Published online by Cambridge University Press: 20 February 2010
The scope of this book is limited to the study of discrete time dynamic processes evolving over an infinite horizon. Its primary focus is on models with a one-period lag: “tomorrow” is determined by “today” through an exogenously given rule that is itself stationary or time-independent. A finite lag of arbitrary length may sometimes be incorporated in this scheme. In the deterministic case, the models belong to the broad mathematical class, known as dynamical systems, discussed in Chapter 1, with particular emphasis on those arising in economics. In the presence of random perturbations, the processes are random dynamical systems whose long-term stability is our main quest. These occupy a central place in the theory of discrete time stochastic processes.
Aside from the appearance of many examples from economics, there is a significant distinction between the presentation in this book and that found in standard texts on Markov processes. Following the exposition in Chapter 2 of the basic theory of irreducible processes, especially Markov chains, much of Chapters 3–5 deals with the problem of stability of random dynamical systems which may not, in general, be irreducible. The latter models arise, for example, if the random perturbation is limited to a finite or countable number of choices. Quite a bit of this theory is of relatively recent origin and appears especially relevant to economics because of underlying structures of monotonicity or contraction. But it is useful in other contexts as well.
In view of our restriction to discrete time frameworks, we have not touched upon powerful techniques involving deterministic and stochastic differential equations or calculus of variations that have led to significant advances in many disciplines, including economics and finance.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.