009.Google Scholar
[7] Jacak, L., Wojs, A., and Hawrylak, P., Quantum Dots, Springer, Berlin, 1998.Google Scholar
[8] Jacak, W., Krasnyj, J., Jacak, L., and Gonczarek, R., Decoherence of Orbital and Spin Degrees of Freedom in QDs, WUT University Press, Wrocław, 2009.Google Scholar
[9] Abrikosov, A. A., Gorkov, L. P., and Dzialoshinskii, I. E., Methods of Quantum Field Theory in Statistical Physics, Dover Publications, New York, 1975.Google Scholar
[10] Lifshitz, E. M. and Pitaevskii, L. P., Statisticeskaja fizika, czast 2, Nauka, Mascow, 1978.Google Scholar
[11] Fetter, A. L. and Walecka, J. D., Quantum Theory of Multi-Particle Systems, PWN, Warsaw, 1988.Google Scholar
[12] Abrikosov, A. A., Wvedenie w Teoriu Normalnych Metalov, Nauka, Moscow, 1972.Google Scholar
[13] Pines, D. and Nozières, P., The Theory of Quantum Liquids, W. A. Benjamin, New York, 1966.Google Scholar
[14] Pines, D. and Bohm, D., ‘A collective description of electron interactions: II. Collective vs. individual particle aspects of the interactions’, Phys. Rev. 85, 338, 1952.Google Scholar
[15] Pines, D. and Bohm, D., ‘A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas’, Phys. Rev. 92, 609, 1953.Google Scholar
[16] Pines, D., Elementary Excitations in Solids, ABP Perseus Books, Massachusetts, 1999.Google Scholar
[17] Bohren, C. F. and Huffman, D. R., Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.Google Scholar
[18] Mie, G., ‘Beiträge zur Optik trüber medien, speziell kolloidaler Metallösungen’, Ann. Phys. 330(3), 377445, 1908.Google Scholar
[19] Brack, M., ‘The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches’, Rev. Mod. Phys. 65, 667, 1993.Google Scholar
[20] Ekardt, W., ‘Size-dependent photoabsorption and photoemission of small metal particles’, Phys. Rev. B 31, 6360, 1985.Google Scholar
[21] Kresin, V. V., ‘Collective resonances and response properties of electrons in metal clusters’, Phys. Rep. 220, 1, 1992.Google Scholar
[22] Link, S. and El-Sayed, M. A., ‘Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles’, J. Phys. Chem. B 103, 4212, 1999.Google Scholar
[23] Jacak, J., Krasnyj, J., Jacak, W., Gonczarek, R., Chepok, A., and Jacak, L., ‘Surface and volume plasmons in metallic nanospheres in semiclassical RPA-type approach; near-field coupling of surface plasmons with semiconductor substrate’, Phys. Rev. B 82, 035418, 2010.CrossRefGoogle Scholar
[24] Brongersma, M. L., Hartman, J. W., and Atwater, H. A., ‘Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit’, Phys. Rev. B 62, R16356, 2000.Google Scholar
[25] Vollmer, M. and Kreibig, U., ‘Optical properties of metal clusters’, Springer Ser. Mat. Sci. 25, 1995.Google Scholar
[26] Jacak, W. A., ‘Lorentz friction for surface plasmons in metallic nanospheres’, J. Phys. Chem. C 119(12), 67496759, 2015.Google Scholar
[27] Jacak, W. A., ‘Size-dependence of the Lorentz friction for surface plasmons in metallic nanospheres’, Opt. Express 23, 44724481, 2015.CrossRefGoogle ScholarPubMed
[28] Kluczyk, K. and Jacak, W., ‘Damping-induced size effect in surface plasmon resonance in metallic nano-particles: comparison of RPA microscopic model with numerical finite element simulation (COMSOL) and Mie approach’, J. Quant. Spectrosc. Radiat. Transfer 78, 168, 2016.Google Scholar
[29] Kolwas, K., Derkachova, A., and Shopa, M., ‘Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles’, J. Quant. Spectrosc. Radiat. Transfer 110(14), 14901501, 2009.Google Scholar
[30] Jacak, W., Popko, E., Henrykowski, A., Zielony, E., Luka, G., Pietruszka, R. et al., ‘On the size dependence and the spatial range for the plasmon effect in photovoltaic efficiency enhancement’, Sol. Energy Mater. Sol. Cells 147, 1, 2016.Google Scholar
[31] Jeng, M., Chen, Z., Xiao, Y., Chang, L., Ao, J., Sun, Y. et al., ‘Improving efficiency of multicrystalline silicon and CIGS solar cells by incorporating metal nanoparticles’, Materials 8(10), 67616771, 2015.Google Scholar
[32] Pillai, S., Catchpole, K. R., Trupke, T., Zhang, G., Zhao, J., and Green, M. A., ‘Enhanced emission from Si-based light-emitting diodes using surface plasmons’, Appl. Phys. Lett. 88, 161102, 2006.Google Scholar
[33] Schaadt, D. M., Feng, B., and Yu, E. T., ‘Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles’, Appl. Phys. Lett. 86, 063106, 2005.Google Scholar
[34] Westphalen, M., Kreibig, U., Rostalski, J., Lüth, H., and Meissner, D., ‘Metal cluster enhanced organic solar cells’, Sol. Energy Mater. Sol. Cells 61, 97, 2000.Google Scholar
[35] Morfa, A. J., Rowlen, K. L., Reilly, T. H., Romero, M. J., and Lagemaat, J., ‘Plasmonenhanced solar energy conversion in organic bulk heterojunction photovoltaics’, Appl. Phys. Lett. 92, 013504, 2008.Google Scholar
[36] Green, M. A. and Pillai, S., ‘Harnessing plasmonics for solar cells’, Nat. Photon 6, 130132, 2012.Google Scholar
[37] Goubau, G., ‘Surface waves and their application to transmission lines’, J. Appl. Phys. 21, 119, 1950.CrossRefGoogle Scholar
[38] Huidobro, P. A., Nesterov, M. L., Martin-Moreno, L., and Garcia-Vidal, F. J., ‘Transformation optics for plasmonics’, Nano Lett. 10, 1985, 2010.Google Scholar
[39] Maier, S. A., Kik, P. G., and Atwater, H. A., ‘Optical pulse propagation in metal nanoparticle chain waveguides’, Phys. Rev. B 67, 205402, 2003.Google Scholar
[40] Maier, S. A. and Atwater, H. A., ‘Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures’, J. Appl. Phys. 98, 011101, 2005.Google Scholar
[41] Citrin, D. S., ‘Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled’, Nano Lett. 5, 985, 2005.Google Scholar
[42] Citrin, D., ‘Coherent excitation transport in metal-nanoparticle chains’, Nano. Lett. 4, 1561, 2004.Google Scholar
[43] Markel, V. A. and Sarychev, A. K., ‘Propagation of surface plasmons in ordered and disordered chains of metal nanospheres’, Phys. Rev. B 75, 085426, 2007.Google Scholar
[44] Jacak, W., ‘On plasmon polariton propagation along metallic nano-chain’, Plasmonics 8, 1317, 2013. DOI: 10.1007/s11468-013-9528-8.Google Scholar
[45] Jacak, W., ‘Exact solution for velocity of plasmon–polariton in metallic nano-chain’, Optics Express 22, 18958, 2014.CrossRefGoogle ScholarPubMed
[46] Jacak, W., Krasnyj, J., and Chepok, A., ‘Plasmon–polariton properties in metallic nanosphere chains’, Materials 8, 3910, 2015.Google Scholar
[47] Jacak, W., ‘On plasmon polariton propagation along metallic nano-chain’, Plasmonics 8, 1317, 2013.Google Scholar
[48] Jacak, W., ‘Plasmons in finite spherical electrolyte systems: RPA effective jellium model for ionic plasma excitations’, Plasmonics, 11, 637651, 2016. Epub 2015, DOI: 10.1007/s11468-015-0064-6.Google Scholar
[49] Jacak, W., ‘Propagation of collective surface plasmons in linear periodic ionic structures: plasmon polariton mechanism of saltatory conduction in axons’, J. Phys. Chem. C 119(18), 10015, 2015.Google Scholar
[50] Debanne, D., Campanac, E., Bia?owa¸s, A., Carlier, E., and Alcaraz, G., ‘Axon physiology’, Physiol. Rev. 91, 555, 2011.Google Scholar
[51] Brzychczy, S. and Poznaski, R., Mathematical Neuroscience, Academic Press, San Diego, 2011.Google Scholar
[52] Thomson, W., ‘On the theory of the electric telegraph’, Proc. R. Soc. London 7, 382, 1854.Google Scholar
[53] Heimburg, T. and Jackson, A. D., ‘On soliton propagation in biomembranes and nerves’, Proc. Natl Acad. Sci. USA 102, 9790, 2005.Google Scholar
[54] Ashcroft, N. W. and Mermin, N. D., Solid State Theory, Holt, Rinehart, and Winston, New York, 1976.Google Scholar
[55] Landau, L. D. and Lifshitz, E. M., Field Theory, Nauka, Moscow, 1973.Google Scholar
[56] Landau, L. D., Eksp, Zh.. Teor. Fiz. 30, 1058, 1956.Google Scholar
[57] Silin, W. P., Eksp, Zh.. Teor. Fiz. 33, 495, 1957.Google Scholar
[58] Nozières, P., Theory of Interacting Fermi Systems, W. A. Benjamin, New York, 1964.Google Scholar
[59] Kiriejew, P. S., Physics of Semiconductors, PWN, Warsaw, 1969.Google Scholar
[60] Landau, L. D., Eksp, Zh.. Teor. Fiz. 32, 59, 1957.Google Scholar
[61] Landau, L. D., Eksp, Zh.. Teor. Fiz. 84, 262, 1958.Google Scholar
[62] Pomeranchuck, I. Y., Eksp, Zh.. Teor. Fiz. 35, 524, 1958.Google Scholar
[63] Nozières, P. and Luttinger, J. M., Phys. Rev. 127, 1423, 1962.Google Scholar
[64] Nozières, P. and Luttinger, J. M., Phys. Rev. 127, 1431, 1962.Google Scholar
[65] Jacak, L., Nonlinear Topics in the Theory of Fermi Liquids, vol. 11 of Monografie, Oficyna Wydawnicza PWr, Wrocław, 1987.Google Scholar
[66] Eliashberg, G. N., Eksp, Zh.. Teor. Fiz. 42, 1658, 1962.Google Scholar
[67] Larkin, A. I. and Migdal, A. N., Eksp, Zh.. Teor. Fiz. 44, 1703, 1963.Google Scholar
[68] Czerwonko, J., Acta Phys. Polon. 37, 335, 1967.Google Scholar
[69] Czerwonko, J., Eksp, Zh.. Teor. Fiz. 71, 1099, 1976.Google Scholar
[70] Mott, N. F. and Jones, H., The Theory of Metals and Alloys, Oxford University Press, New York, 1936.Google Scholar
[71] Brack, M., ‘Multipole vibration of small alkali-metal spheres in a semiclassical description’, Phys. Rev. B 39, 3533, 1989.Google Scholar
[72] Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series and Products, Academic Press, Boston MA, 1994.Google Scholar
[73] Wu, J., Mangham, S. C., Reddy, V., Manasreh, M., and Weaver, B., ‘Surface plasmon enhanced intermediate band based quantum dots solar cell’, Sol. Energy Mater. Sol. Cells 102, 4449, 2012.Google Scholar
[74] Kalfagiannis, N., Karagiannidis, P., Pitsalidis, C., Panagiotopoulos, N., Gravalidis, C., Kassavetis, S. et al., ‘Plasmonic silver nanoparticles for improved organic solar cells’, Sol. Energy Mater. Sol. Cells 104, 165174, 2012.Google Scholar
[75] Landau, L. D. and Lifshitz, L. M., Quantum Mechanics. Nonrelativistic Theory, Pergamon Press, New York, 1965.Google Scholar
[76] Jackson, J. D., Classical Electrodynamics, John Wiley and Sons, New York, 1998.Google Scholar
[77] Jacak, W., Krasnyj, J., Jacak, J., Gonczarek, R., Chepok, A., Jacak, L. et al., ‘Radius dependent shift of surface plasmon frequency in large metallic nanospheres: theory and experiment’, J. Appl. Phys. 107, 124317, 2010.Google Scholar
[78] Compaijen, P. J., Malyshev, V. A., and Knoester, J., ‘Surface-mediated light transmission in metal nanoparticle chains’, Phys. Rev. B 87, 205437, 2013.Google Scholar
[79] Ekardt, W., ‘Anomalous inelastic electron scattering from small metal particles’, Phys. Rev. B 33, 8803, 1986.Google Scholar
[80] Yannouleas, C., Broglia, R. A., Brack, M., and Bortignon, P. F., ‘Fragmentation of the photoabsorption strength in neutral and charged metal microclusters’, Phys. Rev. Lett. 63, 255, 1989.Google Scholar
[81] Rubio, A. and Serra, L., ‘Dielectric screening effects on the photoabsorption cross section of embedded metallic clusters’, Phys. Rev. B 48, 18222, 1993.Google Scholar
[82] Sönnichsen, C., Franzl, T., Wilk, T., von Plessen, G., and Feldmann, J., ‘Plasmon resonances in large noble-metal clusters’, New J. Phys. 4, 93, 2002.Google Scholar
[83] Link, S. and El-Sayed, M. A., ‘Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals’, Int. Rev. Phys. Chem. 19, 409, 2000.Google Scholar
[84] Kolwas, K. and Derkachova, A., ‘Damping rates of surface plasmons for particles of size from nano- to micrometers; reduction of the nonradiative decay’, J. Quant. Spectrosc. Radiat. Transfer 114, 45, 2013.Google Scholar
[85] Mock, J., Barbic, M., Smith, D., Schultz, D., and Schultz, S., ‘Shape effects in plasmon resonance of individual colloidal silver nanoparticles’, J. Chem. Phys. 116(15), 67556759, 2002.Google Scholar
[86] Noguez, C., ‘Surface plasmons on metal nanoparticles: the influence of shape and physical environment’, J. Phys. Chem. C 111(10), 38063819, 2007.Google Scholar
[87] Dickreuter, S., Gleixner, J., Kolloch, A., Boneberg, J., Scheer, E., and Leiderer, P., ‘Mapping of plasmonic resonances in nanotriangles’, Beilstein J. Nanotechnol. 4(1), 588602, 2013.Google Scholar
[88] Ferry, V. E., Munday, J. N., and Atwater, H. A., ‘Design considerations for plasmonic photovoltaics’, Advanced Mat. 22(43), 47944808, 2010.Google Scholar
[89] Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., and Brongersma, M. L., ‘Plasmonics for extreme light concentration and manipulation’, Nature Mat. 9(3), 193204, 2010.Google Scholar
[90] Gans, R., ‘Über die Form ultramikroskopischer Goldteilchen’, Ann. Phys. 342(5), 881900, 1912.Google Scholar
[91] Cui, X. and Erni, D., ‘Enhanced propagation in a plasmonic chain waveguide with nanoshell structures based on low- and high-order mode coupling’, JOSA A 25(7), 1783–1789, 2008.Google Scholar
[92] Johnson, P. B. and Christy, R.-W., ‘Optical constants of the noble metals’, Phy. Rev. B 6(12), 4370, 1972.Google Scholar
[93] Haiss, W., Thanh, N. T., Aveyard, J., and Fernig, D. G., ‘Determination of size and concentration of gold nanoparticles from uv-vis spectra’, Anal. Chem. 79(11), 42154221, 2007.Google Scholar
[94] Njoki, P. N., Lim, I.-I. S., Mott, D., Park, H.-Y., Khan, B., Mishra, S. et al., ‘Size correlation of optical and spectroscopic properties for gold nanoparticles’, J. Phys. Chem. C 111(40), 1466414669, 2007.Google Scholar
[95] Koh, A. L., Bao, K., Khan, I., Smith, W. E., Kothleitner, G., Nordlander, P. et al., ‘Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes’, ACS Nano. 3(10), 30153022, 2009.Google Scholar
[96] Okamoto, K., Niki, I., Scherer, A., Narukawa, Y., and Kawakami, Y., ‘Surface plasmon enhanced spontaneous emission rate of InGaN/ GaN quantum wells probed by time-resolved photoluminescence spectroscopy’, Appl. Phys. Lett. 87, 071102, 2005.Google Scholar
[97] Sundararajan, S. P., Grandy, N. K., Mirin, N., and Halas, N. J., ‘Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode’, Nano. Lett. 8, 624, 2008.Google Scholar
[98] Hong, L., Rusli, X., Wang, H., Zheng, L., He, X., Xu, H. et al., ‘Design principles for plasmonic thin film GaAs solar cells with high absorption enhancement’, J. Appl. Phys. 112, 054326, 2012.Google Scholar
[99] Derkacs, D., Lim, S. H., Matheu, P., Mar, W., and Yu, E. T., ‘Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles’, Appl. Phys. Lett. 89, 093103, 2006.Google Scholar
[100] Kim, S., Na, S., Jo, J., Kim, D., and Nah, Y., ‘Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles’, Appl. Phys. Lett. 93, 073307, 2008.Google Scholar
[101] Kirkengen, M., Bergli, J., and Galperin, Y. M., ‘Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles’, J. Appl. Phys. 102(9), 093713, 2007.Google Scholar
[102] Lee, J. and Peumans, P., ‘The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer’, Opt. Express 18, 10078, 2010.Google Scholar
[103] Losurdo, M., Giangregorio, M. M., Bianco, G. V., Sacchetti, A., Capezzuto, P., and Bruno, G., ‘Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance’, Sol. Energy Mater. Sol. Cells 93, 1749, 2009.Google Scholar
[104] Catchpole, K. R., Mokkapati, S., Beck, F., Wang, E., McKinley, A., Basch, A. et al., ‘Plasmonics and nanophotonics for photovoltaics’, MRS Bulletin 36, 461467, 2011.Google Scholar
[105] Guillot, N. and de la Chapelle, M. L., ‘The electromagnetic effect in surface enhanced Raman scattering: enhancement optimization using precisely controlled nanostructures’, J. Quant. Spectrosc. Radiat. Transfer 113(18), 2321, 2012.Google Scholar
[106] Ru, E. L., Blackie, E., Meyer, M., and Etchegoin, P., ‘Surface enhanced Raman scattering enhancement factors: a comprehensive study’, J. Phys. Chem. C 111, 13794, 2007.Google Scholar
[107] Smolyaninov, I., Zayats, A. A., and Keller, O., ‘The effect of the surface enhanced polariton field on the tunneling current of an STM’, Phys Lett. A 200, 438, 1995.Google Scholar
[108] Zayats, A. V., Smolyaninov, I. I., and Maradudin, A. A., ‘Nano-optics of surface plasmon polaritons’, Phys. Rep. 408, 131, 2005.Google Scholar
[109] Stuart, H. R. and Hall, D. G., ‘Enhanced dipole–dipole interaction between elementary radiators near a surface’, Phys. Rev. Lett. 80, 5663, 1998.Google Scholar
[110] Okamoto, K., Niki, I., Shvartser, A., Narukawa, Y., Mukai, T., and Scherer, A., ‘Surface plasmon enhanced spontaneous emission rate of InGaN/GaN QW probed by time-resolved photolumimnescence spectroscopy’, Nat. Mater. 3, 601, 2004.Google Scholar
[111] Wen, C., Ishikawa, K., Kishima, M., and Yamada, K., ‘Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films’, Sol. Cells 61, 339, 2000.Google Scholar
[112] Masia, F., Langbein, W., and Borri, P., ‘Measurement of the dynamics of plasmons inside individual gold nanoparticles using a femtosecond phase-resolved micro-scope’, Phys. Rev. B 85, 235403, 2012.Google Scholar
[113] Temple, T. L. and Bagnall, D. M., ‘Optical properties of gold and aluminium nanoparticles for silicon solar cell applications’, J. Appl. Phys. 109, 084343, 2011.Google Scholar
[114] Trolle, M. L. and Pedersen, T. G., ‘Indirect optical absorption in silicon via thin-film surface plasmon’, J. Appl. Phys. 112, 043103, 2012.Google Scholar
[115] Ekardt, W., ‘Dynamical polarizability of small metal particles: self-consistent spherical jellium model’, Phys. Rev. Lett. 52, 1925, 1984.Google Scholar
[116] Jacak, W., Krasnyj, J., Jacak, J., Donderowicz, W., and Jacak, L., ‘Mechanism of plasmon mediated enhancement of PV efficiency’, J. Phys. D: Appl. Phys. 44, 055301, 2011.Google Scholar
[117] Kauranen, M. and Zayats, A., ‘Nonlinear plasmonics’, Nat. Photonics 6, 737, 2012.Google Scholar
[118] Tsia, K., Fathpour, S., and Jalali, B., ‘Energy harvesting in silicon wavelength converters’, Opt. Express 14, 12327, 2006.CrossRefGoogle ScholarPubMed
[119] Volovichev, I., ‘New non-linear photovoltaic effect in uniform bipolar semiconductor’, J. Appl. Phys. 116, 193701, 2014.Google Scholar
[120] Chen, Y., Bagnall, D. M., Koh, H., Park, K., Hiraga, K., Zhu, Z. et al., ‘Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization’, J. Appl. Phys. 84, 39128, 1998.Google Scholar
[121] Yousefi, R., Jamali-Sheini, F., and Zak, A. K., ‘A comparative study of the properties of ZnO nano/microstructures grown using two types of thermal evaporation set-up conditions’, Chem. Vapor Depos. 18, 215220, 2012.Google Scholar
[122] Guziewicz, E., Kowalik, I. A., Godlewski, M., Kopalko, K., Osinniy, V., Wójcik, A. et al., ‘Extremely low temperature growth of ZnO by atomic layer deposition’, J. Appl. Phys. 103, 033515, 2008.Google Scholar
[123] Chen, L., ‘Photodiodes – from fundamentals to applications’, in: Si-Based ZnO Ultraviolet Photodiodes, ISBN 978-953-51-0895-5.Google Scholar
[124] Bae, H. S. and Im, S., ‘Ultraviolet detecting properties of ZnO-based thin film transistors’, Thin Solid Films 75, 469, 2004.Google Scholar
[125] Dutta, M. and Basak, D., ‘p-ZnO/n-Si heterojunction: sol-gel fabrication, photoresponse properties, and transport mechanism’, Appl. Phys. Lett. 92, 21212, 2008.Google Scholar
[126] Mridha, D. B. S. and Dutta, M., ‘Photoresponse of n-ZnO/p-Si heterojunction towards ultraviolet/visible lights: thickness dependent behavior’, J. Mater. Sci. Mater. Electron. 20, 376, 2009.Google Scholar
[127] Djuri˘sić, A. and Leung, Y. H., ‘Optical properties of ZnO nanostructures’, Small 2, 944, 2006.Google Scholar
[128] Bhandari, K., Collier, J., Ellingson, R., and Apul, D., ‘Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: a systematic review and meta-analysis’, Ren. Sust. Energy Rev. 47, 133, 2015.Google Scholar
[129] Stuart, H. R. and Hall, D. G., ‘Island size effect in nanoparticles photodetectors’, Appl. Phys. Lett. 73, 3815, 1998.Google Scholar
[130] Matheu, P., Lim, S., Derkacs, D., McPheeters, C., and Yu, E., ‘Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices’, Appl. Phys. Lett. 93(11), 113108, 2008.Google Scholar
[131] Lim, S., Mar, W., Matheu, P., Derkacs, D., and Yu, E., ‘Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles’, J. Appl. Phys. 101(10), 104309, 2007.Google Scholar
[132] Luo, L., Xie, C., Wang, X., Yu, Y., Wu, C., Hu, H. et al., ‘Surface plasmon resonance enhanced highly efficient planar silicon solar cell’, Nano Energy 9, 112120, 2014.Google Scholar
[133] Pillai, S., Catchpole, K., Trupke, T., and Green, M., ‘Surface plasmon enhanced silicon solar cells’, J. Appl. Phys. 101(9), 093105, 2007.Google Scholar
[134] Temple, T., Mahanama, G., Reehal, H., and Bagnall, D., ‘Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells’, Solar Energy Mater. Solar Cells 93(11), 19781985, 2009.Google Scholar
[135] Uhrenfeldt, C., Villesen, T., Têtu, A., Johansen, B., and Nylandsted Larsen, A., ‘Broadband photocurrent enhancement and light-trapping in thin film Si solar cells with periodic Al nanoparticle arrays on the front’, Opt. Express 23(11), A525, 2015.Google Scholar
[136] Ho, W., Hu, C., Yeh, C., and Lee, Y., ‘External quantum efficiency and photovoltaic performance of silicon cells deposited with aluminum, indium, and silver nanoparticles’, Japanese J. Appl. Phys. 55(8S3), 08RG03, 2016.Google Scholar
[137] Kluczyk, K., David, C., Jacak, J., and Jacak, W., ‘On modeling of plasmon-induced enhancement of the efficiency of solar cells modified by metallic nano-particles’, Nanomaterials 9, 3, 2019. DOI:10.3390/nano9010003.Google Scholar
[138] Aspnes, D. and Studna, A., ‘Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV’, Phys. Rev. B 27(2), 9851009, 1982.CrossRefGoogle Scholar
[139] Ghidelli, M., Mascaretti, L., Bricchi, B., Zapelli, A., Russo, V., Casari, C. et al., ‘Engineering plasmonic nanostructured surfaces by pulsed laser deposition’, Appl. Surface Sci. 434, 10641073, 2018.Google Scholar
[140] Bricchi, B., Ghidelli, M., Mascaretti, L., Zapelli, A., Russo, V., Casari, C. et al., ‘Integration of plasmonic Au nanoparticles in TiO2 hierarchical structures in a single-step pulsed laser co-deposition’, Mater. Design 156, 311319, 2018.Google Scholar
[141] Borges, J., Kubart, T., Kumar, S., Leifer, K., Rodrigues, M., Duarte, N. et al., ‘Microstructural evolution of Au/TiO2 nanocomposite films: the influence of Au concentration and thermal annealing’, Thin Solid Films 580, 7788, 2015.Google Scholar
[142] Tonui, P., Arbab, E., and Mola, G., ‘Metal nano-composite as charge transport co-buffer layer in perovskite based solar cell’, J. Phys. Chem. Solids 126, 124130, 2019.Google Scholar
[143] Arbab, E. and Mola, G., ‘Metals decorated nanocomposite assisted charge transport in polymer solar cell’, Mater. Sci. Semiconductor Proc. 91, 18, 2019.Google Scholar
[144] Bella, F., Renzi, P., Cavallo, C., and Gerbaldi, C., ‘Caesium for perovskite solar cells: an overview’, Chemistry – A European J. 24, 1218312205, 2018.Google Scholar
[145] Hao, J., Hao, H., Li, J., Shi, L., Zhong, T., Zhang, C. et al., ‘Light trapping effect in perovskite solar cells by the addition of Ag nanoparticles, using textured substrates’, Nanomaterials 8(10), 815, 2019.Google Scholar
[146] Galliano, S., Bella, F., Piana, G., Giacona, G., Viscardi, G., Gerbaldi, C. et al., ‘Finely tuning electrolytes and photoanodes in aqueous solar cells by experimental design’, Sol. Energy 163, 251255, 2018.Google Scholar
[147] Pintossi, D., Iannaccone, G., Colombo, A., Bella, F., Välimäki, M., Väisänen, K. et al., ‘Luminescent downshifting by photon-induced solar–gel hybrid coatings: accessing multifunctionality on flexible organic photovoltaics via ambient temperature material processing’, Adv. Electron. Mater. 2, 1600288, 2016.Google Scholar
[148] Pearce, P., Mellor, A., and Ekins-Daukes, N., ‘The importance of accurate determination of optical constants for the design of nanometallic light-trapping structures’, Sol. Energy Mater. Sol. Cells 191, 133140, 2019.Google Scholar
[149] Zhang, Y., Cai, B., and Jia, B., ‘Ultraviolet plasmonic aluminium nanoparticles for highly efficient light incoupling on silicon solar cells’, Nanomaterials 6, 95, 2016, DOI:10.3390/nano6060095.Google Scholar
[150] Song, D., Kim, H., Suh, J., Jun, B., and Rho, W., ‘Multi-shaped Ag nanoparticles in the plasmonic layer of dye-sensitized solar cells for increased power conversion efficiency’, Nanomaterials 7(6), 136, 2017.Google Scholar
[151] Kluczyk, K., David, C., and Jacak, W., ‘On quantum approach to modeling of plasmon photovoltaic effect’, J. Optical Soc. America B 34, 2115, 2017.Google Scholar
[152] Runge, E. and Gross, E. K. U., ‘Density-functional theory for time-dependent systems’, Phys. Rev. Lett. 52, 997, 1984.Google Scholar
[153] Hohenberg, P. and Kohn, W., ‘Inhomogeneous electron gas’, Phys. Rev. Lett. 136, 864, 1964.Google Scholar
[154] Esteban, R., Zugarramurdi, A., Zhang, P., Nordlander, P., Vidal, F. J. G., Borisov, A. G. et al., ‘A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations’, Faraday Discuss. 178, 151, 2015.Google Scholar
[155] Teperik, T. V., Nordlander, P., Aizpurua, J., and Borisov, A. G., ‘Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers’, Opt. Express 21, 27306, 2013.Google Scholar
[156] de Abajo, F. J. G., ‘Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides’, J. Phys. Chem. C 112, 17983, 2008.Google Scholar
[157] Kluczyk, K., Jacak, L., David, C., and Jacak, W., ‘Microscopic electron dynamics in metal nanoparticles for photovoltaic systems’, Materials 11, 1077, 2018.Google Scholar
[158] Maier, S. A., Kik, P. G., Atwater, H. A., Meltzer, S., Harel, E., Koel, B. E. et al., ‘Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides’, Nat. Mater. 2, 229, 2003.Google Scholar
[159] Zhao, L. L., Kelly, K. L., and Schatz, G. C., ‘The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width’, J. Phys. Chem. B 107, 7343, 2003.Google Scholar
[160] Zou, S., Janel, N., and Schatz, G. C., ‘Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes’, J. Chem. Phys. 120, 10871, 2004.Google Scholar
[161] Krenn, J. R., Dereux, A., Weeber, J. C., Bourillot, E., Lacroute, Y., Goudonnet, J. P. et al., ‘Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles’, Phys. Rev. Lett. 82, 2590, 1999.Google Scholar
[162] Maier, S. A., Brongersma, M. L., Kik, P. G., and Atwater, H. A., ‘Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy’, Phys. Rev. B 65, 193408, 2002.Google Scholar
[163] Maier, S. A., Kik, P. G., Sweatlock, L. A., Atwater, H. A., Penninkhof, J. J., Polman, A. et al., ‘Energy transport in metal nanoparticle plasmon waveguides’, Mat. Res. Soc. Symp. Proc. 777, T7.1.1, 2003.Google Scholar
[164] Ditlbacher, H., Hohenau, A., Wagner, D., Kreibig, U., Rogers, M., Hofer, F. et al., ‘Silver nanowires as surface plasmon resonators’, Phys. Rev. Lett. 95, 257403, 2005.Google Scholar
[165] Rasskazov, I. L., Karpov, S. V., and Markel, V. A., ‘Nondecaying surface plasmon polaritons in linear chains of silver nanospheroids’, Opt. Lett. 38, 4743, 2013.Google Scholar
[166] Govyadinov, A. A. and Markel, V. A., ‘From slow to superluminal propagation: dispersive properties of surface plasmon polaritons in linear chains of metallic nanospheroids’, Phys. Rev. B 78, 035403, 2008.Google Scholar
[167] Hadad, Y. and Steinberg, B. Z., ‘Green’s function theory for infinite and semi-infinite particle chains’, Phys. Rev. B 84, 125402, 2011.Google Scholar
[168] Markel, V. A. and Sarychev, A. K., ‘Comment on Green’s function theory for infinite and semi-infinite particle chains’, Phys. Rev. B 86, 037401, 2012.Google Scholar
[169] Singham, S. B. and Bohren, C. F., ‘Light scattering by an arbitrary particle: a physical reformulation of the coupled dipole method’, Opt. Lett. 12, 10, 1987.Google Scholar
[170] Jensen, T., Kelly, L., Lazarides, A., and Schatz, G. C., ‘Electrodynamics of noble metal nanoparticles and nanoparticle clusters’, J. Cluster Sci. 10, 295, 1999.Google Scholar
[171] Draine, B. T., ‘The discrete-dipole approximation and its application to interstellar graphite grains’, Astrophys. J. 333, 848, 1988.Google Scholar
[172] Purcell, E. M. and Pennypacker, C. R., ‘Scattering and absorption of light by nanospherical dielectric grains’, Astrophys. J. 186, 705, 1973.Google Scholar
[173] Draine, B. T. and Flatau, P. J., ‘Discrete-dipole approximation for scattering calculations’, J. Opt. Soc. America A 11, 1491, 1994.Google Scholar
[174] Markel, V. A., ‘Coupled-dipole approach to scattering of light from a one dimensional periodic dipole structure’, J. Mod. Opt. 40, 2281, 1993.Google Scholar
[175] Anger, P., Bharadwaj, P., and Novotny, L., ‘Enhancement and quenching of single-molecule fluorescence’, Phys. Rev. Lett. 96, 113002, 2006.Google Scholar
[176] Gradstein, I. S. and Rizik, I. M., Tables of Integrals, Fizmatizdat, Moscow, 1962.Google Scholar
[177] Jacak, W., Krasnyj, J., Jacak, J., Chepok, A., Jacak, L., Donderowicz, W. et al., ‘Undamped energy transport by collective surface plasmon oscillations along metallic nanosphere chain’, J. Appl. Phys. 108, 084304, 2010.Google Scholar
[178] Fevrier, M., Gogol, P., Lourtioz, J.-M., and Dagens, B., ‘Metallic nanoparticle chains on dielectric waveguides: coupled and uncoupled situations compared’, Opt. Express 21, 24505, 2013. DOI:10.1364/OE.21.024504.Google Scholar
[179] Apuzzo, A., Fevrier, M., Salas-Montiel, R., Bruyant, A., Chelnokov, A., Lerondel, G. et al., ‘Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide’, Nano Lett. 13, 1000, 2013. doi: 10.1021/nl304164y.Google Scholar
[180] Girard, C. and Quidant, R., ‘Near-field optical transmittance of metal particle chain waveguides’, Opt. Express 12, 6141, 2004.Google Scholar
[181] Markel, V. A., ‘Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres’, J. Phys. B: Atom., Mol. Opt. Phys. 38, L115, 2005.Google Scholar
[182] Bogolubov, N. N. and Mitropolkyj, J. A., Asymptotical Methods in the Theory of Nonlinear Oscillations, Nauka, Moscow, 2005.Google Scholar
[183] Lazarevich, I. A. and Kazantsev, V. B., ‘Dendritic signal transmission induced by intracellular charge inhomogeneities’, Phys. Rev. E. 88, 062718, 2013.Google Scholar
[184] Lillie, R. S., ‘Factors affecting transmission and recovery in passive iron nerve model’, J. Gen. Physiol. 7, 473, 1925.Google Scholar
[185] Citrin, D., ‘Plasmon–polariton transport in metal-nanoparticle chains embedded in a gain medium’, Opt. Letters 31, 98, 2006.Google Scholar
[186] Agranovich, V. M. and Dubovskii, O. A., ‘Effect of retarded interaction on the exciton spectrum in one-dimensional and two-dimensional crystals’, JETP Lett. 3, 223, 1966.Google Scholar
[187] Meissner, T. and Wentz, F., ‘The complex dielectric constant of pure and sea water from microwave satellite observations’, IEEE THRS 42, 1836, 2004.Google Scholar
[188] El-Brolossy, T. A., Abdallah, T., Mohamed, M. B., Abdallah, S., Easawi, K., Negm, S. et al., ‘Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by photoacoustic technique’, Eur. Phys. J. Special Topics 153, 361, 2008.Google Scholar
[189] Liz-Marzan, L. M., ‘Tuning nanorod surface plasmon resonances’, SPIE Newsroom (10.1117/2.1200707.0798), 2007.Google Scholar
[190] Sommerfeld, A., ‘Über die fortpflanzung elektrodynamischer Wellen langs eines Drahts’, Ann. Phys. Chem. 67, 233, 1899.Google Scholar
[191] Andrianov, E., Pukhov, A. A., Dorofeenko, A. V., Vinogradov, A. P., and Lisyansky, A. A., ‘Stationary behavior of a chain of interacting spasers’, Phys. Rev. B 85, 165419, 2012.Google Scholar
[192] Birman, J. S., Braids, Links and Mapping Class Groups, Princeton University Press, 1974.Google Scholar
[193] Mermin, D., ‘The topological theory of defects in ordered media’, Rev. Mod. Phys. 51, 591, 1979.Google Scholar
[194] Jacak, J., Gonczarek, R., Jacak, L., and Jóźwiak, I., Application of Braid Groups in 2D Hall System Physics, World Scientific, Singapore, 2012.Google Scholar
[195] Stokowski, H. and Jacak, J., ‘Multi-character alphabet coding using braid group formalism’, Comput. Math. Appl., submitted.Google Scholar
[196] Spanier, E., Algebraic Topology, Springer, Berlin, 1966.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Witold A. Jacak, Politechnika Wroclawska, Poland
  • Book: Quantum Nano-Plasmonics
  • Online publication: 03 August 2020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Witold A. Jacak, Politechnika Wroclawska, Poland
  • Book: Quantum Nano-Plasmonics
  • Online publication: 03 August 2020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Witold A. Jacak, Politechnika Wroclawska, Poland
  • Book: Quantum Nano-Plasmonics
  • Online publication: 03 August 2020
Available formats
×