Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-01T09:38:03.845Z Has data issue: false hasContentIssue false

6 - Design and synthesis of small interfering RNA (siRNA)

Published online by Cambridge University Press:  31 July 2009

Queta Boese
Affiliation:
Dharmacon, Inc.
William S. Marshall
Affiliation:
Dharmacon, Inc.
Anastasia Khvorova
Affiliation:
Dharmacon, Inc.
Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Andrew Fire
Affiliation:
Stanford University, California
Get access

Summary

Efficient RNA interference (RNAi) depends on siRNA design and synthesis

RNAi is a powerful technology with tremendous utility for functional genomic analysis, drug discovery strategies and therapeutic applications (Appasani 2003). While this pathway for post-transcriptional gene regulation is ubiquitous among eukaryotes, species-specific variations in the mechanism impact the utility of this pathway. These species-specific distinctions have strong implications with regard to the design, production, and delivery of the functional silencing intermediates. For example, in Caenorhabditis elegans (C. elegans), simple exposure by soaking (Tabara et al. 1998; Timmons and Fire 1998), feeding (Fraser et al. 2000; Timmons et al. 2001), or injecting (Fire et al. 1998) the nematode with long dsRNA is sufficient to induce prolonged and potent gene knockdown. Silencing efficiency appears to be due to siRNA-primed amplification of additional dsRNA from the mRNA target resulting in a secondary pool of Dicer processed duplexes (Sijen et al. 2001; Tijsterman et al. 2002). This mechanism is characteristic of post-transcriptional gene silencing in nematodes and other lower eukaryotes and is mediated by an RNA-dependent RNA polymerase [(RdRP) (Sijen et al. 2001; Martens et al. 2002)]. Invariably, several of the newly generated siRNAs will be capable of proficient gene-specific knockdown thereby eliminating the need to carefully design and synthesize a single siRNA silencing intermediate.

In mammalian cell culture models, preliminary attempts to induce RNAi using long dsRNA met with limited success (Tuschl et al. 1999; Caplen et al. 2000; Zhao et al. 2001).

Type
Chapter
Information
RNA Interference Technology
From Basic Science to Drug Development
, pp. 103 - 117
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appasani, K. (2003). RNA interference: A technology platform for target validation, drug discovery and therapeutic development. Drug Discovery World, Summer Issue, 61–66Google Scholar
Aza-Blanc, P., Cooper, C., Wagner, K., Batalov, S., Deveraux, Q. and Cooke, M. (2003). Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Molecular Cell, 12, 627–637CrossRefGoogle ScholarPubMed
Baglioni, C. (1979). Interferon-induced enzymatic activities and their role in the antiviral state. Cell, 17, 255CrossRefGoogle Scholar
Bernstein, E., Caudy, A. A., Hammond, S. M. and Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409, 363–366CrossRefGoogle ScholarPubMed
Billy, E., Brondani, V., Zhang, H., Muller, U. and Filipowicz, W. (2001). Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proceedings of the National Academy of Sciences U S A, 98, 14428–14433CrossRefGoogle ScholarPubMed
Brummelkamp, T. R., Bernards, R. and Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science, 296, 550–553CrossRefGoogle ScholarPubMed
Calegari, F., Haubensak, W., Yang, D., Huttner, W. B. and Buchholz, F. (2002). Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proceedings of the National Academy of Sciences U S A, 99, 14236–14240CrossRefGoogle ScholarPubMed
Caplen, N., Fleenor, J., Fire, A. and Morgan, R. (2000). dsRNA-mediated gene silencing in cultured Drosophila cells: A tissue culture model for the analysis of RNA interference. Gene, 252, 95–105CrossRefGoogle ScholarPubMed
Caplen, N. J., Parrish, S., Imani, F., Fire, A. and Morgan, R. A. (2001). Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proceedings of the National Academy of Sciences U S A, 98, 9742–9747CrossRefGoogle ScholarPubMed
Capodici, J., Kariko, K. and Weissman, D. (2002). Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. Journal of Immunology, 169, 5196–5201CrossRefGoogle ScholarPubMed
Caruthers, M. H. (1985). Gene synthesis machines: DNA chemistry and its uses. Science, 230, 281–285CrossRefGoogle ScholarPubMed
Castanotto, D., Li, H. and Rossi, J. J. (2002). Functional siRNA expression from transfected PCR products. RNA, 8, 1454–1460CrossRefGoogle ScholarPubMed
Caudy, A., Ketting, R., Hammond, S., Denli, A., Bathoorn, A., Tops, B., Silva, J., Myers, M., Hannon, G. and Plasterk, R. (2003). A micrococcal nuclease homologue in RNAi effector complexes. Nature, 425, 411–414CrossRefGoogle ScholarPubMed
Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001a). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498CrossRefGoogle Scholar
Elbashir, S. M., Lendeckel, W. and Tuschl, T. (2001b). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes & Development, 15, 188–200CrossRefGoogle Scholar
Elbashir, S. M., Harborth, J., Weber, K. and Tuschl, T. (2002). Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 26, 199–213CrossRefGoogle ScholarPubMed
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811CrossRefGoogle ScholarPubMed
Fraser, A. G., Kamath, R. S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M. and Ahringer, J. (2000). Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature, 408, 325–330CrossRefGoogle ScholarPubMed
Holen, T., Amarzguioui, M., Babaie, E. and Prydz, H. (2003). Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway. Nucleic Acids Research, 31, 2401–2407CrossRefGoogle ScholarPubMed
Holen, T., Amarzguioui, M., Wiiger, M. T., Babaie, E. and Prydz, H. (2002). Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Research, 30, 1757–1766CrossRefGoogle ScholarPubMed
Hsieh, A., Bo, R., Manola, J., Bare, O., Khvorova, A., Scaringe, S. and Sellers, W. (2004). A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: Determinants of gene silencing for use in cell-based screens. Nucleic Acids Research, 32, 893–901CrossRefGoogle ScholarPubMed
Huang, F., Khvorova, A., Marshall, W. S. and Sorkin, A. (2004). Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. Journal of Biological Chemistry, 279, 16657–16661CrossRefGoogle ScholarPubMed
Jackson, A. L., Bartz, S. R., Schelter, J., Kobayashi, S. V., Burchard, J., Mao, M., Li, B., Cavet, G. and Linsley, P. S. (2003). Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnology, 21, 635–637CrossRefGoogle ScholarPubMed
Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J. and Plasterk, R. H. (2001). Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes & Development, 15, 2654–2659CrossRefGoogle ScholarPubMed
Khvorova, A., Reynolds, A. and Jayasena, S. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell, 115, 209–216CrossRefGoogle ScholarPubMed
Knight, S. W. and Bass, B. L. (2001). A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science, 293, 2269–2271CrossRefGoogle ScholarPubMed
Krichevsky, A. M. and Kosik, K. S. (2002). RNAi functions in cultured mammalian neurons. Proceedings of the National Academy of Sciences U S A, 99, 11926–11929CrossRefGoogle ScholarPubMed
Laposa, R. R., Feeney, L. and Cleaver, J. E. (2003). Recapitulation of the cellular xeroderma pigmentosum-variant phenotypes using short interfering RNA for DNA Polymerase H. Cancer Research, 63, 3909–3912Google ScholarPubMed
Lee, N. S., Dohjima, T., Bauer, G., Li, H., Li, M. J., Ehsani, A., Salvaterra, P. and Rossi, J. (2002). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnology, 20, 500–505CrossRefGoogle ScholarPubMed
Martens, H., Novotny, J., Oberstrass, J., Steck, T. L., Postlethwait, P. and Nellen, W. (2002). RNAi in Dictyostelium: The role of RNA-directed RNA polymerases and double-stranded RNAse. Molecular Biology of the Cell, 13, 445–453CrossRefGoogle ScholarPubMed
Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. and Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 110, 563–574CrossRefGoogle ScholarPubMed
McManus, M. T., Haines, B. B., Dillon, C. P., Whitehurst, C. E., Parijs, L., Chen, J. and Sharp, P. A. (2002). Small interfering RNA-mediated gene silencing in T lymphocytes. Journal of Immunology, 169, 5754–5760CrossRefGoogle ScholarPubMed
Minks, M. A., West, D. K., Benvin, S. and Baglioni, C. (1979). Structural requirements of double-stranded RNA for the activation of 2',5'-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells. Journal of Biological Chemistry, 254, 10180–10183Google ScholarPubMed
Nykanen, A., Haley, B. and Zamore, P. D. (2001). ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 107, 309–321CrossRefGoogle ScholarPubMed
Paul, C. P., Good, P. D., Winer, I. and Engelke, D. R. (2002). Effective expression of small interfering RNA in human cells. Nature Biotechnology, 20, 505–508CrossRefGoogle ScholarPubMed
Reynolds, A., Leake, D., Scaringe, S., Marshall, W. S., Boese, Q. and Khvorova, A. (2004). Rational siRNA design for RNA interference. Nature Biotechnology, 22, 326–330CrossRefGoogle ScholarPubMed
Scaringe, S. A. (2000). Advanced 5'-silyl-2'-orthoester approach to RNA oligonucleotide synthesis. Methods in Enzymology, 317, 3–18CrossRefGoogle ScholarPubMed
Scaringe, S. A. (2001). RNA oligonucleotide synthesis via 5'-silyl-2'-orthoester chemistry. Methods, 23, 206–217CrossRefGoogle ScholarPubMed
Schwarz, D. S., Hütvagner, G., Du, T., Xu, Z., Aronin, N. and Zamore, P. D. (2003). Unexpected asymmetry in the assembly of the RNAi Enzyme complex. Cell, 115, 199–208CrossRefGoogle ScholarPubMed
Schwarz, D. S., Hütvagner, G., Haley, B. and Zamore, P. D. (2002). Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Molecular Cell, 10, 537–548CrossRefGoogle Scholar
Semizarov, D., Frost, L., Sarthy, A., Kroeger, P., Halbert, D. N. and Fesik, S. W. (2003). Specificity of short interfering RNA determined through gene expression signatures. Proceedings of the National Academy of Sciences U S A, 100, 6347–6352CrossRefGoogle ScholarPubMed
Sijen, T., Fleenor, J., Simmer, F., Thijssen, K. L., Parrish, S., Timmons, L., Plasterk, R. H. and Fire, A. (2001). On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 107, 465–476CrossRefGoogle ScholarPubMed
Spankuch-Schmitt, B., Bereiter-Hahn, J., Kaufmann, M. and Strebhardt, K. (2002). Effect of RNA silencing of polo-like kinase-1 (PLK1) on apoptosis and spindle formation in human cancer cells. Journal of the National Cancer Institute, 94, 1863–1877CrossRefGoogle ScholarPubMed
Sui, G., Soohoo, C., Affar el, B., Gay, F., Shi, Y. and Forrester, W. C. (2002). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proceedings of the National Academy of Sciences U S A, 99, 5515–5520CrossRefGoogle ScholarPubMed
Tabara, H., Grishok, A. and Mello, C. C. (1998). RNAi in C. elegans: Soaking in the genome sequence. Science, 282, 430–431CrossRefGoogle Scholar
Tijsterman, M., Ketting, R. F., Okihara, K. L., Sijen, T. and Plasterk, R. H. (2002). RNA helicase MUT-14-dependent gene silencing triggered in C. elegans by short antisense RNAs. Science, 295, 694–697CrossRefGoogle Scholar
Timmons, L., Court, D. L. and Fire, A. (2001). Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene, 263, 103–112CrossRefGoogle ScholarPubMed
Timmons, L. and Fire, A. (1998). Specific interference by ingested dsRNA. Nature, 395, 854CrossRefGoogle ScholarPubMed
Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P. and Sharp, P. A. (1999). Targeted mRNA degradation by double-stranded RNA in vitro. Genes & Development, 13, 3191–3197CrossRefGoogle ScholarPubMed
Usman, N. O., Jiang, KK. MY.Cedergren, RJ. (1987). The automated chemical synthesis of long oligoribuncleotides using 2′-O-silylated ribonucleoside 3′-O-phosphoramidites on a controlled-pore glass support: synthesis of a 43-nucleotide sequence similar to the 3′-half molecule of an Escherichia coli formylmethionine tRNA. Journal of the American Chemical Society, 109, 7845CrossRefGoogle Scholar
Vickers, T. A., Koo, S., Bennett, C. F., Crooke, S. T., Dean, N. M. and Baker, B. F. (2003). Efficient reduction of target RNA's by small interfering RNA and RNAse H dependent antisense agents: A comparative analysis. Journal of Biological Chemistry, 278, 7108–7118CrossRefGoogle Scholar
Wu, X. and Pitsch, S. (1998). Synthesis and pairing properties of oligoribonucleotide analogues containing a metal-binding site attached to beta-D-allofuranosyl cytosine. Nucleic Acids Research, 26, 4315–4323CrossRefGoogle ScholarPubMed
Yang, D., Buchholz, F., Huang, Z., Goga, A., Chen, C.-Y., Brodsky, F. M. and Bishop, J. M. (2002). Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proceedings of the National Academy of Sciences U S A, 99, 9942–9947CrossRefGoogle ScholarPubMed
Zhao, Z., Cao, Y., Li, M. and Meng, A. (2001). Double-stranded RNA injection produces nonspecific defects in zebrafish. Developmental Biology, 229, 215–223CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×