Published online by Cambridge University Press: 18 December 2009
Adjoint formulation of the radiative transfer equation
Problems in radiative transfer theory can be solved by various solution methods. In the previous chapter we have discussed a number of these which we will classify as the forward or the regular methods. In addition to applying the forward solutions, it is also possible to use the so-called adjoint solution techniques which offer the decisive advantage that for certain types of transfer problems the numerical effort can be drastically reduced.
In this section we will formulate the adjoint technique. It will be necessary to introduce a new terminology involving expressions such as the radiative effect and the atmospheric response due to the presence of energy sources. By means of an important but simple example we will demonstrate the numerical advantage that the adjoint technique offers in comparison to the forward formulation. In Section 5.2 we will introduce the perturbation technique and show how to apply it to the forward as well as to the adjoint formulation.
The adjoint method originated as a purely mathematical tool for the solution of linear operator equations. Discussions on this subject can be found in textbooks on principles of applied mathematics such as Courant and Hilbert (1953), Friedman (1956) and Keener (1988).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.