Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-01T03:43:17.936Z Has data issue: false hasContentIssue false

17 - Practical applications of RNAi in C. elegans

Published online by Cambridge University Press:  31 July 2009

Karen E. Stephens
Affiliation:
The Wellcome Trust Sanger Institute
Olivier Zugasti
Affiliation:
The Wellcome Trust Sanger Institute
Nigel J. O'Neil
Affiliation:
The Wellcome Trust Sanger Institute
Patricia E. Kuwabara
Affiliation:
The Wellcome Trust Sanger Institute
Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Andrew Fire
Affiliation:
Stanford University, California
Get access

Summary

The discovery of RNAi in C. elegans

This chapter presents an overview of the methods and practical applications of RNA interference (RNAi) in C. elegans. Major exploitation of RNAi in C. elegans dates from the observation by Fire et al. (1998) that the injection of sequence-specific double-stranded (ds)RNA into the germ line of C. elegans was capable of silencing the activity of its cognate gene. The resulting mutant phenocopy closely resembled the phenotype produced by a genetically null or reduced-function mutant. Amazingly, the effect was found to be cell non-autonomous – RNAi is capable of spreading across cell boundaries and affecting tissues beyond the germ line in C. elegans (Fire et al., 1998). This phenomenon is related to post-transcriptional gene silencing (PTGS) in plants and quelling in fungi, all of which are believed to be natural defence mechanisms against viral invasion or transposon jumping (Plasterk, 2002 and references therein). RNAi is now employed routinely across phyla as a tool for systematically analysing gene function in most organisms with complete genome sequences (Hammond et al., 2001). Gene silencing by RNAi holds great promise as a therapeutic for treating human disease and genetic disorders. Considerable progress has been made in understanding the molecular mechanisms underlying the process of RNAi and the reader is referred to other chapters in this book for details.

Type
Chapter
Information
RNA Interference Technology
From Basic Science to Drug Development
, pp. 235 - 246
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, S. and Hodgkin, J. (2000). MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans. Nature, 403, 159–164CrossRefGoogle ScholarPubMed
Ashrafi, K., Chang, F. Y., Watts, J. L., Fraser, A. G., Kamath, R. S., Ahringer, J. and Ruvkun, G. (2003). Genome-wide RNAi analysis of C. elegans fat regulatory genes. Nature, 421, 268–272CrossRefGoogle ScholarPubMed
C. elegans Sequencing Consortium (1998). Genome sequence of the nematode C. elegans: A platform for investigating biology. Science, 282, 2012–2018CrossRef
Colaiacovo, M. P., Stanfield, G. M., Reddy, K. C., Reinke, V., Kim, S. K. and Villeneuve, A. M. (2002). A targeted RNAi screen for genes involved in chromosome morphogenesis and nuclear organization in the C. elegans germline. Genetics, 162, 113–128Google Scholar
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in C. elegans. Nature, 391, 806–811CrossRefGoogle Scholar
Fraser, A. G., Kamath, R. S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M. and Ahringer, J. (2000). Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature, 408, 325–330CrossRefGoogle ScholarPubMed
Gonczy, P., Echeverri, C., Oegema, K., Coulson, A., Jones, S. J., Copley, R. R., Duperon, J., Oegema, J., Brehm, M., Cassin, E., Hannak, E., Kirkham, M., Pichler, S., Flohrs, K., Goessen, A., Leidel, S., Alleaume, A. M., Martin, C., Ozlu, N., Bork, P. and Hyman, A. A. (2000). Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature, 408, 331–336CrossRefGoogle Scholar
Hammond, S. M., Caudy, A. A. and Hannon, G. J. (2001). post-transcriptional gene silencing by double-stranded RNA. Nature Reviews in Genetics, 2, 110–119CrossRefGoogle ScholarPubMed
Ingham, P. W. and McMahon, A. P. (2001). Hedgehog signaling in animal development: paradigms and principles. Genes & Development, 15, 3059–3087CrossRefGoogle ScholarPubMed
Kamath, R. S., Fraser, A. G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Bot, N., Moreno, S., Sohrmann, M., Welchman, D. P., Zipperlen, P. and Ahringer, J. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 421, 231–237CrossRefGoogle ScholarPubMed
Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G. and Ahringer, J. (2001). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biology, 2, RESEARCH0002Google ScholarPubMed
Kraemer, B., Crittenden, S., Gallegos, M., Moulder, G., Barstead, R., Kimble, J. and Wickens, M. (1999). NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Current Biology, 9, 1009–1018CrossRefGoogle ScholarPubMed
Kuwabara, P. E. (1996). Interspecies comparison reveals evolution of control regions in the nematode sex-determining gene tra-2. Genetics, 144, 597–607Google ScholarPubMed
Kuwabara, P. E. and Labouesse, M. (2002). The sterol-sensing domain: Multiple families, a unique role?Trends in Genetics, 18, 193–201CrossRefGoogle ScholarPubMed
Kuwabara, P. E., Lee, M. H., Schedl, T. and Jefferis, G. S. (2000). A C. elegans patched gene, ptc-1, functions in germ-line cytokinesis. Genes & Development, 14, 1933–1944Google Scholar
Kuwabara, P. E. and O'Neil, N. (2001). The use of functional genomics in C. elegans for studying human development and disease. Journal of Inheritable and Metabolic Diseases, 24, 127–138CrossRefGoogle Scholar
Lee, S. S., Lee, R. Y., Fraser, A. G., Kamath, R. S., Ahringer, J. and Ruvkun, G. (2003). A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nature Genetics, 33, 40–48CrossRefGoogle ScholarPubMed
Levitan, D., Doyle, T. G., Brousseau, D., Lee, M. K., Thinakaran, G., Slunt, H. H., Sisodia, S. S. and Greenwald, I. (1996). Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proceedings of the National Academy of Sciences USA, 93, 14940–14944CrossRefGoogle ScholarPubMed
Lu, X. and Horvitz, H. R. (1998). lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48. Cell, 95, 981–991CrossRefGoogle Scholar
Maeda, I., Kohara, Y., Yamamoto, M. and Sugimoto, A. (2001). Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Current Biology, 11, 171–176CrossRefGoogle ScholarPubMed
Miller, M. A., Ruest, P. J., Kosinski, M., Hanks, S. K. and Greenstein, D. (2003). An Eph receptor sperm-sensing control mechanism for oocyte meiotic maturation in Caenorhabditis elegans. Genes & Development, 17, 187–200CrossRefGoogle ScholarPubMed
Morris, J. Z., Tissenbaum, H. A. and Ruvkun, G. (1996). A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature, 382, 536–539CrossRefGoogle ScholarPubMed
Mullen, J. R., Kaliraman, V., Ibrahim, S. S. and Brill, S. J. (2001). Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae. Genetics, 157, 103–118Google ScholarPubMed
Parrish, S., Fleenor, J., Xu, S., Mello, C. and Fire, A. (2000). Functional anatomy of a dsRNA trigger: Differential requirement for the two trigger strands in RNA interference. Molecular Cell, 6, 1077–1087CrossRefGoogle ScholarPubMed
Piano, F., Schetter, A. J., Mangone, M., Stein, L. and Kemphues, K. J. (2000). RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Current Biology, 10, 1619–1622CrossRefGoogle ScholarPubMed
Plasterk, R. H. (2002). RNA silencing: The genome's immune system. Science, 296, 1263–1265CrossRefGoogle ScholarPubMed
Pothof, J., Haaften, G., Thijssen, K., Kamath, R. S., Fraser, A. G., Ahringer, J., Plasterk, R. H. and Tijsterman, M. (2003). Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. Genes & Development, 17, 443–448CrossRefGoogle Scholar
Riddle, D. L., Blumenthal, T., Meyer, B. J. and Priess, J. R. (1997). C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Sijen, T., Fleenor, J., Simmer, F., Thijssen, K. L., Parrish, S., Timmons, L., Plasterk, R. H. and Fire, A. (2001). On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 107, 465–476CrossRefGoogle ScholarPubMed
Simmer, F., Tijsterman, M., Parrish, S., Koushika, S. P., Nonet, M. L., Fire, A., Ahringer, J. and Plasterk, R. H. (2002). Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Current Biology, 12, 1317–1319CrossRefGoogle ScholarPubMed
Stein, L., Sternberg, P., Durbin, R., Thierry-Mieg, J. and Spieth, J. (2001). WormBase: network access to the genome and biology of Caenorhabditis elegans. Nucleic Acids Research, 29, 82–86CrossRefGoogle ScholarPubMed
Subramaniam, K. and Seydoux, G. (1999). nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development, 126, 4861–4871Google ScholarPubMed
Tabara, H., Grishok, A. and Mello, C. C. (1998). RNAi in C. elegans: Soaking in the genome sequence. Science, 282, 430–431CrossRefGoogle Scholar
Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A. and Driscoll, M. (2000). Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genetics, 24, 180–183CrossRefGoogle ScholarPubMed
Thomas, J. H., Ceol, C. J., Schwartz, H. T. and Horvitz, H. R. (2003). New genes that interact with lin-35 Rb to negatively regulate the let-60 ras pathway in Caenorhabditis elegans. Genetics, 164, 135–151Google ScholarPubMed
Timmons, L., Court, D. L. and Fire, A. (2001). Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene, 263, 103–112CrossRefGoogle ScholarPubMed
Timmons, L. and Fire, A. (1998). Specific interference by ingested dsRNA. Nature, 395, 854CrossRefGoogle ScholarPubMed
Vastenhouw, N. L., Fischer, S. E., Robert, V. J., Thijssen, K. L., Fraser, A. G., Kamath, R. S., Ahringer, J. and Plasterk, R. H. (2003). A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans. Current Biology, 13, 1311–1316CrossRefGoogle ScholarPubMed
Wood, B. (1988). The nematode C. elegans. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Zamore, P. D. (2002). Ancient pathways programmed by small RNAs. Science, 296, 1265–1269CrossRefGoogle ScholarPubMed
Zhang, B., Gallegos, M., Puoti, A., Durkin, E., Fields, S., Kimble, J. and Wickens, M. P. (1997). A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature, 390, 477–484CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×