from I - Tools and Techniques
Published online by Cambridge University Press: 05 March 2013
IN this chapter we will study some basic principles of the probabilistic method, a combinatorial tool with many applications in computer science. This method is a powerful tool for demonstrating the existence of combinatorial objects. We introduce the basic idea through several examples drawn from earlier chapters, and follow that by a detailed study of the maximum satisfiability (MAX-SAT) problem. We then introduce the notion of expanding graphs and apply the probabilistic method to demonstrate their existence. These graphs have powerful properties that prove useful in later chapters, and we illustrate these properties via an application to probability amplification.
In certain cases, the probabilistic method can actually be used to demonstrate the existence of algorithms, rather than merely combinatorial objects. We illustrate this by showing the existence of efficient non-uniform algorithms for the problem of oblivious routing. We then present a particular result, the Lovász Local Lemma, which underlies the successful application of the probabilistic method in a number of settings. We apply this lemma to the problem of finding a satisfying truth assignment in an instance of the SAT problem where each variable occurs in a bounded number of clauses. While the probabilistic method usually yields only randomized or non-uniform deterministic algorithms, there are cases where a technique called the method of conditional probabilities can be used to devise a uniform, deterministic algorithm; we conclude the chapter with an exposition of this method for derandomization.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.