Published online by Cambridge University Press: 06 July 2010
Introduction
This chapter will formulate and solve the classical sequential detection problem as an optimal stopping problem. This problem deals with the optimization of decision rules for deciding between two possible statistical models for an infinite, homogeneous sequence of random observations. The optimization is carried out by penalizing, in various ways, the probabilities of error and the average amount of time required to reach a decision. By optimizing separately over the error probabilities with the decision time fixed, this problem becomes an optimal stopping problem that can be treated using the methods of the preceding chapter. As this problem is treated in many sources, the primary motivation for including it here is that it serves as a prototype for developing the tools needed in the related problem of quickest detection.
With this in mind, both Bayesian and non–Bayesian, as well as discrete– and continuous–time formulations of this problem will be treated. In the course of this treatment, a set of analytical techniques will be developed that will be useful in the solution and performance analysis of problems of quickest detection to be treated in subsequent chapters. Specific topics to be included are Bayesian optimization, the Wald—Wolfowitz theorem, the fundamental identity of sequential analysis, Wald's approximations, diffusion approximations, and Poisson approximations.
Sequential testing displays certain advantages over fixed sample testing in that it helps the user reach a decision between two hypotheses after a minimal average number of experiments.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.