Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-14T03:12:27.863Z Has data issue: false hasContentIssue false

4 - Generalized Count Regression

Published online by Cambridge University Press:  05 July 2014

A. Colin Cameron
Affiliation:
University of California, Davis
Pravin K. Trivedi
Affiliation:
Indiana University, Bloomington
Get access

Summary

INTRODUCTION

The most commonly used models for count regression, Poisson and negative binomial, were presented in Chapter 3. In this chapter we introduce richer models for count regression using cross-section data. For some of these models the conditional mean retains the exponential functional form. Then the Poisson QMLE and NB2 ML estimators remain consistent, although they may be inefficient and may not be suitable for predicting probabilities, rather than the conditional mean. For many of these models, however, the Poisson and NB2 estimators are inconsistent. Then alternative methods are used, ones that generally rely heavily on parametric assumptions.

One reason for the failure of the Poisson regression is that the Poisson process has unobserved heterogeneity that contributes additional randomness. This leads to mixture models, the negative binomial being only one example. A second reason is the failure of the Poisson process assumption and its replacement by a more general stochastic process.

Some common departures from the standard Poisson regression are as follows.

  1. Failure of the mean-equals-variance restriction: Frequently the conditional variance of data exceeds the conditional mean, which is usually referred to as extra-Poisson variation or overdispersion relative to the Poisson model. Overdispersion may result from neglected or unobserved heterogeneity that is inadequately captured by the covariates in the conditional mean function. It is common to allow for random variation in the Poisson conditional mean by introducing a multiplicative error term. This leads to families of mixed Poisson models.

  2. […]

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×