Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T23:35:22.844Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  06 January 2010

Ernst-Rüdiger Olderog
Affiliation:
Carl V. Ossietzky Universität Oldenburg, Germany
Henning Dierks
Affiliation:
OFFIS, Research Institute, Oldenburg
Get access

Summary

What is a real-time system?

This book is about the design of certain kinds of reactive systems. A reactive system interacts with its environment by reacting to inputs from the environment with certain outputs. Usually, a reactive system is not supposed to stop but should be continuously ready for such interactions. In the real world there are plenty of reactive systems around. A vending machine for drinks should be continuously ready for interacting with its customers. When a customer inputs suitable coins and selects “coffee” the vending machine should output a cup of hot coffee. A traffic light should continuously be ready to react when a pedestrian pushes the button indicating the wish to cross the street. A cash machine of a bank should continuously be ready to react to customers' desire for extracting money from their bank account.

Reactive systems are seen in contrast to transformational systems, which are supposed to compute a single input–output transformation that satisfies a certain relation and then terminate. For example, such a system could input two matrices and compute its product.

We wish to design reactive systems that interact in a well-defined relation to the real, physical time. A real-time system is a reactive system which, for certain inputs, has to compute the corresponding outputs within given time bounds. An example of a real-time system is an airbag. When a car is forced into an emergency braking its airbag has to unfold within 300 milliseconds to protect the passenger's head. Thus there is a tight upper time bound for the reaction. However, there is also a lower time bound of 100 milliseconds.

Type
Chapter
Information
Real-Time Systems
Formal Specification and Automatic Verification
, pp. 1 - 27
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×