Published online by Cambridge University Press: 22 September 2009
Introduction
This chapter proposes a testing procedure for discriminating between alternative sets of regressors in a non-parametric context. The literature on non-parametric testing of regression models is quite extensive. Non-parametric methods have been used for specification testing of a parametric model against a non-parametric alternative, see Eubank and Spiegelman (1990), Hall and Hart (1990), Hong and White (1991), Wooldridge (1992), Härdle and Mammen (1993), Whang and Andrews (1993), Horowitz and Härdle (1994), de Jong and Bierens (1994), Fan and Li (1996) and Delgado and Stengos (1994), to mention only a few.
Discriminating between non-nested sets of regressors is a well motivated problem. Existing tests assume a particular functional form of the regression function and are consistent in the direction of precisely parameterized alternatives, see Cox (1961, 1962), Pesaran (1974), Davidson and MacKinnon (1981) and Fisher and McAleer (1981), also see MacKinnon (1992) for a survey. Recently Delgado and Stengos (1994) have proposed an extension of the J-test of Davidson and MacKinnon that is consistent against non-parametric alternatives. The above test still assumes a particular parametric regression curve under the null hypothesis. Hence, it is still not robust to functional misspecification. In this chapter, we propose to test a non-parametric regression model in the direction of a non-parametric non-nested alternative.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.