Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T07:01:41.841Z Has data issue: false hasContentIssue false

3 - Trace dynamics models with global supersymmetry

Published online by Cambridge University Press:  17 March 2010

Stephen L. Adler
Affiliation:
Institute for Advanced Study, Princeton, New Jersey
Get access

Summary

In Section 2.4, we illustrated the trace dynamics formalism by constructing the trace dynamics analog of a simple field theory model, in which a Dirac fermion interacts with a scalar Klein–Gordon field. Much of the recent literature in quantum field theory has concerned itself with supersymmetric theories, in which invariance under the Poincaré group has been extended to invariance under the graded Poincaré group, and theories of this type are considered likely to play a central role in the ultimate unification of the forces. Our aim in this chapter (which can be omitted on a first reading) is to show that the trace dynamics formalism naturally extends to globally supersymmetric theories. Specifically, we shall see that, when there is a global supersymmetry, there is a conserved trace supersymmetry current with a time-independent trace supercharge Qα, that together with the trace four momentum obeys the Poincaré supersymmetry algebra under the generalized Poisson bracket of Eq. (1.11a). We shall illustrate this statement with three concrete examples, the trace dynamics versions (Adler 1997a,b) of the Wess–Zumino model (Section 3.1), the supersymmetric Yang–Mills model (Section 3.2), and the so-called “matrix model for M theory” (Section 3.3). These three examples are worked out using component field methods; we close in Section 3.4 with a short discussion of a superspace approach, and of the obstruction that prevents the construction of a trace dynamics theory with local supersymmetry.

The Wess–Zumino model

We begin with the trace dynamics transcription of the Wess–Zumino model.

Type
Chapter
Information
Quantum Theory as an Emergent Phenomenon
The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory
, pp. 64 - 74
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×