Published online by Cambridge University Press: 22 August 2009
Introduction
Müller cells, the principal glia of vertebrate retinas, are radial glia that span the entire depth of the retina. The distal processes of Müller cells form the external limiting membrane of the retina, while their ‘endfeet’ form the inner limiting membrane. Müller cell processes surround neuronal cell bodies in the nuclear layers and contact synapses in the plexiform layers (Newman and Reichenbach, 1996). Müller cells play a major role in regulating extracellular K+ and pH (Newman et al., 1984; Karwoski et al., 1989; Kusaka and Puro, 1997), in neurotransmitter uptake (Pow, 2001) and in glutamine synthesis (Riepe, 1977, 1978; Germer et al., 1997a; Prada et al., 1998), functions performed by astrocytes in other regions of the central nervous system. Müller cells also have some similarities to oligodendrocytes; although they do not form myelin, Müller cell processes wrap the axons of retinal ganglion cells (Holländer et al., 1991; Stone et al., 1995). In addition, intercellular Ca2+ waves have been observed among Müller cells (Newman and Zahs, 1997). These waves are increases in glial cytosolic Ca2+ that propagate away from the site of initial activation. The arrival of Ca2+ waves in retinal glia is correlated with modulation of the light-evoked activity of neighbouring retinal ganglion cells (Newman and Zahs, 1998). Modulation of retinal ganglion cell activity has been shown to be mediated by a variety of factors released by Müller cells, including purine nucleotides (Newman, 2003) and d-serine, a co-agonist at the N-methyl-d–aspartate (NMDA) type of glutamate receptor (Stevens et al., 2003).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.